Skip to main content

Activity-Based Anorexia, an Animal Model of Anorexia Nervosa for Investigating Brain Plasticity Underlying the Gain of Resilience

  • Protocol
  • First Online:
Animal Models of Eating Disorders

Part of the book series: Neuromethods ((NM,volume 161))

Abstract

Anorexia nervosa (AN) is a mental illness characterized by continuously severe, self-imposed starvation and intense anxiety, manifested as fear of gaining weight. An increasing number of individuals are diagnosed with AN, especially among men. AN is now recognized to include those serving the military as well. With no accepted pharmacological treatments available, coupled with its high mortality and relapse rates, better understanding of the neurobiological basis of this mental illness is needed. This chapter describes the animal model of AN, called activity-based anorexia (ABA), that captures multiple core features of AN successfully, including voluntary food restriction, heightened anxiety, and excessive exercise, culminating in severe body weight loss. Also described in this chapter is how individual differences in vulnerability to ABA can be quantified. This chapter will include examples of synaptic plasticity measurements that may underlie the gain of resilience, quantified as the suppression of two maladaptive behaviors – excessive exercise and voluntary food restriction. Finally, the chapter will describe potential uses of the ABA model for exploring pharmacological treatments to reduce the maladaptive behaviors elicited in the ABA model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaye WH et al (2004) Comorbidity of anxiety disorders with anorexia and bulimia nervosa. Am J Psychiatry 161(12):2215–2221

    Article  PubMed  Google Scholar 

  2. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders DSM-5. 4th ed, Text Revision edition, Washington, DC

    Google Scholar 

  3. Hudson JI et al (2007) The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry 61(3):348–358

    Article  PubMed  Google Scholar 

  4. Smink FR et al (2014) Prevalence and severity of DSM-5 eating disorders in a community cohort of adolescents. Int J Eat Disord 47(6):610–619

    Article  PubMed  Google Scholar 

  5. Arcelus J et al (2011) Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch Gen Psychiatry 68(7):724–731

    Article  PubMed  Google Scholar 

  6. Chesney E, Goodwin GM, Fazel S (2014) Risks of all-cause and suicide mortality in mental disorders: a meta-review. World Psychiatry 13(2):153–160

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sullivan PF (1995) Mortality in anorexia nervosa. Am J Psychiatry 152(7):1073–1074

    Article  CAS  PubMed  Google Scholar 

  8. Steinhausen HC (2002) The outcome of anorexia nervosa in the 20th century. Am J Psychiatry 159(8):1284–1293

    Article  PubMed  Google Scholar 

  9. American Psychiatric Association (2006) Treatment of patients with eating disorders. Am J Psychiatry 163(7 Suppl):4–54

    Google Scholar 

  10. Thornton LM et al (2011) Anorexia nervosa and generalized anxiety disorder: further explorations of the relation between anxiety and body mass index. J Anxiety Disord 25(5):727–730

    Article  PubMed  PubMed Central  Google Scholar 

  11. Attia E et al (2019) Olanzapine versus placebo in adult outpatients with anorexia nervosa: a randomized clinical trial. Am J Psychiatry 176(6):449–456

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bissada H et al (2008) Olanzapine in the treatment of low body weight and obsessive thinking in women with anorexia nervosa: a randomized, double-blind, placebo-controlled trial. Am J Psychiatry 165(10):1281–1288

    Article  PubMed  Google Scholar 

  13. Mills IH et al (1998) Treatment of compulsive behaviour in eating disorders with intermittent ketamine infusions. QJM 91(7):493–503

    Article  CAS  PubMed  Google Scholar 

  14. Beumont PJ et al (1994) Excessive physical activity in dieting disorder patients: proposals for a supervised exercise program. Int J Eat Disord 15(1):21–36

    Article  CAS  PubMed  Google Scholar 

  15. Casper RC, Sullivan EL, Tecott L (2008) Relevance of animal models to human eating disorders and obesity. Psychopharmacology 199(3):313–329

