Skip to main content

Advertisement

Log in

NR2A- and NR2B-NMDA receptors and drebrin within postsynaptic spines of the hippocampus correlate with hunger-evoked exercise

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

A Correction to this article was published on 31 January 2020

This article has been updated

Abstract

Hunger evokes foraging. This innate response can be quantified as voluntary wheel running following food restriction (FR). Paradoxically, imposing severe FR evokes voluntary FR, as some animals choose to run rather than eat, even during limited periods of food availability. This phenomenon, called activity-based anorexia (ABA), has been used to identify brain changes associated with FR and excessive exercise (EX), two core symptoms of anorexia nervosa (AN), and to explore neurobiological bases of AN vulnerability. Previously, we showed a strong positive correlation between suppression of FR-evoked hyperactivity, i.e., ABA resilience, and levels of extra-synaptic GABA receptors in stratum radiatum (SR) of hippocampal CA1. Here, we tested for the converse: whether animals with enhanced expression of NMDA receptors (NMDARs) exhibit greater levels of FR-evoked hyperactivity, i.e., ABA vulnerability. Four groups of animals were assessed for NMDAR levels at CA1 spines: (1) ABA, in which 4 days of FR was combined with wheel access to allow voluntary EX; (2) FR only; (3) EX only; and (4) control (CON) that experienced neither EX nor FR. Electron microscopy revealed that synaptic NR2A-NMDARs and NR2B-NMDARs levels are significantly elevated, relative to CONs’. Individuals’ ABA severity, based on weight loss, correlated with synaptic NR2B-NMDAR levels. ABA resilience, quantified as suppression of hyperactivity, correlated strongly with reserve pools of NR2A-NMDARs in spine cytoplasm. NR2A- and NR2B-NMDAR measurements correlated with spinous prevalence of an F-actin binding protein, drebrin, suggesting that drebrin enables insertion of NR2B-NMDAR to and retention of NR2A-NMDARs away from synaptic membranes, together influencing ABA vulnerability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 31 January 2020

    The title of Fig.��6 in the original article was incorrectly published as "normalized cytoplasmic NR2A".

Reference

  • Adams MM, Fink SE, Janssen WG, Shah RA, Morrison JH (2004) Estrogen modulates synaptic N-methyl-D-aspartate receptor subunit distribution in the aged hippocampus. J Comp Neurol 474(3):419–426. doi:10.1002/cne.20148

    Article  CAS  PubMed  Google Scholar 

  • Aoki C, Erisir A (2014) Experience-dependent synaptic plasticity in the developing cerebral cortex. In: Segal M, Pickel VM (eds.) The Synapse: Structure and Function, vol 3. Neuroscience-Net Reference Book Series, 1st edn. Academic Press, Elsevier, pp 397–446

  • Aoki C, Carlin RK, Siekevitz P (1985) Comparison of proteins involved with cyclic AMP metabolism between synaptic membrane and postsynaptic density preparations isolated from canine cerebral cortex and cerebellum. J Neurochem 44(3):966–978

    Article  CAS  PubMed  Google Scholar 

  • Aoki C, Rodrigues S, Kurose H (2000) Use of electron microscopy in the detection of adrenergic receptors. Methods Mol Biol 126:535–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki C, Fujisawa S, Mahadomrongkul V, Shah PJ, Nader K, Erisir A (2003) NMDA receptor blockade in intact adult cortex increases trafficking of NR2A subunits into spines, postsynaptic densities, and axon terminals. Brain Res 963(1–2):139–149

    Article  CAS  PubMed  Google Scholar 

  • Aoki C, Sekino Y, Hanamura K, Fujisawa S, Mahadomrongkul V, Ren Y, Shirao T (2005) Drebrin A is a postsynaptic protein that localizes in vivo to the submembranous surface of dendritic sites forming excitatory synapses. J Comp Neurol 483(4):383–402. doi:10.1002/cne.20449

    Article  CAS  PubMed  Google Scholar 

  • Aoki C, Mahadomrongkul V, Fujisawa S, Habersat R, Shirao T (2007) Chemical and morphological alterations of spines within the hippocampus and entorhinal cortex precede the onset of Alzheimer’s disease pathology in double knock-in mice. J Comp Neurol 505(4):352–362. doi:10.1002/cne.21485