    Article  CAS  PubMed  Google Scholar 

  16. Davis C et al (1997) The prevalence of high-level exercise in the eating disorders: etiological implications. Compr Psychiatry 38(6):321–326

    Article  CAS  PubMed  Google Scholar 

  17. Kron L et al (1978) Hyperactivity in anorexia nervosa: a fundamental clinical feature. Compr Psychiatry 19(5):433–440

    Article  CAS  PubMed  Google Scholar 

  18. Gianini LM et al (2016) Physical activity and post-treatment weight trajectory in anorexia nervosa. Int J Eat Disord 49(5):482–489

    Article  PubMed  Google Scholar 

  19. Stice E, Bohon C (2012) Eating disorders. In: Beauchaine T, Linshaw S (eds) Child and adolescent psychopathology, 2nd edn. Wiley, New York

    Google Scholar 

  20. Weltzin TE et al (2012) Treatment issues and outcomes for males with eating disorders. Eat Disord 20(5):444–459

    Article  PubMed  Google Scholar 

  21. Dellava JE et al (2010) Childhood anxiety associated with low BMI in women with anorexia nervosa. Behav Res Ther 48(1):60–67

    Article  PubMed  Google Scholar 

  22. Perdereau F et al (2008) Family history of anxiety and mood disorders in anorexia nervosa: review of the literature. Eat Weight Disord 13(1):1–13

    Article  CAS  PubMed  Google Scholar 

  23. Shen H et al (2007) Reversal of neurosteroid effects at alpha4beta2delta GABAA receptors triggers anxiety at puberty. Nat Neurosci 10(4):469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen H et al (2010) A critical role for alpha4betadelta GABAA receptors in shaping learning deficits at puberty in mice. Science 327(5972):1515–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith SS, Aoki C, Shen H (2009) Puberty, steroids and GABA(A) receptor plasticity. Psychoneuroendocrinology 34(Suppl 1):S91–S103

    Article  CAS  PubMed  Google Scholar 

  26. Shen H (2017) Role of alpha4-containing GABAA receptors in limiting synaptic plasticity and spatial learning of female mice during the pubertal period. Brain Res 1654(Pt B):116–122

    Article  CAS  PubMed  Google Scholar 

  27. Aoki C et al (2017) Synaptic changes in the hippocampus of adolescent female rodents associated with resilience to anxiety and suppression of food restriction-evoked hyperactivity in an animal model for anorexia nervosa. Brain Res 1654(Pt B):102–115

    Article  CAS  PubMed  Google Scholar 

  28. McNulty PA (2001) Prevalence and contributing factors of eating disorder behaviors in active duty service women in the Army, Navy, Air Force, and Marines. Mil Med 166(1):53–58

    Article  CAS  PubMed  Google Scholar 

  29. Hall JF et al (1953) Elevation of activity level in the rat following transition from ad libitum to restricted feeding. J Comp Physiol Psychol 46(6):429–433

    Article  CAS  PubMed  Google Scholar 

  30. Hebebrand J et al (2003) Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia. Physiol Behav 79(1):25–37

    Article  CAS  PubMed  Google Scholar 

  31. Wable GS et al (2015) Anxiety is correlated with running in adolescent female mice undergoing activity-based anorexia. Behav Neurosci 129(2):170–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kinzig KP, Hargrave SL (2010) Adolescent activity-based anorexia increases anxiety-like behavior in adulthood. Physiol Behav 101(2):269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aoki C et al (2017) α4βδ-GABAA receptors in dorsal hippocampal CA1 of adolescent female rats traffic to the plasma membrane following voluntary exercise and contribute to protection of animals from activity-based anorexia through its location at excitatory synapses. J Neurosci Res 96:1450–1466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Aoki C et al (2012) Adolescent female rats exhibiting activity-based anorexia express elevated levels of GABA(A) receptor alpha4 and delta subunits at the plasma membrane of hippocampal CA1 spines. Synapse 66(5):391–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aoki C et al (2014) alpha4betadelta-GABAARs in the hippocampal CA1 as a biomarker for resilience to activity-based anorexia. Neuroscience 265:108–123

    Article  CAS  PubMed  Google Scholar 

  36. Wable GS et al (2014) Excitatory synapses on dendritic shafts of the caudal basal amygdala exhibit elevated levels of GABAA receptor alpha4 subunits following the induction of activity-based anorexia. Synapse 68(1):1–15

    Article  CAS  PubMed  Google Scholar 

  37. Chowdhury TG et al (2013) Adolescent female C57BL/6 mice with vulnerability to activity-based anorexia exhibit weak inhibitory input onto hippocampal CA1 pyramidal cells. Neuroscience 241:250–267

    Article  CAS  PubMed  Google Scholar 

  38. Chowdhury TG et al (2019) Voluntary wheel running exercise evoked by food-restriction stress exacerbates weight loss of adolescent female rats but also promotes resilience by enhancing GABAergic inhibition of pyramidal neurons in the dorsal hippocampus. Cereb Cortex 29(10):4035–4049

    Article  PubMed  Google Scholar 

  39. Chen YW et al (2016) Enlargement of axo-somatic contacts formed by GAD-immunoreactive axon terminals onto layer V pyramidal neurons in the medial prefrontal cortex of adolescent female mice is associated with suppression of food restriction-evoked hyperactivity and resilience to activity-based anorexia. Cereb Cortex 26(6):2574–2589

    Article  PubMed  Google Scholar 

  40. Chen YW et al (2017) NR2A- and NR2B-NMDA receptors and drebrin within postsynaptic spines of the hippocampus correlate with hunger-evoked exercise. Brain Struct Funct 222(5):2271–2294

    Article  CAS  PubMed  Google Scholar 

  41. Chen YW, Actor-Engel H, Aoki C (2018) alpha4-GABAA receptors of hippocampal pyramidal neurons are associated with resilience against activity-based anorexia for adolescent female mice but not for males. Mol Cell Neurosci 90:33–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barbarich-Marsteller NC (2012) Activity-based anorexia in the rat. In: Avena N (ed) Animal models of eating disorders, 1st edn. Springer, Humana Press, New York, NY

    Google Scholar 

  43. Routtenberg A, Kuznesof AW (1967) Self-starvation of rats living in activity wheels on a restricted feeding schedule. J Comp Physiol Psychol 64(3):414–421

    Article  CAS  PubMed  Google Scholar 

  44. Gutierrez E (2013) A rat in the labyrinth of anorexia nervosa: contributions of the activity-based anorexia rodent model to the understanding of anorexia nervosa. Int J Eat Disord 46(4):289–301

    Article  PubMed  Google Scholar 

  45. Epling WF, Pierce D, Stefan L (1983) A theory of activity-based anorexia. Int J Eat Disord 3:26–46

    Article  Google Scholar 

  46. Schalla MA, Stengel A (2019) Activity based anorexia as an animal model for anorexia nervosa-a systematic review. Front Nutr 2:25

    Google Scholar 

  47. Luby MD et al (2012) Food anticipatory activity behavior of mice across a wide range of circadian and non-circadian intervals. PLoS One 7(5):e37992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gallardo CM et al (2014) Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice. elife 3:e03781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Casey BJ, Glatt CE, Lee FS (2015) Treating the developing versus developed brain: translating preclinical mouse and human studies. Neuron 86(6):1358–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Casey BJ, Lee FS (2015) Optimizing treatments for anxiety by age and genetics. Ann N Y Acad Sci 1345:16–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Giedd JN et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neurosci 2(10):861–863

    Article  CAS  PubMed  Google Scholar 

  52. Mills KL et al (2014) The developmental mismatch in structural brain maturation during adolescence. Dev Neurosci 36(3–4):147–160