    Article  PubMed  PubMed Central  Google Scholar 

  • Aoki C, Kojima N, Sabaliauskas N, Shah L, Ahmed TH, Oakford J, Ahmed T, Yamazaki H, Hanamura K, Shirao T (2009a) Drebrin a knockout eliminates the rapid form of homeostatic synaptic plasticity at excitatory synapses of intact adult cerebral cortex. J Comp Neurol 517(1):105–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki C, Lee J, Nedelescu H, Ahmed T, Ho A, Shen J (2009b) Increased levels of NMDA receptor NR2A subunits at pre- and postsynaptic sites of the hippocampal CA1: An early response to conditional double knockout of presenilin 1 and 2. J Comp Neurol 517(4):512–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki C, Sabaliauskas N, Chowdhury T, Min JY, Colacino AR, Laurino K, Barbarich-Marsteller NC (2012) Adolescent female rats exhibiting activity-based anorexia express elevated levels of GABA(A) receptor alpha4 and delta subunits at the plasma membrane of hippocampal CA1 spines. Synapse 66(5):391–407. doi:10.1002/syn.21528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki C, Wable G, Chowdhury TG, Sabaliauskas NA, Laurino K, Barbarich-Marsteller NC (2014) Alpha4betadelta-GABAARs in the hippocampal CA1 as a biomarker for resilience to activity-based anorexia. Neuroscience 265:108–123. doi:10.1016/j.neuroscience.2014.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki C, Chowdhury TG, Wable GS, Chen YW (2016) Synaptic changes in the hippocampus of adolescent female rodents associated with resilience to anxiety and suppression of food restriction-evoked hyperactivity in an animal model for anorexia nervosa. Brain Res. doi:10.1016/j.brainres.2016.01.019

    Google Scholar 

  • Arcelus J, Mitchell AJ, Wales J, Nielsen S (2011) Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch Gen Psychiatry 68(7):724–731. doi:10.1001/archgenpsychiatry.2011.74

    Article  PubMed  Google Scholar 

  • Bachner-Melman R, Lerer E, Zohar AH, Kremer I, Elizur Y, Nemanov L, Golan M, Blank S, Gritsenko I, Ebstein RP (2007) Anorexia nervosa, perfectionism, and dopamine D4 receptor (DRD4). Am J Med Genet B Neuropsychiatr Genet 144B(6):748–756. doi:10.1002/ajmg.b.30505

    Article  CAS  PubMed  Google Scholar 

  • Barria A, Malinow R (2002) Subunit-specific NMDA receptor trafficking to synapses. Neuron 35(2):345–353

    Article  CAS  PubMed  Google Scholar 

  • Bath KG, Schilit A, Lee FS (2013) Stress effects on BDNF expression: Effects of age, sex, and form of stress. Neuroscience. doi:10.1016/j.neuroscience.2013.01.074

    PubMed  Google Scholar 

  • Beals KA (2004) Disordered eating among athletes: a comprehensive guide for health professionals. Human Kinetic, Champagne