    Article  CAS  PubMed  Google Scholar 

  53. Gelegen C et al (2007) Difference in susceptibility to activity-based anorexia in two inbred strains of mice. Eur Neuropsychopharmacol 17(3):199–205

    Article  CAS  PubMed  Google Scholar 

  54. Gelegen C et al (2010) Chromosomal mapping of excessive physical activity in mice in response to a restricted feeding schedule. Eur Neuropsychopharmacol 20(5):317–326

    Article  CAS  PubMed  Google Scholar 

  55. Sciolino NR, Holmes PV (2012) Exercise offers anxiolytic potential: a role for stress and brain noradrenergic-galaninergic mechanisms. Neurosci Biobehav Rev 36(9):1965–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schoenfeld TJ et al (2013) Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus. J Neurosci 33(18):7770–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rasmussen P et al (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 94(10):1062–1069

    Article  CAS  PubMed  Google Scholar 

  58. Hill JL, Martinowich K (2015) Activity-dependent signaling: influence on plasticity in circuits controlling fear-related behavior. Curr Opin Neurobiol 36:59–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lutter M et al (2008) The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nature Neurosci 11(7):752–753

    Article  CAS  PubMed  Google Scholar 

  60. Chuang JC, Zigman JM (2010) Ghrelin’s roles in stress, mood, and anxiety regulation. Int J Pept 2010: pii 460569

    Google Scholar 

  61. Ferrini F, De Koninck Y (2013) Microglia control neuronal network excitability via BDNF signalling, Neural plasticity, vol 2013. Hindawi Pub Corp

    Google Scholar 

  62. Guisinger S (2003) Adapted to flee famine: adding an evolutionary perspective on anorexia nervosa. Psychol Rev 110(4):745–761

    Article  PubMed  Google Scholar 

  63. Meijer JH, Robbers Y (2014) Wheel running in the wild. Proc Biol Sci 281(1786):pii 20140210

    Google Scholar 

  64. Gutierrez E et al (2009) High ambient temperature reverses hypothalamic MC4 receptor overexpression in an animal model of anorexia nervosa. Psychoneuroendocrinol 34(3):420–429

    Article  CAS  Google Scholar 

  65. Kanarek RB et al (2009) Running and addiction: precipitated withdrawal in a rat model of activity-based anorexia. Behav Neurosci 123(4):905–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen YW, Sherpa AD, Aoki C (2018) Single injection of ketamine during mid-adolescence promotes long-lasting resilience to activity-based anorexia of female mice by increasing food intake and attenuating hyperactivity as well as anxiety-like behavior. Int J Eat Disord 51(8):1020–1025

    Article  PubMed  Google Scholar 

  67. Chowdhury T, Chen Y-W, Aoki C (2015) Using the activity-based anorexia rodent model to study the neurobiological basis of anorexia nervosa. J Vis Exp 105:e52927

    Google Scholar 

  68. Foldi CJ, Milton LK, Oldfield BJ (2017) A focus on reward in anorexia nervosa through the lens of the activity-based anorexia rodent model. J Neuroendocrinol 29(10)

    Google Scholar 

  69. Lamanna J et al (2019) Behavioral assessment of activity-based-anorexia: how cognition can become the drive wheel. Physiol Behav 202:1–7

    Article  CAS  PubMed  Google Scholar 

  70. Ross RA, Mandelblat-Cerf Y, Verstegen AM (2016) Interacting neural processes of feeding, hyperactivity, stress, reward, and the utility of the activity-based anorexia model of anorexia nervosa. Harv Rev Psychiatry 24(6):416–436

    Article  PubMed  PubMed Central  Google Scholar 

  71. Committee NRCU (2006) Guidelines for the humane transportation of research animals. National Academies Press

    Google Scholar 

  72. Capdevila S et al (2007) Acclimatization of rats after ground transportation to a new animal facility. Lab Anim 41(2):255–261