  • Boraska V, Franklin CS, Floyd JA, Thornton LM, Huckins LM, Southam L, Rayner NW, Tachmazidou I, Klump KL, Treasure J, Lewis CM, Schmidt U, Tozzi F, Kiezebrink K, Hebebrand J, Gorwood P, Adan RA, Kas MJ, Favaro A, Santonastaso P, Fernandez-Aranda F, Gratacos M, Rybakowski F, Dmitrzak-Weglarz M, Kaprio J, Keski-Rahkonen A, Raevuori A, Van Furth EF, Slof-Opt Landt MC, Hudson JI, Reichborn-Kjennerud T, Knudsen GP, Monteleone P, Kaplan AS, Karwautz A, Hakonarson H, Berrettini WH, Guo Y, Li D, Schork NJ, Komaki G, Ando T, Inoko H, Esko T, Fischer K, Mannik K, Metspalu A, Baker JH, Cone RD, Dackor J, Desocio JE, Hilliard CE, O’Toole JK, Pantel J, Szatkiewicz JP, Taico C, Zerwas S, Trace SE, Davis OS, Helder S, Buhren K, Burghardt R, de Zwaan M, Egberts K, Ehrlich S, Herpertz-Dahlmann B, Herzog W, Imgart H, Scherag A, Scherag S, Zipfel S, Boni C, Ramoz N, Versini A, Brandys MK, Danner UN, de Kovel C, Hendriks J, Koeleman BP, Ophoff RA, Strengman E, van Elburg AA, Bruson A, Clementi M, Degortes D, Forzan M, Tenconi E, Docampo E, Escaramis G, Jimenez-Murcia S, Lissowska J, Rajewski A, Szeszenia-Dabrowska N, Slopien A, Hauser J, Karhunen L, Meulenbelt I, Slagboom PE, Tortorella A, Maj M, Dedoussis G, Dikeos D, Gonidakis F, Tziouvas K, Tsitsika A, Papezova H, Slachtova L, Martaskova D, Kennedy JL, Levitan RD, Yilmaz Z, Huemer J, Koubek D, Merl E, Wagner G, Lichtenstein P, Breen G, Cohen-Woods S, Farmer A, McGuffin P, Cichon S, Giegling I, Herms S, Rujescu D, Schreiber S, Wichmann HE, Dina C, Sladek R, Gambaro G, Soranzo N, Julia A, Marsal S, Rabionet R, Gaborieau V, Dick DM, Palotie A, Ripatti S, Widen E, Andreassen OA, Espeseth T, Lundervold A, Reinvang I, Steen VM, Le Hellard S, Mattingsdal M, Ntalla I, Bencko V, Foretova L, Janout V, Navratilova M, Gallinger S, Pinto D, Scherer SW, Aschauer H, Carlberg L, Schosser A, Alfredsson L, Ding B, Klareskog L, Padyukov L, Courtet P, Guillaume S, Jaussent I, Finan C, Kalsi G, Roberts M, Logan DW, Peltonen L, Ritchie GR, Barrett JC, The Wellcome Trust Case Control C, Estivill X, Hinney A, Sullivan PF, Collier DA, Zeggini E, Bulik CM (2014) A genome-wide association study of anorexia nervosa. Mol Psychiatry. doi:10.1038/mp.2013.187

    PubMed  PubMed Central  Google Scholar 

  • Bulik CM, Thornton LM, Root TL, Pisetsky EM, Lichtenstein P, Pedersen NL (2010) Understanding the relation between anorexia nervosa and bulimia nervosa in a Swedish national twin sample. Biol Psychiatry 67(1):71–77. doi:10.1016/j.biopsych.2009.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Caldeira MV, Melo CV, Pereira DB, Carvalho RF, Carvalho AL, Duarte CB (2007) BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci 35(2):208–219. doi:10.1016/j.mcn.2007.02.019

    Article  CAS  PubMed  Google Scholar 

  • Casper RC, Sullivan EL, Tecott L (2008) Relevance of animal models to human eating disorders and obesity. Psychopharmacol 199(3):313–329

    Article  CAS  Google Scholar 

  • Chen YW, Wable GS, Chowdhury TG, Aoki C (2016) Enlargement of axo-somatic contacts formed by GAD-immunoreactive axon terminals onto layer V pyramidal neurons in the medial prefrontal cortex of adolescent female mice is associated with suppression of food restriction-evoked hyperactivity and resilience to activity-based anorexia. Cereb Cortex 26(6):2574–2589. doi:10.1093/cercor/bhv087

    Article  PubMed  Google Scholar 

  • Chowdhury TG, Wable GS, Sabaliauskas NA, Aoki C (2013) Adolescent female C57BL/6 mice with vulnerability to activity-based anorexia exhibit weak inhibitory input onto hippocampal CA1 pyramidal cells. Neuroscience 241:250–267. doi:10.1016/j.neuroscience.2013.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury TG, Barbarich-Marsteller NC, Chan TE, Aoki C (2014a) Activity-based anorexia has differential effects on apical dendritic branching in dorsal and ventral hippocampal CA1. Brain Struct Funct 219(6):1935–1945. doi:10.1007/s00429-013-0612-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury TG, Rios MB, Chan TE, Cassataro DS, Barbarich-Marsteller NC, Aoki C (2014b) Activity-based anorexia during adolescence disrupts normal development of the CA1 pyramidal cells in the ventral hippocampus of female rats. Hippocampus 24(12):1421–1429. doi:10.1002/hipo.22320

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury TG, Fenton AA, Aoki C (2014b) Adolescent experience of food restriction results in delayed enhancement of spatial learning in female rats. In: Paper presented at the Annual Meeting of the Society for Neuroscience, Washington, D.C

  • Compan V, Walsh BT, Kaye W, Geliebter A (2015) How does the brain implement adaptive decision making to eat? J Neurosci 35(41):13868–13878. doi:10.1523/JNEUROSCI.2602-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corson J, Nahmani M, Lubarsky K, Badr N, Wright C, Erisir A (2009) Sensory activity differentially modulates N-methyl-D-aspartate receptor subunits 2A and 2B in cortical layers. Neuroscience 163(3):920–932. doi:10.1016/j.neuroscience.2009.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis C, Katzman DK, Kaptein S, Kirsh C, Brewer H, Kalmbach K, Olmsted MP, Woodside DB, Kaplan AS (1997) The prevalence of high-level exercise in the eating disorders: etiological implications. Compr Psychiatry 38(6):321–326

    Article  CAS  PubMed  Google Scholar 

  • Dura JR, Bornstein RA (1989) Differences between IQ and school achievement in anorexia nervosa. J Clin Psychol 45(3):433–435

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa S, Aoki C (2003) In vivo blockade of N-methyl-D-aspartate receptors induces rapid trafficking of NR2B subunits away from synapses and out of spines and terminals in adult cortex. Neuroscience 121(1):51–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuss J, Ben Abdallah NM, Vogt MA, Touma C, Pacifici PG, Palme R, Witzemann V, Hellweg R, Gass P (2010) Voluntary exercise induces anxiety-like behavior in adult C57BL/6 J mice correlating with hippocampal neurogenesis. Hippocampus 20(3):364–376. doi:10.1002/hipo.20634

    PubMed  Google Scholar 

  • Greer PL, Greenberg ME (2008) From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59(6):846–860. doi:10.1016/j.neuron.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  • Guisinger S (2003) Adapted to flee famine: adding an evolutionary perspective on anorexia nervosa. Psychol Rev 110(4):745–761

    Article  PubMed  Google Scholar 

  • Gutierrez E (2013) A rat in the labyrinth of anorexia nervosa: contributions of the activity-based anorexia rodent model to the understanding of anorexia nervosa. Int J Eat Disord 46(4):289–301

    Article  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696. doi:10.1038/nrn2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensch TK, Fagiolini M (2005) Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. Prog Brain Res 147:115–124. doi:10.1016/S0079-6123(04)47009-5

    Article  CAS  PubMed  Google Scholar 

  • Hudson JI, Hiripi E, Pope HG Jr, Kessler RC (2007) The prevalence and correlates of eating disorders in the national comorbidity survey replication. Biol Psychiatry 61(3):348–358. doi:10.1016/j.biopsych.2006.03.040

    Article  PubMed  Google Scholar 

  • Kaufman AM, Milnerwood AJ, Sepers MD, Coquinco A, She K, Wang L, Lee H, Craig AM, Cynader M, Raymond LA (2012) Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J Neurosci 32(12):3992–4003. doi:10.1523/JNEUROSCI.4129-11.2012

    Article  CAS  PubMed  Google Scholar 

  • Kaye WH, Bulik CM, Thornton L, Barbarich N, Masters K (2004) Comorbidity of anxiety disorders with anorexia and bulimia nervosa. Am J Psychiatry 161(12):2215–2221

    Article  PubMed  Google Scholar 

  • Kaye WH, Fudge JL, Paulus M (2009) New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci 10(8):573–584. doi:10.1038/nrn2682

    Article  CAS  PubMed  Google Scholar 

  • Klump KL, Miller KB, Keel PK, McGue M, Iacono WG (2001) Genetic and environmental influences on anorexia nervosa syndromes in a population-based twin sample. Psychol Med 31(4):737–740

    Article  CAS  PubMed  Google Scholar 

  • Kron L, Katz JL, Gorzynski G, Weiner H (1978) Hyperactivity in anorexia nervosa: a fundamental clinical feature. Compr Psychiatry 19(5):433–440

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Wang J, Zhang G (2009) Presynaptic NR2B-containing NMDA autoreceptors mediate gluta-matergic synaptic transmission in the rat visual cortex. Curr Neurovasc Res 6(2):104–109

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304(5673):1021–1024. doi:10.1126/science.1096615

    Article  CAS  PubMed  Google Scholar 

  • Martin PD, Berthoz A (2002) Development of spatial firing in the hippocampus of young rats. Hippocampus 12(4):465–480. doi:10.1002/hipo.10021

    Article  PubMed  Google Scholar 

  • Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, Collingridge GL, Bashir ZI (2004) Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 24(36):7821–7828. doi:10.1523/JNEUROSCI.1697-04.2004

    Article  CAS  PubMed  Google Scholar 

  • McIlhinney RA, Philipps E, Le Bourdelles B, Grimwood S, Wafford K, Sandhu S, Whiting P (2003) Assembly of N-methyl-D-aspartate (NMDA) receptors. Biochem Soc Trans 31(Pt 4):865–868

    Article  CAS  PubMed  Google Scholar 

  • Meijer JH, Robbers Y (2014) Wheel running in the wild. Proc Bio Sci/R Soc. doi:10.1098/rspb.2014.0210

    Google Scholar 

  • Nedelescu H, Chowdhury TG, Wable GS, Arbuthnott G, Aoki C (2016) Cerebellar sub-divisions differ in exercise-induced plasticity of noradrenergic axons and in their association with resilience to activity-based anorexia. Brain Struct Funct. doi:10.1007/s00429-016-1220-2

    PubMed  PubMed Central  Google Scholar 

  • Peters A, Palay SL, Webster Hd (1991) The fine structure of the nervous system: neurons and their supporting cells, 3rd edn. Oxford University, New York

    Google Scholar 

  • Petralia RS, Wang YX, Hua F, Yi Z, Zhou A, Ge L, Stephenson FA, Wenthold RJ (2010) Organization of NMDA receptors at extrasynaptic locations. Neuroscience 167(1):68–87. doi:10.1016/j.neuroscience.2010.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phend KD, Rustioni A, Weinberg RJ (1995) An osmium-free method of epon embedment that preserves both ultrastructure and antigenicity for post-embedding immunocytochemistry. J Histochem Cytochem 43(3):283–292

    Article  CAS  PubMed  Google Scholar 

  • Pitsikas N, Carli M, Fidecka S, Algeri S (1990) Effect of life-long hypocaloric diet on age-related changes in motor and cognitive behavior in a rat population. Neurobiol Aging 11(4):417–423

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi T, Kulangara K, Antoniello K, Markram H (2007) Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc Natl Acad Sci USA 104(33):13501–13506. doi:10.1073/pnas.0704391104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenfeld TJ, Rada P, Pieruzzini PR, Hsueh B, Gould E (2013) Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus. J Neurosci 33(18):7770–7777. doi:10.1523/JNEUROSCI.5352-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Gong QH, Aoki C, Yuan M, Ruderman Y, Dattilo M, Williams K, Smith SS (2007) Reversal of neurosteroid effects at alpha4beta2delta GABAA receptors triggers anxiety at puberty. Nat Neurosci 10(4):469–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Sabaliauskas N, Sherpa A, Fenton AA, Stelzer A, Aoki C, Smith SS (2010) A critical role for alpha4betadelta GABAA receptors in shaping learning deficits at puberty in mice. Science 327(5972):1515–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinhausen HC (2002) The outcome of anorexia nervosa in the 20th century. Am J Psychiatry 159(8):1284–1293

    Article  PubMed  Google Scholar 

  • Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, Mattson MP (2009) Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 19(10):951–961. doi:10.1002/hipo.20577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan PF (1995) Mortality in anorexia nervosa. Am J Psychiatry 152(7):1073–1074

    Article  CAS  PubMed  Google Scholar 

  • Sundquist J, Ohlsson H, Winkleby MA, Sundquist K, Crump C (2016) School achievement and risk of eating disorders in a Swedish National cohort. J Am Acad Child Adolesc Psychiatry 55(1):41–46 e41. doi:10.1016/j.jaac.2015.09.021

    Article  PubMed  Google Scholar 

  • Tang YP, Wang H, Feng R, Kyin M, Tsien JZ (2001) Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology 41(6):779–790

    Article  CAS  PubMed  Google Scholar 

  • Thomas CG, Miller AJ, Westbrook GL (2006) Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol 95(3):1727–1734. doi:10.1152/jn.00771.2005

    Article  CAS  PubMed  Google Scholar 

  • Tovar KR, Westbrook GL (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19(10):4180–4188

    CAS  PubMed  Google Scholar 

  • Ulbrich MH, Isacoff EY (2008) Rules of engagement for NMDA receptor subunits. Proc Natl Acad Sci USA 105(37):14163–14168. doi:10.1073/pnas.0802075105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wable GS, Chen YW, Rashid S, Aoki C (2015a) Exogenous progesterone exacerbates running response of adolescent female mice to repeated food restriction stress by changing alpha4-GABAA receptor activity of hippocampal pyramidal cells. Neuroscience 310:322–341. doi:10.1016/j.neuroscience.2015.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wable GS, Min JY, Chen YW, Aoki C (2015b) Anxiety is correlated with running in adolescent female mice undergoing activity-based anorexia. Behav Neurosci 129(2):170–182. doi:10.1037/bne0000040

    Article  PubMed  PubMed Central  Google Scholar 

  • Wade TD, Bulik CM, Neale M, Kendler KS (2000) Anorexia nervosa and major depression: shared genetic and environmental risk factors. Am J Psychiatry 157(3):469–471

    Article  CAS  PubMed  Google Scholar 

  • Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44(4):851–859

    CAS  PubMed  Google Scholar 

  • Yang J, Woodhall GL, Jones RS (2006) Tonic facilitation of glutamate release by presynaptic NR2B-containing NMDA receptors is increased in the entorhinal cortex of chronically epileptic rats. J Neurosci 26(2):406–410. doi:10.1523/JNEUROSCI.4413-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu BP, Masoro EJ, Murata I, Bertrand HA, Lynd FT (1982) Life span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: longevity, growth, lean body mass and disease. J Gerontol 37(2):130–141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gauri Wable, Alisa Liu, Clive Miranda, Jia-Yi Wang, Kei Tateyama, Ruka Aderogba and Barkha Rana for their assistance and Danielle D Mendoca for proof-reading the manuscript. This study was supported by The Klarman Foundation Grant Program in Eating Disorders Research, R21MH091445−01, R21 MH105846, R01NS066019−01A1, R01NS047557−07A1, NEI Core Grant EY13079, NYU’s Research Challenge Fund, NSF-REU 1460880 to CA, YWC, the Fulbright Scholarship to YWC, NYU Dean’s Undergraduate Research Fund to AL and JYW, UL1 TR000038 from the National Center for the Advancement of Translational Science (NCATS) to TGC, T32 MH019524 to GSW, NYU Abu Dhabi Fund to CM and R25GM097634−01 to RA. The brain tissue used for this study is the same as that used for another study (Nedelescu et al. 2016). Therefore, a portion of the ante mortem weight and wheel running data are presented in both manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiye Aoki.

Ethics declarations

Conflict of interest

We declare no conflict of interest in relation with the work described.

Additional information

Y.-W. Chen and H. Actor-Engel contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2016_1341_MOESM1_ESM.pdf

Supplementary material 1 Supplemental Figure 1. Group comparison of NR2A immunoreactivity in the vicinity of axo-spinous asymmetric synapses. The upper panel depicts the proportion of spines immunolabeled for the NR2A subunits per-10 synapses. The lower panel depicts the number of PEG particles encountered per-10 synapses. The bars represent the mean ± SEM values of the measurements pooled across animals of the same group. * depicts significance of difference at p < 0.05 by two-way ANOVA, followed by Fisher’s LSD post hoc analysis. Supplemental Figure 2. Group comparison of NR2B immunoreactivity in the vicinity of axo-spinous asymmetric synapses. The upper panel depicts the proportion of spines immunolabeled for the NR2B subunits per-10 synapses. The lower panel depicts the number of PEG particles encountered per-10 synapses. The bars represent the mean ± SEM values of the measurements pooled across animals of the same group. * depicts significance of difference at p < 0.05 by two-way ANOVA, followed by Fisher’s LSD post hoc analysis. (PDF 5879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YW., Actor-Engel, H., Sherpa, A.D. et al. NR2A- and NR2B-NMDA receptors and drebrin within postsynaptic spines of the hippocampus correlate with hunger-evoked exercise. Brain Struct Funct 222, 2271–2294 (2017). https://doi.org/10.1007/s00429-016-1341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1341-7

Keywords

Navigation