    Article  CAS  PubMed  Google Scholar 

  73. Deacon RM (2011) Hyponeophagia: a measure of anxiety in the mouse. J Vis Exp 51

    Google Scholar 

  74. Gelegen C et al (2008) Dopaminergic and brain-derived neurotrophic factor signalling in inbred mice exposed to a restricted feeding schedule. Genes Brain Behav 7(5):552–559

    Article  CAS  PubMed  Google Scholar 

  75. Kas MJ et al (2010) Compulsivity in mouse strains homologous with chromosomes 7p and 15q linked to obsessive-compulsive disorder. Am J Med Genet B Neuropsychiatr Genet 153B(1):252–259

    PubMed  Google Scholar 

  76. Siegfried Z et al (2003) Animal models in the investigation of anorexia. Physiol Behav 79(1):39–45

    Article  CAS  PubMed  Google Scholar 

  77. Nilsson IAK (2019) The anx/anx mouse – a valuable resource in anorexia nervosa research. Front Neurosci 13:59

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gutierrez E et al (2006) High ambient temperature reduces rate of body-weight loss produced by wheel running. Q J Exp Psychol (Colchester) 59(7):1196–1211

    Article  Google Scholar 

  79. Chen YW et al (2017) Variant BDNF-Val66Met polymorphism is associated with layer-specific alterations in GABAergic innervation of pyramidal neurons, elevated anxiety and reduced vulnerability of adolescent male mice to activity-based anorexia. Cereb Cortex 27(8):3980–3993

    PubMed  Google Scholar 

  80. Wable GS et al (2015) Exogenous progesterone exacerbates running response of adolescent female mice to repeated food restriction stress by changing alpha4-GABAA receptor activity of hippocampal pyramidal cells. Neurosci 310:322–341

    Article  CAS  Google Scholar 

  81. Chan J, Aoki C, Pickel VM (1990) Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding. J Neurosci Methods 33(2–3):113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Aoki C, Rodrigues S (1999) Use of electron microscopy in the detection of adrenergic receptors. In: Methods in molecular biology: adrenergic receptor procotols, vol 136. Humana Press

    Google Scholar 

  83. Kaye WH, Fudge JL, Paulus M (2009) New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci 10(8):573–584

    Article  CAS  PubMed  Google Scholar 

  84. Wesierska M, Dockery C, Fenton AA (2005) Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. J Neurosci 25(9):2413–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chowdhury TG, Fenton AA, Aoki C (2014) Adolescent experience of food restriction results in delayed enhancement of spatial learning in female rats. Paper presented at the Annual Meeting of the Society for Neuroscience, Washington, DC

    Google Scholar 

  86. Chowdhury TG, Fenton AA, Aoki C (under review) The effects of adolescent experience of food restriction and exercise on spatial learning and open field exploration

    Google Scholar 

Download references

Acknowledgments

Supported by NYU University Research Challenge Fund. The following past grants to CA enabled the development of the ABA model: Klarman Family Foundation Eating Disorders Research Grants Program, MH105846, R21MH091445, and NYU Emergency Research Challenge Fund. The author thanks the following scientists and research associates for their outstanding contributions toward the collection of data presented here and cited: Morgan Pierce Lange, Christine Hui Yen, Larry Le, Muzi Andrew Du, Sabrina George, Ishan Rai Handa, Rose Temizer, Emily Makowicz, Dr. Adrienne Naomi Santiago, Dr. Gauri Satish Wable, Dr. Tara Gunkali Chowdhury, and Dr. Yi-Wen Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiye Aoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aoki, C. (2021). Activity-Based Anorexia, an Animal Model of Anorexia Nervosa for Investigating Brain Plasticity Underlying the Gain of Resilience. In: Avena, N.M. (eds) Animal Models of Eating Disorders. Neuromethods, vol 161. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0924-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0924-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0923-1

  • Online ISBN: 978-1-0716-0924-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics