Skip to main content

Genetic Models of Parkinson’s Disease

  • Protocol
  • First Online:
Clinical Trials In Parkinson's Disease

Part of the book series: Neuromethods ((NM,volume 160))

Abstract

Parkinson’s disease (PD) is a chronic and evolving neurodegenerative disorder primarily due to the progressive loss of substantia nigra pars compacta neurons releasing dopamine. The etiology of idiopathic PD, which represents most of the cases, is still unclear but seems to be multifactorial, associating environmental and/or genetic factors. The major limitation of “classical” toxin-based animal models of PD is that they do not replicate some characterizing features of the pathology. Animal models based on gene mutations connected with PD may overcome, at least partially, this limitation. In this chapter, animal models targeting orthologs of genes linked with PD in humans will be reviewed. These models can represent excellent tools to investigate the specific role of the targeted gene—and its protein product—in PD pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olanow CW (2007) The pathogenesis of cell death in Parkinson’s disease. Mov Disord 22 Suppl 17:S335–S342

    Google Scholar 

  2. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23(10 Suppl):S8–S19

    Article  CAS  PubMed  Google Scholar 

  3. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376

    Article  CAS  PubMed  Google Scholar 

  4. Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26(6):1049–1055

    Article  PubMed  Google Scholar 

  5. Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di FM (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 17(8):1022–1030

    Article  CAS  PubMed  Google Scholar 

  6. Levy R, Hazrati LN, Herrero MT, Vila M, Hassani OK, Mouroux M, Ruberg M, Asensi H, Agid Y, Feger J, Obeso JA, Parent A, Hirsch EC (1997) Re-evaluation of the functional anatomy of the basal ganglia in normal and Parkinsonian states. Neuroscience 76(2):335–343

    Article  CAS  PubMed  Google Scholar 

  7. DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64(1):20–24

    Article  PubMed  Google Scholar 

  8. Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62(1):63–88

    Article  CAS  PubMed  Google Scholar 

  9. Wichmann T, Dostrovsky JO (2011) Pathological basal ganglia activity in movement disorders. Neuroscience 198:232–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chase TN, Oh JD (2000) Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism. Trends Neurosci 23(10 Suppl):S86–S91

    Article  CAS  PubMed  Google Scholar 

  11. Chase TN, Bibbiani F, Oh JD (2003) Striatal glutamatergic mechanisms and extrapyramidal movement disorders. Neurotox Res 5(1–2):139–146

    Article  PubMed  Google Scholar 

  12. Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 24(43):9541–9552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pisani A, Bernardi G, Ding J, Surmeier DJ (2007) Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci 30(10):545–553

    Article  CAS  PubMed  Google Scholar 

  14. Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548–S559

    Article  PubMed  Google Scholar 

  15. Chaudhuri KR, Odin P, Antonini A, Martinez-Martin P (2011) Parkinson’s disease: the non-motor issues. Parkinsonism Relat Disord 17(10):717–723

    Article  PubMed  Google Scholar 

  16. Brichta L, Greengard P, Flajolet M (2013) Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems. Trends Neurosci 36(9):543–554

    Article  CAS  PubMed  Google Scholar 

  17. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840. https://doi.org/10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  18. Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66(5):646–661. https://doi.org/10.1016/j.neuron.2010.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gubellini P, Picconi B, Di FM, Calabresi P (2010) Downstream mechanisms triggered by mitochondrial dysfunction in the basal ganglia: from experimental models to neurodegenerative diseases. Biochim Biophys Acta 1802(1):151–161

    Article  CAS  PubMed  Google Scholar 

  20. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  21. Gasser T, Hardy J, Mizuno Y (2011) Milestones in PD genetics. Mov Disord 26(6):1042–1048

    Article  PubMed  Google Scholar 

  22. Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2(1):a008888. https://doi.org/10.1101/cshperspect.a008888

    Article  PubMed  PubMed Central  Google Scholar 

  23. Puschmann A (2017) New genes causing hereditary Parkinson’s disease or parkinsonism. Curr Neurol Neurosci Rep 17(9):66. https://doi.org/10.1007/s11910-017-0780-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Puschmann A (2013) Monogenic Parkinson’s disease and parkinsonism: clinical phenotypes and frequencies of known mutations. Parkinsonism Relat Disord 19(4):407–415. https://doi.org/10.1016/j.parkreldis.2013.01.020

    Article  PubMed  Google Scholar 

  25. Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR (2018) Parkinson disease from Mendelian forms to genetic susceptibility: new molecular insights into the neurodegeneration process. Cell Mol Neurobiol 38(6):1153–1178. https://doi.org/10.1007/s10571-018-0587-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  CAS  PubMed  Google Scholar 

  27. Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, Sanges G, Stenroos ES, Pho LT, Schaffer AA, Lazzarini AM, Nussbaum RL, Duvoisin RC (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274(5290):1197–1199

    Article  CAS  PubMed  Google Scholar 

  28. Alim MA, Hossain MS, Arima K, Takeda K, Izumiyama Y, Nakamura M, Kaji H, Shinoda T, Hisanaga S, Ueda K (2002) Tubulin seeds alpha-synuclein fibril formation. J Biol Chem 277(3):2112–2117. https://doi.org/10.1074/jbc.M102981200

    Article  CAS  PubMed  Google Scholar 

  29. Bonini NM, Giasson BI (2005) Snaring the function of alpha-synuclein. Cell 123(3):359–361. https://doi.org/10.1016/j.cell.2005.10.017

    Article  CAS  PubMed  Google Scholar 

  30. Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329(5999):1663–1667. https://doi.org/10.1126/science.1195227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC, Wypych J, Biere AL, Citron M (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 274(14):9843–9846

    Article  CAS  PubMed  Google Scholar 

  32. Ross OA, Braithwaite AT, Skipper LM, Kachergus J, Hulihan MM, Middleton FA, Nishioka K, Fuchs J, Gasser T, Maraganore DM, Adler CH, Larvor L, Chartier-Harlin MC, Nilsson C, Langston JW, Gwinn K, Hattori N, Farrer MJ (2008) Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann Neurol 63(6):743–750. https://doi.org/10.1002/ana.21380

    Article  CAS  PubMed  Google Scholar 

  33. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2):160–164. https://doi.org/10.1038/ncb748

    Article  CAS  PubMed  Google Scholar 

  34. Yang W, Wang G, Wang CE, Guo X, Yin P, Gao J, Tu Z, Wang Z, Wu J, Hu X, Li S, Li XJ (2015) Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci 35(21):8345–8358. https://doi.org/10.1523/JNEUROSCI.0772-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eslamboli A, Romero-Ramos M, Burger C, Bjorklund T, Muzyczka N, Mandel RJ, Baker H, Ridley RM, Kirik D (2007) Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain 130(Pt3):799–815. https://doi.org/10.1093/brain/awl382

    Article  PubMed  Google Scholar 

  36. Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Bjorklund A (2003) Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci U S A 100(5):2884–2889. https://doi.org/10.1073/pnas.0536383100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Milanese C, Sager JJ, Bai Q, Farrell TC, Cannon JR, Greenamyre JT, Burton EA (2012) Hypokinesia and reduced dopamine levels in zebrafish lacking beta- and gamma1-synucleins. J Biol Chem 287(5):2971–2983. https://doi.org/10.1074/jbc.M111.308312

    Article  CAS  PubMed  Google Scholar 

  38. Hewitt VL, Whitworth AJ (2017) Mechanisms of Parkinson’s disease: lessons from Drosophila. Curr Top Dev Biol 121:173–200. https://doi.org/10.1016/bs.ctdb.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  39. Vanhauwaert R, Verstreken P (2015) Flies with Parkinson’s disease. Exp Neurol 274(Pt A):42–51. https://doi.org/10.1016/j.expneurol.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  40. Cooper JF, Van Raamsdonk JM (2018) Modeling Parkinson’s disease in C. elegans. J Parkinsons Dis 8(1):17–32. https://doi.org/10.3233/JPD-171258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoshii SR, Kishi C, Ishihara N, Mizushima N (2011) Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 286(22):19630–19640. https://doi.org/10.1074/jbc.M110.209338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608

    Article  CAS  PubMed  Google Scholar 

  43. Matsumine H, Saito M, Shimoda-Matsubayashi S, Tanaka H, Ishikawa A, Nakagawa-Hattori Y, Yokochi M, Kobayashi T, Igarashi S, Takano H, Sanpei K, Koike R, Mori H, Kondo T, Mizutani Y, Schaffer AA, Yamamura Y, Nakamura S, Kuzuhara S, Tsuji S, Mizuno Y (1997) Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27. Am J Hum Genet 60(3):588–596

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stichel CC, Zhu XR, Bader V, Linnartz B, Schmidt S, Lubbert H (2007) Mono- and double-mutant mouse models of Parkinson’s disease display severe mitochondrial damage. Hum Mol Genet 16(20):2377–2393. https://doi.org/10.1093/hmg/ddm083

    Article  CAS  PubMed  Google Scholar 

  45. Kitada T, Tong Y, Gautier CA, Shen J (2009) Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem 111(3):696–702. https://doi.org/10.1111/j.1471-4159.2009.06350.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu XH, Fleming SM, Meurers B, Ackerson LC, Mortazavi F, Lo V, Hernandez D, Sulzer D, Jackson GR, Maidment NT, Chesselet MF, Yang XW (2009) Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant alpha-synuclein. J Neurosci 29(7):1962–1976

    Article  PubMed  PubMed Central  Google Scholar 

  47. Creed RB, Goldberg MS (2018) New developments in genetic rat models of Parkinson’s disease. Mov Disord 33(5):717–729. https://doi.org/10.1002/mds.27296

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S, Yi X, Guo L, Esteban MA, Zeng Y, Yang H, Lai L (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72(6):1175–1184. https://doi.org/10.1007/s00018-014-1744-7

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Cao C, Huang J, Yao J, Hai T, Zheng Q, Wang X, Zhang H, Qin G, Cheng J, Wang Y, Yuan Z, Zhou Q, Wang H, Zhao J (2016) One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 6:20620. https://doi.org/10.1038/srep20620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karamohamed S, DeStefano AL, Wilk JB, Shoemaker CM, Golbe LI, Mark MH, Lazzarini AM, Suchowersky O, Labelle N, Guttman M, Currie LJ, Wooten GF, Stacy M, Saint-Hilaire M, Feldman RG, Sullivan KM, Xu G, Watts R, Growdon J, Lew M, Waters C, Vieregge P, Pramstaller PP, Klein C, Racette BA, Perlmutter JS, Parsian A, Singer C, Montgomery E, Baker K, Gusella JF, Fink SJ, Myers RH, Herbert A, Gene PD (2003) A haplotype at the PARK3 locus influences onset age for Parkinson’s disease: the GenePD study. Neurology 61(11):1557–1561

    Article  CAS  PubMed  Google Scholar 

  51. Klein C, Vieregge P, Hagenah J, Sieberer M, Doyle E, Jacobs H, Gasser T, Breakefield XO, Risch NJ, Ozelius LJ (1999) Search for the PARK3 founder haplotype in a large cohort of patients with Parkinson’s disease from northern Germany. Ann Hum Genet 63(Pt4):285–291

    Article  CAS  PubMed  Google Scholar 

  52. Yang S, Lee YJ, Kim JM, Park S, Peris J, Laipis P, Park YS, Chung JH, Oh SP (2006) A murine model for human sepiapterin-reductase deficiency. Am J Hum Genet 78(4):575–587. https://doi.org/10.1086/501372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takazawa C, Fujimoto K, Homma D, Sumi-Ichinose C, Nomura T, Ichinose H, Katoh S (2008) A brain-specific decrease of the tyrosine hydroxylase protein in sepiapterin reductase-null mice--as a mouse model for Parkinson’s disease. Biochem Biophys Res Commun 367(4):787–792. https://doi.org/10.1016/j.bbrc.2008.01.028

    Article  CAS  PubMed  Google Scholar 

  54. Sumi-Ichinose C, Suganuma Y, Kano T, Ihira N, Nomura H, Ikemoto K, Hata T, Katoh S, Ichinose H, Kondo K (2017) Sepiapterin reductase gene-disrupted mice suffer from hypertension with fluctuation and bradycardia. Physiol Rep 5(6). https://doi.org/10.14814/phy2.13196

  55. Meng Y, Katsuma S, Daimon T, Banno Y, Uchino K, Sezutsu H, Tamura T, Mita K, Shimada T (2009) The silkworm mutant lemon (lemon lethal) is a potential insect model for human sepiapterin reductase deficiency. J Biol Chem 284(17):11698–11705. https://doi.org/10.1074/jbc.M900485200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395(6701):451–452. https://doi.org/10.1038/26652

    Article  CAS  PubMed  Google Scholar 

  57. Healy DG, Abou-Sleiman PM, Casas JP, Ahmadi KR, Lynch T, Gandhi S, Muqit MM, Foltynie T, Barker R, Bhatia KP, Quinn NP, Lees AJ, Gibson JM, Holton JL, Revesz T, Goldstein DB, Wood NW (2006) UCHL-1 is not a Parkinson’s disease susceptibility gene. Ann Neurol 59(4):627–633. https://doi.org/10.1002/ana.20757

    Article  CAS  PubMed  Google Scholar 

  58. Yasuda T, Nihira T, Ren YR, Cao XQ, Wada K, Setsuie R, Kabuta T, Wada K, Hattori N, Mizuno Y, Mochizuki H (2009) Effects of UCH-L1 on alpha-synuclein over-expression mouse model of Parkinson’s disease. J Neurochem 108(4):932–944. https://doi.org/10.1111/j.1471-4159.2008.05827.x

    Article  CAS  PubMed  Google Scholar 

  59. Shimshek DR, Schweizer T, Schmid P, van der Putten PH (2012) Excess alpha-synuclein worsens disease in mice lacking ubiquitin carboxy-terminal hydrolase L1. Sci Rep 2:262. https://doi.org/10.1038/srep00262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nguyen TT, Vuu MD, Huynh MA, Yamaguchi M, Tran LT, Dang TPT (2018) Curcumin effectively rescued Parkinson’s disease-like phenotypes in a novel Drosophila melanogaster model with dUCH knockdown. Oxidative Med Cell Longev 2018:2038267. https://doi.org/10.1155/2018/2038267

    Article  CAS  Google Scholar 

  61. Chu CT (2018) Mechanisms of selective autophagy and mitophagy: implications for neurodegenerative diseases. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2018.07.015

  62. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160. https://doi.org/10.1126/science.1096284

    Article  CAS  PubMed  Google Scholar 

  63. Bonifati V, Rohe CF, Breedveld GJ, Fabrizio E, De Mari M, Tassorelli C, Tavella A, Marconi R, Nicholl DJ, Chien HF, Fincati E, Abbruzzese G, Marini P, De Gaetano A, Horstink MW, Maat-Kievit JA, Sampaio C, Antonini A, Stocchi F, Montagna P, Toni V, Guidi M, Dalla Libera A, Tinazzi M, De Pandis F, Fabbrini G, Goldwurm S, de Klein A, Barbosa E, Lopiano L, Martignoni E, Lamberti P, Vanacore N, Meco G, Oostra BA, Italian Parkinson Genetics N (2005) Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology 65(1):87–95. https://doi.org/10.1212/01.wnl.0000167546.39375.82

    Article  CAS  PubMed  Google Scholar 

  64. Hatano Y, Sato K, Elibol B, Yoshino H, Yamamura Y, Bonifati V, Shinotoh H, Asahina M, Kobayashi S, Ng AR, Rosales RL, Hassin-Baer S, Shinar Y, Lu CS, Chang HC, Wu-Chou YH, Atac FB, Kobayashi T, Toda T, Mizuno Y, Hattori N (2004) PARK6-linked autosomal recessive early-onset parkinsonism in Asian populations. Neurology 63(8):1482–1485

    Article  CAS  PubMed  Google Scholar 

  65. Gispert S, Ricciardi F, Kurz A, Azizov M, Hoepken HH, Becker D, Voos W, Leuner K, Muller WE, Kudin AP, Kunz WS, Zimmermann A, Roeper J, Wenzel D, Jendrach M, Garcia-Arencibia M, Fernandez-Ruiz J, Huber L, Rohrer H, Barrera M, Reichert AS, Rub U, Chen A, Nussbaum RL, Auburger G (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One 4(6):e5777. https://doi.org/10.1371/journal.pone.0005777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oliveras-Salva M, Macchi F, Coessens V, Deleersnijder A, Gerard M, Van der Perren A, Van den Haute C, Baekelandt V (2014) Alpha-synuclein-induced neurodegeneration is exacerbated in PINK1 knockout mice. Neurobiol Aging 35(11):2625–2636. https://doi.org/10.1016/j.neurobiolaging.2014.04.032

    Article  CAS  PubMed  Google Scholar 

  67. Villeneuve LM, Purnell PR, Boska MD, Fox HS (2016) Early expression of Parkinson’s disease-related mitochondrial abnormalities in PINK1 knockout rats. Mol Neurobiol 53(1):171–186. https://doi.org/10.1007/s12035-014-8927-y

    Article  CAS  PubMed  Google Scholar 

  68. Ferris CF, Morrison TR, Iriah S, Malmberg S, Kulkarni P, Hartner JC, Trivedi M (2018) Evidence of neurobiological changes in the presymptomatic PINK1 knockout rat. J Parkinsons Dis 8(2):281–301. https://doi.org/10.3233/JPD-171273

    Article  CAS  PubMed  Google Scholar 

  69. Zhang Y, Nguyen DT, Olzomer EM, Poon GP, Cole NJ, Puvanendran A, Phillips BR, Hesselson D (2017) Rescue of Pink1 deficiency by stress-dependent activation of autophagy. Cell Chem Biol 24(4):471–480 e474. https://doi.org/10.1016/j.chembiol.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  70. Priyadarshini M, Tuimala J, Chen YC, Panula P (2013) A zebrafish model of PINK1 deficiency reveals key pathway dysfunction including HIF signaling. Neurobiol Dis 54:127–138. https://doi.org/10.1016/j.nbd.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  71. Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SM (2013) Neuroprotective function of DJ-1 in Parkinson’s disease. Oxidative Med Cell Longev 2013:683920

    Article  Google Scholar 

  72. Hedrich K, Djarmati A, Schafer N, Hering R, Wellenbrock C, Weiss PH, Hilker R, Vieregge P, Ozelius LJ, Heutink P, Bonifati V, Schwinger E, Lang AE, Noth J, Bressman SB, Pramstaller PP, Riess O, Klein C (2004) DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 62(3):389–394

    Article  CAS  PubMed  Google Scholar 

  73. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259. https://doi.org/10.1126/science.1077209

    Article  CAS  PubMed  Google Scholar 

  74. Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C, Tong Y, Martella G, Tscherter A, Martins A, Bernardi G, Roth BL, Pothos EN, Calabresi P, Shen J (2005) Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 45(4):489–496

    Article  CAS  PubMed  Google Scholar 

  75. Kim RH, Smith PD, Aleyasin H, Hayley S, Mount MP, Pownall S, Wakeham A, You-Ten AJ, Kalia SK, Horne P, Westaway D, Lozano AM, Anisman H, Park DS, Mak TW (2005) Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 102(14):5215–5220. https://doi.org/10.1073/pnas.0501282102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pham TT, Giesert F, Rothig A, Floss T, Kallnik M, Weindl K, Holter SM, Ahting U, Prokisch H, Becker L, Klopstock T, Hrabe de AM, Beyer K, Gorner K, Kahle PJ, Vogt Weisenhorn DM, Wurst W (2010) DJ-1-deficient mice show less TH-positive neurons in the ventral tegmental area and exhibit non-motoric behavioural impairments. Genes Brain Behav 9(3):305–317

    Article  CAS  PubMed  Google Scholar 

  77. Rousseaux MW, Marcogliese PC, Qu D, Hewitt SJ, Seang S, Kim RH, Slack RS, Schlossmacher MG, Lagace DC, Mak TW, Park DS (2012) Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease. Proc Natl Acad Sci U S A 109(39):15918–15923. https://doi.org/10.1073/pnas.1205102109

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yao J, Huang J, Hai T, Wang X, Qin G, Zhang H, Wu R, Cao C, Xi JJ, Yuan Z, Zhao J (2014) Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci Rep 4:6926. https://doi.org/10.1038/srep06926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, West AB, Dawson VL, Dawson TM, Ross CA (2005) Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci U S A 102(51):18676–18681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F (2002) A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 51(3):296–301

    Article  CAS  PubMed  Google Scholar 

  81. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Muller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607. https://doi.org/10.1016/j.neuron.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  82. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian CP, Goldwurm S, Ferreira JJ, Tolosa E, Kay DM, Klein C, Williams DR, Marras C, Lang AE, Wszolek ZK, Berciano J, Schapira AH, Lynch T, Bhatia KP, Gasser T, Lees AJ, Wood NW (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7(7):583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gilks WP, bou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ, Shaw K, Bhatia KP, Bonifati V, Quinn NP, Lynch J, Healy DG, Holton JL, Revesz T, Wood NW (2005) A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet 365(9457):415–416

    CAS  PubMed  Google Scholar 

  84. Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, Hunt AL, Klein C, Henick B, Hailpern SM, Lipton RB, Soto-Valencia J, Risch N, Bressman SB (2006) LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. New Engl J Med 354(4):424–425

    Article  CAS  PubMed  Google Scholar 

  85. Hulihan MM, Ishihara-Paul L, Kachergus J, Warren L, Amouri R, Elango R, Prinjha RK, Upmanyu R, Kefi M, Zouari M, Sassi SB, Yahmed SB, El Euch-Fayeche G, Matthews PM, Middleton LT, Gibson RA, Hentati F, Farrer MJ (2008) LRRK2 Gly2019Ser penetrance in Arab-Berber patients from Tunisia: a case-control genetic study. Lancet Neurol 7(7):591–594

    Article  CAS  PubMed  Google Scholar 

  86. Rudenko IN, Cookson MR (2014) Heterogeneity of leucine-rich repeat kinase 2 mutations: genetics, mechanisms and therapeutic implications. Neurotherapeutics 11(4):738–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ramonet D, Daher JP, Lin BM, Stafa K, Kim J, Banerjee R, Westerlund M, Pletnikova O, Glauser L, Yang L, Liu Y, Swing DA, Beal MF, Troncoso JC, McCaffery JM, Jenkins NA, Copeland NG, Galter D, Thomas B, Lee MK, Dawson TM, Dawson VL, Moore DJ (2011) Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One 6(4):e18568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tong Y, Pisani A, Martella G, Karouani M, Yamaguchi H, Pothos EN, Shen J (2009) R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proc Natl Acad Sci U S A 106(34):14622–14627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Antony PM, Diederich NJ, Balling R (2011) Parkinson’s disease mouse models in translational research. Mamm Genome 22(7–8):401–419. https://doi.org/10.1007/s00335-011-9330-x

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hinkle KM, Yue M, Behrouz B, Dachsel JC, Lincoln SJ, Bowles EE, Beevers JE, Dugger B, Winner B, Prots I, Kent CB, Nishioka K, Lin WL, Dickson DW, Janus CJ, Farrer MJ, Melrose HL (2012) LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Mol Neurodegener 7:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ III, Shen J (2010) Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A 107(21):9879–9884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, Zhou C, Geghman K, Bogdanov M, Przedborski S, Beal MF, Burke RE, Li C (2009) Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci 12(7):826–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Melrose HL, Dachsel JC, Behrouz B, Lincoln SJ, Yue M, Hinkle KM, Kent CB, Korvatska E, Taylor JP, Witten L, Liang YQ, Beevers JE, Boules M, Dugger BN, Serna VA, Gaukhman A, Yu X, Castanedes-Casey M, Braithwaite AT, Ogholikhan S, Yu N, Bass D, Tyndall G, Schellenberg GD, Dickson DW, Janus C, Farrer MJ (2010) Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol Dis 40(3):503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38(10):1184–1191. https://doi.org/10.1038/ng1884

    Article  CAS  PubMed  Google Scholar 

  95. Williams DR, Hadeed A, al-Din AS, Wreikat AL, Lees AJ (2005) Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov Disord 20(10):1264–1271. https://doi.org/10.1002/mds.20511

    Article  PubMed  Google Scholar 

  96. Najim al-Din AS, Wriekat A, Mubaidin A, Dasouki M, Hiari M (1994) Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor-Rakeb syndrome. Acta Neurol Scand 89(5):347–352

    Article  CAS  PubMed  Google Scholar 

  97. Farias FH, Zeng R, Johnson GS, Wininger FA, Taylor JF, Schnabel RD, McKay SD, Sanders DN, Lohi H, Seppala EH, Wade CM, Lindblad-Toh K, O’Brien DP, Katz ML (2011) A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers. Neurobiol Dis 42(3):468–474. https://doi.org/10.1016/j.nbd.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  98. Wohlke A, Philipp U, Bock P, Beineke A, Lichtner P, Meitinger T, Distl O (2011) A one base pair deletion in the canine ATP13A2 gene causes exon skipping and late-onset neuronal ceroid lipofuscinosis in the Tibetan terrier. PLoS Genet 7(10):e1002304. https://doi.org/10.1371/journal.pgen.1002304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Daniel G, Musso A, Tsika E, Fiser A, Glauser L, Pletnikova O, Schneider BL, Moore DJ (2015) alpha-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson’s disease occurs independent of ATP13A2 (PARK9). Neurobiol Dis 73:229–243. https://doi.org/10.1016/j.nbd.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  100. Kett LR, Stiller B, Bernath MM, Tasset I, Blesa J, Jackson-Lewis V, Chan RB, Zhou B, Di Paolo G, Przedborski S, Cuervo AM, Dauer WT (2015) alpha-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J Neurosci 35(14):5724–5742. https://doi.org/10.1523/JNEUROSCI.0632-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schultheis PJ, Fleming SM, Clippinger AK, Lewis J, Tsunemi T, Giasson B, Dickson DW, Mazzulli JR, Bardgett ME, Haik KL, Ekhator O, Chava AK, Howard J, Gannon M, Hoffman E, Chen Y, Prasad V, Linn SC, Tamargo RJ, Westbroek W, Sidransky E, Krainc D, Shull GE (2013) Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited alpha-synuclein accumulation and age-dependent sensorimotor deficits. Hum Mol Genet 22(10):2067–2082. https://doi.org/10.1093/hmg/ddt057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hicks AA, Petursson H, Jonsson T, Stefansson H, Johannsdottir HS, Sainz J, Frigge ML, Kong A, Gulcher JR, Stefansson K, Sveinbjornsdottir S (2002) A susceptibility gene for late-onset idiopathic Parkinson’s disease. Ann Neurol 52(5):549–555. https://doi.org/10.1002/ana.10324

    Article  CAS  PubMed  Google Scholar 

  103. Wan JY, Edwards KL, Hutter CM, Mata IF, Samii A, Roberts JW, Agarwal P, Checkoway H, Farin FM, Yearout D, Zabetian CP (2014) Association mapping of the PARK10 region for Parkinson’s disease susceptibility genes. Parkinsonism Relat Disord 20(1):93–98. https://doi.org/10.1016/j.parkreldis.2013.10.001

    Article  PubMed  Google Scholar 

  104. Gomez-Lopez S, Martinez-Silva AV, Montiel T, Osorio-Gomez D, Bermudez-Rattoni F, Massieu L, Escalante-Alcalde D (2016) Neural ablation of the PARK10 candidate Plpp3 leads to dopaminergic transmission deficits without neurodegeneration. Sci Rep 6:24028. https://doi.org/10.1038/srep24028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lautier C, Goldwurm S, Durr A, Giovannone B, Tsiaras WG, Pezzoli G, Brice A, Smith RJ (2008) Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease. Am J Hum Genet 82(4):822–833. https://doi.org/10.1016/j.ajhg.2008.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pankratz N, Nichols WC, Uniacke SK, Halter C, Rudolph A, Shults C, Conneally PM, Foroud T, Parkinson Study G (2003) Significant linkage of Parkinson disease to chromosome 2q36-37. Am J Hum Genet 72(4):1053–1057. https://doi.org/10.1086/374383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Prestel J, Sharma M, Leitner P, Zimprich A, Vaughan JR, Durr A, Bonifati V, De Michele G, Hanagasi HA, Farrer M, Hofer A, Asmus F, Volpe G, Meco G, Brice A, Wood NW, Muller-Myhsok B, Gasser T, European Consortium on Genetic Susceptibility in Parkinson’s D (2005) PARK11 is not linked with Parkinson’s disease in European families. Eur J Hum Genet 13(2):193–197. https://doi.org/10.1038/sj.ejhg.5201317

    Article  CAS  PubMed  Google Scholar 

  108. Giovannone B, Tsiaras WG, de la Monte S, Klysik J, Lautier C, Karashchuk G, Goldwurm S, Smith RJ (2009) GIGYF2 gene disruption in mice results in neurodegeneration and altered insulin-like growth factor signaling. Hum Mol Genet 18(23):4629–4639. https://doi.org/10.1093/hmg/ddp430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim M, Semple I, Kim B, Kiers A, Nam S, Park HW, Park H, Ro SH, Kim JS, Juhasz G, Lee JH (2015) Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. Autophagy 11(8):1358–1372. https://doi.org/10.1080/15548627.2015.1063766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Guella I, Pistocchi A, Asselta R, Rimoldi V, Ghilardi A, Sironi F, Trotta L, Primignani P, Zini M, Zecchinelli A, Coviello D, Pezzoli G, Del Giacco L, Duga S, Goldwurm S (2011) Mutational screening and zebrafish functional analysis of GIGYF2 as a Parkinson-disease gene. Neurobiol Aging 32(11):1994–2005. https://doi.org/10.1016/j.neurobiolaging.2009.12.016

    Article  CAS  PubMed  Google Scholar 

  111. Pankratz N, Nichols WC, Uniacke SK, Halter C, Murrell J, Rudolph A, Shults CW, Conneally PM, Foroud T, Parkinson Study G (2003) Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex Parkinson disease families. Hum Mol Genet 12(20):2599–2608. https://doi.org/10.1093/hmg/ddg270

    Article  CAS  PubMed  Google Scholar 

  112. Pankratz N, Nichols WC, Uniacke SK, Halter C, Rudolph A, Shults C, Conneally PM, Foroud T, Parkinson Study G (2002) Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations. Am J Hum Genet 71(1):124–135. https://doi.org/10.1086/341282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wilson GR, Sim JC, McLean C, Giannandrea M, Galea CA, Riseley JR, Stephenson SE, Fitzpatrick E, Haas SA, Pope K, Hogan KJ, Gregg RG, Bromhead CJ, Wargowski DS, Lawrence CH, James PA, Churchyard A, Gao Y, Phelan DG, Gillies G, Salce N, Stanford L, Marsh AP, Mignogna ML, Hayflick SJ, Leventer RJ, Delatycki MB, Mellick GD, Kalscheuer VM, D’Adamo P, Bahlo M, Amor DJ, Lockhart PJ (2014) Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with alpha-synuclein pathology. Am J Hum Genet 95(6):729–735. https://doi.org/10.1016/j.ajhg.2014.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Morrison BE, Marcondes MC, Nomura DK, Sanchez-Alavez M, Sanchez-Gonzalez A, Saar I, Kim KS, Bartfai T, Maher P, Sugama S, Conti B (2012) Cutting edge: IL-13Ralpha1 expression in dopaminergic neurons contributes to their oxidative stress-mediated loss following chronic peripheral treatment with lipopolysaccharide. J Immunol 189(12):5498–5502. https://doi.org/10.4049/jimmunol.1102150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, Gasser T, Wszolek Z, Muller T, Bornemann A, Wolburg H, Downward J, Riess O, Schulz JB, Kruger R (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 14(15):2099–2111. https://doi.org/10.1093/hmg/ddi215

    Article  CAS  PubMed  Google Scholar 

  116. Simon-Sanchez J, Singleton AB (2008) Sequencing analysis of OMI/HTRA2 shows previously reported pathogenic mutations in neurologically normal controls. Hum Mol Genet 17(13):1988–1993. https://doi.org/10.1093/hmg/ddn096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jones JM, Datta P, Srinivasula SM, Ji W, Gupta S, Zhang Z, Davies E, Hajnoczky G, Saunders TL, Van Keuren ML, Fernandes-Alnemri T, Meisler MH, Alnemri ES (2003) Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425(6959):721–727. https://doi.org/10.1038/nature02052

    Article  PubMed  Google Scholar 

  118. Martins LM, Morrison A, Klupsch K, Fedele V, Moisoi N, Teismann P, Abuin A, Grau E, Geppert M, Livi GP, Creasy CL, Martin A, Hargreaves I, Heales SJ, Okada H, Brandner S, Schulz JB, Mak T, Downward J (2004) Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24(22):9848–9862. https://doi.org/10.1128/MCB.24.22.9848-9862.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Moisoi N, Klupsch K, Fedele V, East P, Sharma S, Renton A, Plun-Favreau H, Edwards RE, Teismann P, Esposti MD, Morrison AD, Wood NW, Downward J, Martins LM (2009) Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ 16(3):449–464. https://doi.org/10.1038/cdd.2008.166

    Article  CAS  PubMed  Google Scholar 

  120. Casadei N, Sood P, Ulrich T, Fallier-Becker P, Kieper N, Helling S, May C, Glaab E, Chen J, Nuber S, Wolburg H, Marcus K, Rapaport D, Ott T, Riess O, Kruger R, Fitzgerald JC (2016) Mitochondrial defects and neurodegeneration in mice overexpressing wild-type or G399S mutant HtrA2. Hum Mol Genet 25(3):459–471. https://doi.org/10.1093/hmg/ddv485

    Article  CAS  PubMed  Google Scholar 

  121. Patterson VL, Zullo AJ, Koenig C, Stoessel S, Jo H, Liu X, Han J, Choi M, DeWan AT, Thomas JL, Kuan CY, Hoh J (2014) Neural-specific deletion of Htra2 causes cerebellar neurodegeneration and defective processing of mitochondrial OPA1. PLoS One 9(12):e115789. https://doi.org/10.1371/journal.pone.0115789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dwivedi V, Lakhotia SC (2016) Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-aging effects in Drosophila melanogaster. J Biosci 41(4):697–711

    Article  CAS  PubMed  Google Scholar 

  123. Yun J, Cao JH, Dodson MW, Clark IE, Kapahi P, Chowdhury RB, Guo M (2008) Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the PINK1/PARKIN pathway in vivo. J Neurosci 28(53):14500–14510. https://doi.org/10.1523/JNEUROSCI.5141-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. M’Angale PG, Staveley BE (2017) The HtrA2 Drosophila model of Parkinson’s disease is suppressed by the pro-survival Bcl-2 Buffy. Genome 60(1):1–7. https://doi.org/10.1139/gen-2016-0069

    Article  CAS  PubMed  Google Scholar 

  125. Morgan NV, Westaway SK, Morton JE, Gregory A, Gissen P, Sonek S, Cangul H, Coryell J, Canham N, Nardocci N, Zorzi G, Pasha S, Rodriguez D, Desguerre I, Mubaidin A, Bertini E, Trembath RC, Simonati A, Schanen C, Johnson CA, Levinson B, Woods CG, Wilmot B, Kramer P, Gitschier J, Maher ER, Hayflick SJ (2006) PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 38(7):752–754. https://doi.org/10.1038/ng1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Paisan-Ruiz C, Bhatia KP, Li A, Hernandez D, Davis M, Wood NW, Hardy J, Houlden H, Singleton A, Schneider SA (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 65(1):19–23. https://doi.org/10.1002/ana.21415

    Article  PubMed  Google Scholar 

  127. Blanchard H, Taha AY, Cheon Y, Kim HW, Turk J, Rapoport SI (2014) iPLA2beta knockout mouse, a genetic model for progressive human motor disorders, develops age-related neuropathology. Neurochem Res 39(8):1522–1532. https://doi.org/10.1007/s11064-014-1342-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wada H, Kojo S, Seino K (2013) Mouse models of human INAD by Pla2g6 deficiency. Histol Histopathol 28(8):965–969. https://doi.org/10.14670/HH-28.965

    Article  CAS  PubMed  Google Scholar 

  129. Chiu CC, Lu CS, Weng YH, Chen YL, Huang YZ, Chen RS, Cheng YC, Huang YC, Liu YC, Lai SC, Lin KJ, Lin YW, Chen YJ, Chen CL, Yeh TH, Wang HL (2018) PARK14 (D331Y) PLA2G6 causes early-onset degeneration of substantia nigra dopaminergic neurons by inducing mitochondrial dysfunction, ER stress, mitophagy impairment and transcriptional dysregulation in a knockin mouse model. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1118-5

  130. Zhou Q, Yen A, Rymarczyk G, Asai H, Trengrove C, Aziz N, Kirber MT, Mostoslavsky G, Ikezu T, Wolozin B, Bolotina VM (2016) Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson’s disease. Nat Commun 7:10332. https://doi.org/10.1038/ncomms10332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sumi-Akamaru H, Beck G, Kato S, Mochizuki H (2015) Neuroaxonal dystrophy in PLA2G6 knockout mice. Neuropathology 35(3):289–302. https://doi.org/10.1111/neup.12202

    Article  CAS  PubMed  Google Scholar 

  132. Sanchez E, Azcona LJ, Paisan-Ruiz C (2018) Pla2g6 deficiency in zebrafish leads to dopaminergic cell death, axonal degeneration, increased beta-synuclein expression, and defects in brain functions and pathways. Mol Neurobiol 55(8):6734–6754. https://doi.org/10.1007/s12035-017-0846-2

    Article  CAS  PubMed  Google Scholar 

  133. Iliadi KG, Gluscencova OB, Iliadi N, Boulianne GL (2018) Mutations in the Drosophila homolog of human PLA2G6 give rise to age-dependent loss of psychomotor activity and neurodegeneration. Sci Rep 8(1):2939. https://doi.org/10.1038/s41598-018-21343-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kinghorn KJ, Castillo-Quan JI, Bartolome F, Angelova PR, Li L, Pope S, Cocheme HM, Khan S, Asghari S, Bhatia KP, Hardy J, Abramov AY, Partridge L (2015) Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction. Brain 138(Pt7):1801–1816. https://doi.org/10.1093/brain/awv132

    Article  PubMed  PubMed Central  Google Scholar 

  135. Tsuboi M, Watanabe M, Nibe K, Yoshimi N, Kato A, Sakaguchi M, Yamato O, Tanaka M, Kuwamura M, Kushida K, Ishikura T, Harada T, Chambers JK, Sugano S, Uchida K, Nakayama H (2017) Identification of the PLA2G6 c.1579G>A missense mutation in papillon dog neuroaxonal dystrophy using whole exome sequencing analysis. PLoS One 12(1):e0169002. https://doi.org/10.1371/journal.pone.0169002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Di Fonzo A, Dekker MC, Montagna P, Baruzzi A, Yonova EH, Correia Guedes L, Szczerbinska A, Zhao T, Dubbel-Hulsman LO, Wouters CH, de Graaff E, Oyen WJ, Simons EJ, Breedveld GJ, Oostra BA, Horstink MW, Bonifati V (2009) FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72(3):240–245. https://doi.org/10.1212/01.wnl.0000338144.10967.2b

    Article  CAS  PubMed  Google Scholar 

  137. Shojaee S, Sina F, Banihosseini SS, Kazemi MH, Kalhor R, Shahidi GA, Fakhrai-Rad H, Ronaghi M, Elahi E (2008) Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet 82(6):1375–1384. https://doi.org/10.1016/j.ajhg.2008.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vingill S, Brockelt D, Lancelin C, Tatenhorst L, Dontcheva G, Preisinger C, Schwedhelm-Domeyer N, Joseph S, Mitkovski M, Goebbels S, Nave KA, Schulz JB, Marquardt T, Lingor P, Stegmuller J (2016) Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J 35(18):2008–2025. https://doi.org/10.15252/embj.201593585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Randle SJ, Nelson DE, Patel SP, Laman H (2015) Defective erythropoiesis in a mouse model of reduced Fbxo7 expression due to decreased p27 expression. J Pathol 237(2):263–272. https://doi.org/10.1002/path.4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Merzetti EM, Staveley BE (2016) Altered expression of CG5961, a putative Drosophila melanogaster homologue of FBXO9, provides a new model of Parkinson disease. Genet Mol Res 15(2). https://doi.org/10.4238/gmr.15028579

  141. Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson JH, Randle SJ, Wray S, Lewis PA, Houlden H, Abramov AY, Hardy J, Wood NW, Whitworth AJ, Laman H, Plun-Favreau H (2013) The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci 16(9):1257–1265. https://doi.org/10.1038/nn.3489

    Article  CAS  PubMed  Google Scholar 

  142. Zhao T, Zondervan-van der Linde H, Severijnen LA, Oostra BA, Willemsen R, Bonifati V (2012) Dopaminergic neuronal loss and dopamine-dependent locomotor defects in Fbxo7-deficient zebrafish. PLoS One 7(11):e48911. https://doi.org/10.1371/journal.pone.0048911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T, Watanabe M, Takeda A, Tomiyama H, Nakashima K, Hasegawa K, Obata F, Yoshikawa T, Kawakami H, Sakoda S, Yamamoto M, Hattori N, Murata M, Nakamura Y, Toda T (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307. https://doi.org/10.1038/ng.485

    Article  CAS  PubMed  Google Scholar 

  144. Jaberi E, Rohani M, Shahidi GA, Nafissi S, Arefian E, Soleimani M, Moghadam A, Arzenani MK, Keramatian F, Klotzle B, Fan JB, Turk C, Steemers F, Elahi E (2016) Mutation in ADORA1 identified as likely cause of early-onset parkinsonism and cognitive dysfunction. Mov Disord 31(7):1004–1011. https://doi.org/10.1002/mds.26627

    Article  CAS  PubMed  Google Scholar 

  145. Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Kruger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, Gwinn K, van der Brug M, Lopez G, Chanock SJ, Schatzkin A, Park Y, Hollenbeck A, Gao J, Huang X, Wood NW, Lorenz D, Deuschl G, Chen H, Riess O, Hardy JA, Singleton AB, Gasser T (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312. https://doi.org/10.1038/ng.487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mata IF, Yearout D, Alvarez V, Coto E, de Mena L, Ribacoba R, Lorenzo-Betancor O, Samaranch L, Pastor P, Cervantes S, Infante J, Garcia-Gorostiaga I, Sierra M, Combarros O, Snapinn KW, Edwards KL, Zabetian CP (2011) Replication of MAPT and SNCA, but not PARK16-18, as susceptibility genes for Parkinson’s disease. Mov Disord 26(5):819–823. https://doi.org/10.1002/mds.23642

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zimprich A, Benet-Pages A, Struhal W, Graf E, Eck SH, Offman MN, Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle SC, Klopp N, Wolf E, Seppi K, Pirker W, Presslauer S, Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler E, Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brucke T, Poewe W, Auff E, Trenkwalder C, Rost B, Ransmayr G, Winkelmann J, Meitinger T, Strom TM (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89(1):168–175. https://doi.org/10.1016/j.ajhg.2011.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vilarino-Guell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B, Melrose HL, Hentati E, Puschmann A, Evans DM, Conibear E, Wasserman WW, Aasly JO, Burkhard PR, Djaldetti R, Ghika J, Hentati F, Krygowska-Wajs A, Lynch T, Melamed E, Rajput A, Rajput AH, Solida A, Wu RM, Uitti RJ, Wszolek ZK, Vingerhoets F, Farrer MJ (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89(1):162–167. https://doi.org/10.1016/j.ajhg.2011.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pankratz N, Wilk JB, Latourelle JC, DeStefano AL, Halter C, Pugh EW, Doheny KF, Gusella JF, Nichols WC, Foroud T, Myers RH, Psg P, GenePd Investigators C, Molecular Genetic L (2009) Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 124(6):593–605. https://doi.org/10.1007/s00439-008-0582-9

    Article  CAS  PubMed  Google Scholar 

  150. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, Kay DM, Doheny KF, Paschall J, Pugh E, Kusel VI, Collura R, Roberts J, Griffith A, Samii A, Scott WK, Nutt J, Factor SA, Payami H (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 42(9):781–785. https://doi.org/10.1038/ng.642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ishizu N, Yui D, Hebisawa A, Aizawa H, Cui W, Fujita Y, Hashimoto K, Ajioka I, Mizusawa H, Yokota T, Watase K (2016) Impaired striatal dopamine release in homozygous Vps35 D620N knock-in mice. Hum Mol Genet 25(20):4507–4517. https://doi.org/10.1093/hmg/ddw279

    Article  CAS  PubMed  Google Scholar 

  152. Cataldi S, Follett J, Fox JD, Tatarnikov I, Kadgien C, Gustavsson EK, Khinda J, Milnerwood AJ, Farrer MJ (2018) Altered dopamine release and monoamine transporters in Vps35 p.D620N knock-in mice. NPJ Parkinsons Dis 4:27. https://doi.org/10.1038/s41531-018-0063-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tang FL, Liu W, Hu JX, Erion JR, Ye J, Mei L, Xiong WC (2015) VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep 12(10):1631–1643. https://doi.org/10.1016/j.celrep.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tang FL, Erion JR, Tian Y, Liu W, Yin DM, Ye J, Tang B, Mei L, Xiong WC (2015) VPS35 in dopamine neurons is required for endosome-to-golgi retrieval of Lamp2a, a receptor of chaperone-mediated autophagy that is critical for alpha-synuclein degradation and prevention of pathogenesis of Parkinson’s disease. J Neurosci 35(29):10613–10628. https://doi.org/10.1523/JNEUROSCI.0042-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang W, Wang X, Fujioka H, Hoppel C, Whone AL, Caldwell MA, Cullen PJ, Liu J, Zhu X (2016) Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat Med 22(1):54–63. https://doi.org/10.1038/nm.3983

    Article  CAS  PubMed  Google Scholar 

  156. Tian Y, Tang FL, Sun X, Wen L, Mei L, Tang BS, Xiong WC (2015) VPS35-deficiency results in an impaired AMPA receptor trafficking and decreased dendritic spine maturation. Mol Brain 8(1):70. https://doi.org/10.1186/s13041-015-0156-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tsika E, Glauser L, Moser R, Fiser A, Daniel G, Sheerin UM, Lees A, Troncoso JC, Lewis PA, Bandopadhyay R, Schneider BL, Moore DJ (2014) Parkinson’s disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Hum Mol Genet 23(17):4621–4638. https://doi.org/10.1093/hmg/ddu178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang HS, Toh J, Ho P, Tio M, Zhao Y, Tan EK (2014) In vivo evidence of pathogenicity of VPS35 mutations in the Drosophila. Mol Brain 7:73. https://doi.org/10.1186/s13041-014-0073-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Malik BR, Godena VK, Whitworth AJ (2015) VPS35 pathogenic mutations confer no dominant toxicity but partial loss of function in Drosophila and genetically interact with parkin. Hum Mol Genet 24(21):6106–6117. https://doi.org/10.1093/hmg/ddv322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Miura E, Hasegawa T, Konno M, Suzuki M, Sugeno N, Fujikake N, Geisler S, Tabuchi M, Oshima R, Kikuchi A, Baba T, Wada K, Nagai Y, Takeda A, Aoki M (2014) VPS35 dysfunction impairs lysosomal degradation of alpha-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson’s disease. Neurobiol Dis 71:1–13. https://doi.org/10.1016/j.nbd.2014.07.014

    Article  CAS  PubMed  Google Scholar 

  161. Chartier-Harlin MC, Dachsel JC, Vilarino-Guell C, Lincoln SJ, Lepretre F, Hulihan MM, Kachergus J, Milnerwood AJ, Tapia L, Song MS, Le Rhun E, Mutez E, Larvor L, Duflot A, Vanbesien-Mailliot C, Kreisler A, Ross OA, Nishioka K, Soto-Ortolaza AI, Cobb SA, Melrose HL, Behrouz B, Keeling BH, Bacon JA, Hentati E, Williams L, Yanagiya A, Sonenberg N, Lockhart PJ, Zubair AC, Uitti RJ, Aasly JO, Krygowska-Wajs A, Opala G, Wszolek ZK, Frigerio R, Maraganore DM, Gosal D, Lynch T, Hutchinson M, Bentivoglio AR, Valente EM, Nichols WC, Pankratz N, Foroud T, Gibson RA, Hentati F, Dickson DW, Destee A, Farrer MJ (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89(3):398–406. https://doi.org/10.1016/j.ajhg.2011.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Edvardson S, Cinnamon Y, Ta-Shma A, Shaag A, Yim YI, Zenvirt S, Jalas C, Lesage S, Brice A, Taraboulos A, Kaestner KH, Greene LE, Elpeleg O (2012) A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS One 7(5):e36458. https://doi.org/10.1371/journal.pone.0036458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Koroglu C, Baysal L, Cetinkaya M, Karasoy H, Tolun A (2013) DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat Disord 19(3):320–324. https://doi.org/10.1016/j.parkreldis.2012.11.006

    Article  PubMed  Google Scholar 

  164. Elsayed LE, Drouet V, Usenko T, Mohammed IN, Hamed AA, Elseed MA, Salih MA, Koko ME, Mohamed AY, Siddig RA, Elbashir MI, Ibrahim ME, Durr A, Stevanin G, Lesage S, Ahmed AE, Brice A (2016) A novel nonsense mutation in DNAJC6 expands the phenotype of autosomal-recessive juvenile-onset Parkinson’s disease. Ann Neurol 79(2):335–337. https://doi.org/10.1002/ana.24591

    Article  PubMed  Google Scholar 

  165. Olgiati S, Quadri M, Fang M, Rood JP, Saute JA, Chien HF, Bouwkamp CG, Graafland J, Minneboo M, Breedveld GJ, Zhang J, International Parkinsonism Genetics N, Verheijen FW, Boon AJ, Kievit AJ, Jardim LB, Mandemakers W, Barbosa ER, Rieder CR, Leenders KL, Wang J, Bonifati V (2016) DNAJC6 mutations associated with early-onset Parkinson’s disease. Ann Neurol 79(2):244–256. https://doi.org/10.1002/ana.24553

  166. Yim YI, Sun T, Wu LG, Raimondi A, De Camilli P, Eisenberg E, Greene LE (2010) Endocytosis and clathrin-uncoating defects at synapses of auxilin knockout mice. Proc Natl Acad Sci U S A 107(9):4412–4417. https://doi.org/10.1073/pnas.1000738107

    Article  PubMed  PubMed Central  Google Scholar 

  167. Bai T, Seebald JL, Kim KE, Ding HM, Szeto DP, Chang HC (2010) Disruption of zebrafish cyclin G-associated kinase (GAK) function impairs the expression of Notch-dependent genes during neurogenesis and causes defects in neuronal development. BMC Dev Biol 10:7. https://doi.org/10.1186/1471-213X-10-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Song L, He Y, Ou J, Zhao Y, Li R, Cheng J, Lin CH, Ho MS (2017) Auxilin underlies progressive locomotor deficits and dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Cell Rep 18(5):1132–1143. https://doi.org/10.1016/j.celrep.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  169. Banks SM, Cho B, Eun SH, Lee JH, Windler SL, Xie X, Bilder D, Fischer JA (2011) The functions of auxilin and Rab11 in Drosophila suggest that the fundamental role of ligand endocytosis in notch signaling cells is not recycling. PLoS One 6(3):e18259. https://doi.org/10.1371/journal.pone.0018259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Quadri M, Fang M, Picillo M, Olgiati S, Breedveld GJ, Graafland J, Wu B, Xu F, Erro R, Amboni M, Pappata S, Quarantelli M, Annesi G, Quattrone A, Chien HF, Barbosa ER, International Parkinsonism Genetics N, Oostra BA, Barone P, Wang J, Bonifati V (2013) Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum Mutat 34 (9):1208–1215. https://doi.org/10.1002/humu.22373

  171. Krebs CE, Karkheiran S, Powell JC, Cao M, Makarov V, Darvish H, Di Paolo G, Walker RH, Shahidi GA, Buxbaum JD, De Camilli P, Yue Z, Paisan-Ruiz C (2013) The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum Mutat 34(9):1200–1207. https://doi.org/10.1002/humu.22372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhu L, Zhong M, Zhao J, Rhee H, Caesar I, Knight EM, Volpicelli-Daley L, Bustos V, Netzer W, Liu L, Lucast L, Ehrlich ME, Robakis NK, Gandy SE, Cai D (2013) Reduction of synaptojanin 1 accelerates Abeta clearance and attenuates cognitive deterioration in an Alzheimer mouse model. J Biol Chem 288(44):32050–32063. https://doi.org/10.1074/jbc.M113.504365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cremona O, Di Paolo G, Wenk MR, Luthi A, Kim WT, Takei K, Daniell L, Nemoto Y, Shears SB, Flavell RA, McCormick DA, De Camilli P (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99(2):179–188

    Article  CAS  PubMed  Google Scholar 

  174. Kim WT, Chang S, Daniell L, Cremona O, Di Paolo G, De Camilli P (2002) Delayed reentry of recycling vesicles into the fusion-competent synaptic vesicle pool in synaptojanin 1 knockout mice. Proc Natl Acad Sci U S A 99(26):17143–17148. https://doi.org/10.1073/pnas.222657399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Van Epps HA, Hayashi M, Lucast L, Stearns GW, Hurley JB, De Camilli P, Brockerhoff SE (2004) The zebrafish nrc mutant reveals a role for the polyphosphoinositide phosphatase synaptojanin 1 in cone photoreceptor ribbon anchoring. J Neurosci 24(40):8641–8650. https://doi.org/10.1523/JNEUROSCI.2892-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. George AA, Hayden S, Stanton GR, Brockerhoff SE (2016) Arf6 and the 5’phosphatase of synaptojanin 1 regulate autophagy in cone photoreceptors. BioEssays 38(Suppl 1):S119–S135. https://doi.org/10.1002/bies.201670913

    Article  CAS  PubMed  Google Scholar 

  177. Dickman DK, Horne JA, Meinertzhagen IA, Schwarz TL (2005) A slowed classical pathway rather than kiss-and-run mediates endocytosis at synapses lacking synaptojanin and endophilin. Cell 123(3):521–533. https://doi.org/10.1016/j.cell.2005.09.026

    Article  CAS  PubMed  Google Scholar 

  178. Verstreken P, Koh TW, Schulze KL, Zhai RG, Hiesinger PR, Zhou Y, Mehta SQ, Cao Y, Roos J, Bellen HJ (2003) Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40(4):733–748

    Article  CAS  PubMed  Google Scholar 

  179. Harris TW, Hartwieg E, Horvitz HR, Jorgensen EM (2000) Mutations in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol 150(3):589–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Schuske KR, Richmond JE, Matthies DS, Davis WS, Runz S, Rube DA, van der Bliek AM, Jorgensen EM (2003) Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 40(4):749–762

    Article  CAS  PubMed  Google Scholar 

  181. Cao M, Wu Y, Ashrafi G, McCartney AJ, Wheeler H, Bushong EA, Boassa D, Ellisman MH, Ryan TA, De Camilli P (2017) Parkinson sac domain mutation in synaptojanin 1 impairs clathrin uncoating at synapses and triggers dystrophic changes in dopaminergic axons. Neuron 93(4):882–896.e885. https://doi.org/10.1016/j.neuron.2017.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Vilarino-Guell C, Rajput A, Milnerwood AJ, Shah B, Szu-Tu C, Trinh J, Yu I, Encarnacion M, Munsie LN, Tapia L, Gustavsson EK, Chou P, Tatarnikov I, Evans DM, Pishotta FT, Volta M, Beccano-Kelly D, Thompson C, Lin MK, Sherman HE, Han HJ, Guenther BL, Wasserman WW, Bernard V, Ross CJ, Appel-Cresswell S, Stoessl AJ, Robinson CA, Dickson DW, Ross OA, Wszolek ZK, Aasly JO, Wu RM, Hentati F, Gibson RA, McPherson PS, Girard M, Rajput M, Rajput AH, Farrer MJ (2014) DNAJC13 mutations in Parkinson disease. Hum Mol Genet 23(7):1794–1801. https://doi.org/10.1093/hmg/ddt570

    Article  CAS  PubMed  Google Scholar 

  183. Gustavsson EK, Trinh J, Guella I, Vilarino-Guell C, Appel-Cresswell S, Stoessl AJ, Tsui JK, McKeown M, Rajput A, Rajput AH, Aasly JO, Farrer MJ (2015) DNAJC13 genetic variants in parkinsonism. Mov Disord 30(2):273–278. https://doi.org/10.1002/mds.26064

    Article  CAS  PubMed  Google Scholar 

  184. Yoshida S, Hasegawa T, Suzuki M, Sugeno N, Kobayashi J, Ueyama M, Fukuda M, Ido-Fujibayashi A, Sekiguchi K, Ezura M, Kikuchi A, Baba T, Takeda A, Mochizuki H, Nagai Y, Aoki M (2018) Parkinson’s disease-linked DNAJC13 mutation aggravates alpha-synuclein-induced neurotoxicity through perturbation of endosomal trafficking. Hum Mol Genet 27(5):823–836. https://doi.org/10.1093/hmg/ddy003

    Article  CAS  PubMed  Google Scholar 

  185. Norris A, Tammineni P, Wang S, Gerdes J, Murr A, Kwan KY, Cai Q, Grant BD (2017) SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Proc Natl Acad Sci U S A 114(3):E307–E316. https://doi.org/10.1073/pnas.1612730114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Shi A, Sun L, Banerjee R, Tobin M, Zhang Y, Grant BD (2009) Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J 28(21):3290–3302. https://doi.org/10.1038/emboj.2009.272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Funayama M, Ohe K, Amo T, Furuya N, Yamaguchi J, Saiki S, Li Y, Ogaki K, Ando M, Yoshino H, Tomiyama H, Nishioka K, Hasegawa K, Saiki H, Satake W, Mogushi K, Sasaki R, Kokubo Y, Kuzuhara S, Toda T, Mizuno Y, Uchiyama Y, Ohno K, Hattori N (2015) CHCHD2 mutations in autosomal dominant late-onset Parkinson’s disease: a genome-wide linkage and sequencing study. Lancet Neurol 14(3):274–282. https://doi.org/10.1016/S1474-4422(14)70266-2

    Article  CAS  PubMed  Google Scholar 

  188. Jansen IE, Bras JM, Lesage S, Schulte C, Gibbs JR, Nalls MA, Brice A, Wood NW, Morris H, Hardy JA, Singleton AB, Gasser T, Heutink P, Sharma M, IPDGC (2015) CHCHD2 and Parkinson’s disease. Lancet Neurol 14(7):678–679. https://doi.org/10.1016/S1474-4422(15)00094-0

    Article  PubMed  Google Scholar 

  189. Burstein SR, Valsecchi F, Kawamata H, Bourens M, Zeng R, Zuberi A, Milner TA, Cloonan SM, Lutz C, Barrientos A, Manfredi G (2018) In vitro and in vivo studies of the ALS-FTLD protein CHCHD10 reveal novel mitochondrial topology and protein interactions. Hum Mol Genet 27(1):160–177. https://doi.org/10.1093/hmg/ddx397

    Article  CAS  PubMed  Google Scholar 

  190. Tio M, Wen R, Lim YL, Zukifli ZHB, Xie S, Ho P, Zhou Z, Koh TW, Zhao Y, Tan EK (2017) Varied pathological and therapeutic response effects associated with CHCHD2 mutant and risk variants. Hum Mutat 38(8):978–987. https://doi.org/10.1002/humu.23234

    Article  CAS  PubMed  Google Scholar 

  191. Meng H, Yamashita C, Shiba-Fukushima K, Inoshita T, Funayama M, Sato S, Hatta T, Natsume T, Umitsu M, Takagi J, Imai Y, Hattori N (2017) Loss of Parkinson’s disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c. Nat Commun 8:15500. https://doi.org/10.1038/ncomms15500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lesage S, Drouet V, Majounie E, Deramecourt V, Jacoupy M, Nicolas A, Cormier-Dequaire F, Hassoun SM, Pujol C, Ciura S, Erpapazoglou Z, Usenko T, Maurage CA, Sahbatou M, Liebau S, Ding J, Bilgic B, Emre M, Erginel-Unaltuna N, Guven G, Tison F, Tranchant C, Vidailhet M, Corvol JC, Krack P, Leutenegger AL, Nalls MA, Hernandez DG, Heutink P, Gibbs JR, Hardy J, Wood NW, Gasser T, Durr A, Deleuze JF, Tazir M, Destee A, Lohmann E, Kabashi E, Singleton A, Corti O, Brice A, French Parkinson’s Disease Genetics S, International Parkinson’s Disease Genomics C (2016) Loss of VPS13C function in autosomal-recessive parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-dependent mitophagy. Am J Hum Genet 98(3):500–513. https://doi.org/10.1016/j.ajhg.2016.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Jansen IE, Ye H, Heetveld S, Lechler MC, Michels H, Seinstra RI, Lubbe SJ, Drouet V, Lesage S, Majounie E, Gibbs JR, Nalls MA, Ryten M, Botia JA, Vandrovcova J, Simon-Sanchez J, Castillo-Lizardo M, Rizzu P, Blauwendraat C, Chouhan AK, Li Y, Yogi P, Amin N, van Duijn CM, International Parkinson’s Disease Genetics C, Morris HR, Brice A, Singleton AB, David DC, Nollen EA, Jain S, Shulman JM, Heutink P (2017) Discovery and functional prioritization of Parkinson’s disease candidate genes from large-scale whole exome sequencing. Genome Biol 18 (1):22. https://doi.org/10.1186/s13059-017-1147-9

  194. Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R (2004) Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N Engl J Med 351(19):1972–1977. https://doi.org/10.1056/NEJMoa033277

    Article  CAS  PubMed  Google Scholar 

  195. Lesage S, Brice A (2009) Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18(R1):R48–R59

    Article  CAS  PubMed  Google Scholar 

  196. Ron I, Rapaport D, Horowitz M (2010) Interaction between parkin and mutant glucocerebrosidase variants: a possible link between Parkinson disease and Gaucher disease. Hum Mol Genet 19(19):3771–3781. https://doi.org/10.1093/hmg/ddq292

    Article  CAS  PubMed  Google Scholar 

  197. Gwinn-Hardy K, Chen JY, Liu HC, Liu TY, Boss M, Seltzer W, Adam A, Singleton A, Koroshetz W, Waters C, Hardy J, Farrer M (2000) Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology 55(6):800–805

    Article  CAS  PubMed  Google Scholar 

  198. Shan DE, Soong BW, Sun CM, Lee SJ, Liao KK, Liu RS (2001) Spinocerebellar ataxia type 2 presenting as familial levodopa-responsive parkinsonism. Ann Neurol 50(6):812–815

    Article  CAS  PubMed  Google Scholar 

  199. Charles P, Camuzat A, Benammar N, Sellal F, Destee A, Bonnet AM, Lesage S, Le Ber I, Stevanin G, Durr A, Brice A (2007) Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology 69(21):1970–1975. https://doi.org/10.1212/01.wnl.0000269323.21969.db

    Article  CAS  PubMed  Google Scholar 

  200. Chai YG, Oh DY, Chung EK, Kim GS, Kim L, Lee YS, Choi IG (2005) Alcohol and aldehyde dehydrogenase polymorphisms in men with type I and Type II alcoholism. Am J Psychiatry 162(5):1003–1005. https://doi.org/10.1176/appi.ajp.162.5.1003

    Article  PubMed  Google Scholar 

  201. Buervenich S, Carmine A, Galter D, Shahabi HN, Johnels B, Holmberg B, Ahlberg J, Nissbrandt H, Eerola J, Hellstrom O, Tienari PJ, Matsuura T, Ashizawa T, Wullner U, Klockgether T, Zimprich A, Gasser T, Hanson M, Waseem S, Singleton A, McMahon FJ, Anvret M, Sydow O, Olson L (2005) A rare truncating mutation in ADH1C (G78Stop) shows significant association with Parkinson disease in a large international sample. Arch Neurol 62(1):74–78. https://doi.org/10.1001/archneur.62.1.74

    Article  PubMed  Google Scholar 

  202. Westerlund M, Belin AC, Felder MR, Olson L, Galter D (2007) High and complementary expression patterns of alcohol and aldehyde dehydrogenases in the gastrointestinal tract: implications for Parkinson’s disease. FEBS J 274(5):1212–1223. https://doi.org/10.1111/j.1742-4658.2007.05665.x

    Article  CAS  PubMed  Google Scholar 

  203. Anvret A, Ran C, Westerlund M, Gellhaar S, Lindqvist E, Pernold K, Lundstromer K, Duester G, Felder MR, Galter D, Belin AC (2012) Adh1 and Adh1/4 knockout mice as possible rodent models for presymptomatic Parkinson’s disease. Behav Brain Res 227(1):252–257. https://doi.org/10.1016/j.bbr.2011.10.040

    Article  CAS  PubMed  Google Scholar 

  204. Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8(11):2047–2053

    Article  CAS  PubMed  Google Scholar 

  205. Wu YR, Fung HC, Lee-Chen GJ, Gwinn-Hardy K, Ro LS, Chen ST, Hsieh-Li HM, Lin HY, Lin CY, Li SN, Chen CM (2005) Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm (Vienna) 112(4):539–546. https://doi.org/10.1007/s00702-004-0197-9

    Article  CAS  Google Scholar 

  206. Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang YC, Li SH, Hwang JC, Fang K, Hsieh-Li HM, Li ML, Tung LC, Su MT, Lu KT, Lee-Chen GJ (2004) Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson’s disease. Clin Genet 65(3):209–214

    Article  CAS  PubMed  Google Scholar 

  207. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393(6686):702–705. https://doi.org/10.1038/31508

    Article  CAS  PubMed  Google Scholar 

  208. Plaitakis A, Latsoudis H, Kanavouras K, Ritz B, Bronstein JM, Skoula I, Mastorodemos V, Papapetropoulos S, Borompokas N, Zaganas I, Xiromerisiou G, Hadjigeorgiou GM, Spanaki C (2010) Gain-of-function variant in GLUD2 glutamate dehydrogenase modifies Parkinson’s disease onset. Eur J Hum Genet 18(3):336–341. https://doi.org/10.1038/ejhg.2009.179

    Article  CAS  PubMed  Google Scholar 

  209. Deng HX, Shi Y, Yang Y, Ahmeti KB, Miller N, Huang C, Cheng L, Zhai H, Deng S, Nuytemans K, Corbett NJ, Kim MJ, Deng H, Tang B, Yang Z, Xu Y, Chan P, Huang B, Gao XP, Song Z, Liu Z, Fecto F, Siddique N, Foroud T, Jankovic J, Ghetti B, Nicholson DA, Krainc D, Melen O, Vance JM, Pericak-Vance MA, Ma YC, Rajput AH, Siddique T (2016) Identification of TMEM230 mutations in familial Parkinson’s disease. Nat Genet 48(7):733–739. https://doi.org/10.1038/ng.3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sudhaman S, Muthane UB, Behari M, Govindappa ST, Juyal RC, Thelma BK (2016) Evidence of mutations in RIC3 acetylcholine receptor chaperone as a novel cause of autosomal-dominant Parkinson’s disease with non-motor phenotypes. J Med Genet 53(8):559–566. https://doi.org/10.1136/jmedgenet-2015-103616

    Article  CAS  PubMed  Google Scholar 

  211. Khodadadi H, Azcona LJ, Aghamollaii V, Omrani MD, Garshasbi M, Taghavi S, Tafakhori A, Shahidi GA, Jamshidi J, Darvish H, Paisan-Ruiz C (2017) PTRHD1 (C2orf79) mutations lead to autosomal-recessive intellectual disability and parkinsonism. Mov Disord 32(2):287–291. https://doi.org/10.1002/mds.26824

    Article  CAS  PubMed  Google Scholar 

  212. Krahn LE, Maraganore DM, Michels VV (1998) Childhood-onset schizophrenia associated with parkinsonism in a patient with a microdeletion of chromosome 22. Mayo Clin Proc 73(10):956–959. https://doi.org/10.4065/73.10.956

    Article  CAS  PubMed  Google Scholar 

  213. Sudhaman S, Prasad K, Behari M, Muthane UB, Juyal RC, Thelma BK (2016) Discovery of a frameshift mutation in podocalyxin-like (PODXL) gene, coding for a neural adhesion molecule, as causal for autosomal-recessive juvenile Parkinsonism. J Med Genet 53(7):450–456. https://doi.org/10.1136/jmedgenet-2015-103459

    Article  CAS  PubMed  Google Scholar 

  214. Gonzalez-Reyes LE, Verbitsky M, Blesa J, Jackson-Lewis V, Paredes D, Tillack K, Phani S, Kramer ER, Przedborski S, Kottmann AH (2012) Sonic hedgehog maintains cellular and neurochemical homeostasis in the adult nigrostriatal circuit. Neuron 75(2):306–319. https://doi.org/10.1016/j.neuron.2012.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276(5310):248–250

    Article  CAS  PubMed  Google Scholar 

  216. Semina EV, Murray JC, Reiter R, Hrstka RF, Graw J (2000) Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum Mol Genet 9(11):1575–1585

    Article  CAS  PubMed  Google Scholar 

  217. Sgado P, Alberi L, Gherbassi D, Galasso SL, Ramakers GM, Alavian KN, Smidt MP, Dyck RH, Simon HH (2006) Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proc Natl Acad Sci U S A 103(41):15242–15247. https://doi.org/10.1073/pnas.0602116103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ekstrand MI, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, Thams S, Bergstrand A, Hansson FS, Trifunovic A, Hoffer B, Cullheim S, Mohammed AH, Olson L, Larsson NG (2007) Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci U S A 104(4):1325–1330. https://doi.org/10.1073/pnas.0605208103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kadkhodaei B, Ito T, Joodmardi E, Mattsson B, Rouillard C, Carta M, Muramatsu S, Sumi-Ichinose C, Nomura T, Metzger D, Chambon P, Lindqvist E, Larsson NG, Olson L, Bjorklund A, Ichinose H, Perlmann T (2009) Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci 29(50):15923–15932. https://doi.org/10.1523/JNEUROSCI.3910-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK (2003) Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 33(1):85–89. https://doi.org/10.1038/ng1066

    Article  CAS  PubMed  Google Scholar 

  221. Xu PY, Liang R, Jankovic J, Hunter C, Zeng YX, Ashizawa T, Lai D, Le WD (2002) Association of homozygous 7048G7049 variant in the intron six of Nurr1 gene with Parkinson’s disease. Neurology 58(6):881–884

    Article  CAS  PubMed  Google Scholar 

  222. Jankovic J, Chen S, Le WD (2005) The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol 77(1–2):128–138. https://doi.org/10.1016/j.pneurobio.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  223. Zimprich A, Asmus F, Leitner P, Castro M, Bereznai B, Homann N, Ott E, Rutgers AW, Wieditz G, Trenkwalder C, Gasser T (2003) Point mutations in exon 1 of the NR4A2 gene are not a major cause of familial Parkinson’s disease. Neurogenetics 4(4):219–220. https://doi.org/10.1007/s10048-003-0156-x

    Article  PubMed  Google Scholar 

  224. Wellenbrock C, Hedrich K, Schafer N, Kasten M, Jacobs H, Schwinger E, Hagenah J, Pramstaller PP, Vieregge P, Klein C (2003) NR4A2 mutations are rare among European patients with familial Parkinson’s disease. Ann Neurol 54(3):415. https://doi.org/10.1002/ana.10736

    Article  PubMed  Google Scholar 

  225. Hwang DY, Ardayfio P, Kang UJ, Semina EV, Kim KS (2003) Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res 114(2):123–131

    Article  CAS  PubMed  Google Scholar 

  226. Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci U S A 100(7):4245–4250. https://doi.org/10.1073/pnas.0230529100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. van den Munckhof P, Luk KC, Ste-Marie L, Montgomery J, Blanchet PJ, Sadikot AF, Drouin J (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130(11):2535–2542

    Article  PubMed  Google Scholar 

  228. Shi X, Bosenko DV, Zinkevich NS, Foley S, Hyde DR, Semina EV, Vihtelic TS (2005) Zebrafish pitx3 is necessary for normal lens and retinal development. Mech Dev 122(4):513–527. https://doi.org/10.1016/j.mod.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  229. Le Pen G, Sonnier L, Hartmann A, Bizot JC, Trovero F, Krebs MO, Prochiantz A (2008) Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1: a new genetic model for Parkinson’s disease? Parkinsonism Relat Disord 14(Suppl 2):S107–S111. https://doi.org/10.1016/j.parkreldis.2008.04.007

    Article  PubMed  Google Scholar 

  230. Haubenberger D, Reinthaler E, Mueller JC, Pirker W, Katzenschlager R, Froehlich R, Bruecke T, Daniel G, Auff E, Zimprich A (2011) Association of transcription factor polymorphisms PITX3 and EN1 with Parkinson’s disease. Neurobiol Aging 32(2):302–307

    Article  CAS  PubMed  Google Scholar 

  231. Falkenberg M, Larsson NG, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699

    Article  CAS  PubMed  Google Scholar 

  232. Ekstrand MI, Galter D (2009) The MitoPark Mouse - an animal model of Parkinson’s disease with impaired respiratory chain function in dopamine neurons. Parkinsonism Relat Disord 15(Suppl 3):S185–S188. https://doi.org/10.1016/S1353-8020(09)70811-9

    Article  PubMed  Google Scholar 

  233. Gubellini P, Kachidian P (2015) Animal models of Parkinson’s disease: an updated overview. Rev Neurol (Paris) 171(11):750–761

    Article  CAS  Google Scholar 

  234. Jiang P, Dickson DW (2018) Parkinson’s disease: experimental models and reality. Acta Neuropathol 135(1):13–32. https://doi.org/10.1007/s00401-017-1788-5

    Article  CAS  PubMed  Google Scholar 

  235. LeWitt PA, Fahn S (2016) Levodopa therapy for Parkinson disease: a look backward and forward. Neurology 86(14 Suppl 1):S3–S12. https://doi.org/10.1212/WNL.0000000000002509

    Article  CAS  PubMed  Google Scholar 

  236. Wichmann T, DeLong MR (2016) Deep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality? Neurotherapeutics 13(2):264–283

    Article  PubMed  PubMed Central  Google Scholar 

  237. Deng H, Yuan L (2014) Genetic variants and animal models in SNCA and Parkinson disease. Ageing Res Rev 15:161–176. https://doi.org/10.1016/j.arr.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  238. Kilarski LL, Pearson JP, Newsway V, Majounie E, Knipe MD, Misbahuddin A, Chinnery PF, Burn DJ, Clarke CE, Marion MH, Lewthwaite AJ, Nicholl DJ, Wood NW, Morrison KE, Williams-Gray CH, Evans JR, Sawcer SJ, Barker RA, Wickremaratchi MM, Ben-Shlomo Y, Williams NM, Morris HR (2012) Systematic review and UK-based study of PARK2 (parkin), PINK1, PARK7 (DJ-1) and LRRK2 in early-onset Parkinson’s disease. Mov Disord 27(12):1522–1529. https://doi.org/10.1002/mds.25132

    Article  CAS  PubMed  Google Scholar 

  239. Gasser T, Muller-Myhsok B, Wszolek ZK, Oehlmann R, Calne DB, Bonifati V, Bereznai B, Fabrizio E, Vieregge P, Horstmann RD (1998) A susceptibility locus for Parkinson’s disease maps to chromosome 2p13. Nat Genet 18(3):262–265. https://doi.org/10.1038/ng0398-262

    Article  CAS  PubMed  Google Scholar 

  240. Farrer M, Gwinn-Hardy K, Muenter M, DeVrieze FW, Crook R, Perez-Tur J, Lincoln S, Maraganore D, Adler C, Newman S, MacElwee K, McCarthy P, Miller C, Waters C, Hardy J (1999) A chromosome 4p haplotype segregating with Parkinson’s disease and postural tremor. Hum Mol Genet 8(1):81–85

    Article  CAS  PubMed  Google Scholar 

  241. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841. https://doi.org/10.1126/science.1090278

    Article  CAS  PubMed  Google Scholar 

  242. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der BM, Lopez de MA, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de SR, Lees A, Marti-Masso JF, Perez-Tur J, Wood NW, Singleton AB (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44(4):595–600

    Article  CAS  PubMed  Google Scholar 

  243. Simon-Sanchez J, Heutink P, Gasser T, International Parkinson’s Disease Genomics C (2015) Variation in PARK10 is not associated with risk and age at onset of Parkinson’s disease in large clinical cohorts. Neurobiol Aging 36(10):2907.e2913. https://doi.org/10.1016/j.neurobiolaging.2015.07.008

    Article  CAS  Google Scholar 

  244. Beecham GW, Dickson DW, Scott WK, Martin ER, Schellenberg G, Nuytemans K, Larson EB, Buxbaum JD, Trojanowski JQ, Van Deerlin VM, Hurtig HI, Mash DC, Beach TG, Troncoso JC, Pletnikova O, Frosch MP, Ghetti B, Foroud TM, Honig LS, Marder K, Vonsattel JP, Goldman SM, Vinters HV, Ross OA, Wszolek ZK, Wang L, Dykxhoorn DM, Pericak-Vance MA, Montine TJ, Leverenz JB, Dawson TM, Vance JM (2015) PARK10 is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology 84(10):972–980. https://doi.org/10.1212/WNL.0000000000001332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Oliveira SA, Li YJ, Noureddine MA, Zuchner S, Qin X, Pericak-Vance MA, Vance JM (2005) Identification of risk and age-at-onset genes on chromosome 1p in Parkinson disease. Am J Hum Genet 77(2):252–264. https://doi.org/10.1086/432588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Khodr CE, Sapru MK, Pedapati J, Han Y, West NC, Kells AP, Bankiewicz KS, Bohn MC (2011) An alpha-synuclein AAV gene silencing vector ameliorates a behavioral deficit in a rat model of Parkinson’s disease, but displays toxicity in dopamine neurons. Brain Res 1395:94–107. https://doi.org/10.1016/j.brainres.2011.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Cannon JR, Geghman KD, Tapias V, Sew T, Dail MK, Li C, Greenamyre JT (2013) Expression of human E46K-mutated alpha-synuclein in BAC-transgenic rats replicates early-stage Parkinson’s disease features and enhances vulnerability to mitochondrial impairment. Exp Neurol 240:44–56. https://doi.org/10.1016/j.expneurol.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  248. Bido S, Soria FN, Fan RZ, Bezard E, Tieu K (2017) Mitochondrial division inhibitor-1 is neuroprotective in the A53T-alpha-synuclein rat model of Parkinson’s disease. Sci Rep 7(1):7495. https://doi.org/10.1038/s41598-017-07181-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Musacchio T, Rebenstorff M, Fluri F, Brotchie JM, Volkmann J, Koprich JB, Ip CW (2017) Subthalamic nucleus deep brain stimulation is neuroprotective in the A53T alpha-synuclein Parkinson’s disease rat model. Ann Neurol 81(6):825–836. https://doi.org/10.1002/ana.24947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Dehay B, Fernagut PO (2016) alpha-Synuclein-based models of Parkinson’s disease. Rev Neurol (Paris) 172(6–7):371–378. https://doi.org/10.1016/j.neurol.2016.04.003

    Article  CAS  Google Scholar 

  251. Kurz A, Double KL, Lastres-Becker I, Tozzi A, Tantucci M, Bockhart V, Bonin M, Garcia-Arencibia M, Nuber S, Schlaudraff F, Liss B, Fernandez-Ruiz J, Gerlach M, Wullner U, Luddens H, Calabresi P, Auburger G, Gispert S (2010) A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS One 5(7):e11464. https://doi.org/10.1371/journal.pone.0011464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252

    Article  CAS  PubMed  Google Scholar 

  253. Sharon R, Bar-Joseph I, Mirick GE, Serhan CN, Selkoe DJ (2003) Altered fatty acid composition of dopaminergic neurons expressing alpha-synuclein and human brains with alpha-synucleinopathies. J Biol Chem 278(50):49874–49881. https://doi.org/10.1074/jbc.M309127200

    Article  CAS  PubMed  Google Scholar 

  254. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287(5456):1265–1269

    Article  CAS  PubMed  Google Scholar 

  255. Emmer KL, Waxman EA, Covy JP, Giasson BI (2011) E46K human alpha-synuclein transgenic mice develop Lewy-like and tau pathology associated with age-dependent, detrimental motor impairment. J Biol Chem 286(40):35104–35118. https://doi.org/10.1074/jbc.M111.247965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Gomez-Isla T, Irizarry MC, Mariash A, Cheung B, Soto O, Schrump S, Sondel J, Kotilinek L, Day J, Schwarzschild MA, Cha JH, Newell K, Miller DW, Ueda K, Young AB, Hyman BT, Ashe KH (2003) Motor dysfunction and gliosis with preserved dopaminergic markers in human alpha-synuclein A30P transgenic mice. Neurobiol Aging 24(2):245–258

    Article  CAS  PubMed  Google Scholar 

  257. Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A, Okochi M, Leimer U, van Der Putten H, Probst A, Kremmer E, Kretzschmar HA, Haass C (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha -synuclein in human and transgenic mouse brain. J Neurosci 20(17):6365–6373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Mbefo MK, Fares MB, Paleologou K, Oueslati A, Yin G, Tenreiro S, Pinto M, Outeiro T, Zweckstetter M, Masliah E, Lashuel HA (2015) Parkinson disease mutant E46K enhances alpha-synuclein phosphorylation in mammalian cell lines, in yeast, and in vivo. J Biol Chem 290(15):9412–9427. https://doi.org/10.1074/jbc.M114.610774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Zhou W, Milder JB, Freed CR (2008) Transgenic mice overexpressing tyrosine-to-cysteine mutant human alpha-synuclein: a progressive neurodegenerative model of diffuse Lewy body disease. J Biol Chem 283(15):9863–9870. https://doi.org/10.1074/jbc.M710232200

    Article  CAS  PubMed  Google Scholar 

  260. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404(6776):394–398. https://doi.org/10.1038/35006074

    Article  CAS  PubMed  Google Scholar 

  261. Ved R, Saha S, Westlund B, Perier C, Burnam L, Sluder A, Hoener M, Rodrigues CM, Alfonso A, Steer C, Liu L, Przedborski S, Wolozin B (2005) Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem 280(52):42655–42668. https://doi.org/10.1074/jbc.M505910200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Xi Y, Noble S, Ekker M (2011) Modeling neurodegeneration in zebrafish. Curr Neurol Neurosci Rep 11(3):274–282. https://doi.org/10.1007/s11910-011-0182-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Matsui H, Gavinio R, Asano T, Uemura N, Ito H, Taniguchi Y, Kobayashi Y, Maki T, Shen J, Takeda S, Uemura K, Yamakado H, Takahashi R (2013) PINK1 and Parkin complementarily protect dopaminergic neurons in vertebrates. Hum Mol Genet 22(12):2423–2434. https://doi.org/10.1093/hmg/ddt095

    Article  CAS  PubMed  Google Scholar 

  264. Matsui H, Uemura N, Yamakado H, Takeda S, Takahashi R (2014) Exploring the pathogenetic mechanisms underlying Parkinson’s disease in medaka fish. J Parkinsons Dis 4(2):301–310. https://doi.org/10.3233/JPD-130289

    Article  CAS  PubMed  Google Scholar 

  265. Bornhorst J, Chakraborty S, Meyer S, Lohren H, Brinkhaus SG, Knight AL, Caldwell KA, Caldwell GA, Karst U, Schwerdtle T, Bowman A, Aschner M (2014) The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of alpha-synuclein in C. elegans. Metallomics 6(3):476–490. https://doi.org/10.1039/c3mt00325f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Chege PM, McColl G (2014) Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson’s disease. Front Aging Neurosci 6:89. https://doi.org/10.3389/fnagi.2014.00089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Orr AL, Rutaganira FU, de Roulet D, Huang EJ, Hertz NT, Shokat KM, Nakamura K (2017) Long-term oral kinetin does not protect against alpha-synuclein-induced neurodegeneration in rodent models of Parkinson’s disease. Neurochem Int 109:106–116. https://doi.org/10.1016/j.neuint.2017.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Gandhi S, Vaarmann A, Yao Z, Duchen MR, Wood NW, Abramov AY (2012) Dopamine induced neurodegeneration in a PINK1 model of Parkinson’s disease. PLoS One 7(5):e37564. https://doi.org/10.1371/journal.pone.0037564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF, Vogel H, Lu B (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103(28):10793–10798. https://doi.org/10.1073/pnas.0602493103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Soman S, Keatinge M, Moein M, Da Costa M, Mortiboys H, Skupin A, Sugunan S, Bazala M, Kuznicki J, Bandmann O (2017) Inhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1(−/−) zebrafish. Eur J Neurosci 45(4):528–535. https://doi.org/10.1111/ejn.13473

    Article  PubMed  Google Scholar 

  271. Anichtchik O, Diekmann H, Fleming A, Roach A, Goldsmith P, Rubinsztein DC (2008) Loss of PINK1 function affects development and results in neurodegeneration in zebrafish. J Neurosci 28(33):8199–8207. https://doi.org/10.1523/JNEUROSCI.0979-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Flinn LJ, Keatinge M, Bretaud S, Mortiboys H, Matsui H, De Felice E, Woodroof HI, Brown L, McTighe A, Soellner R, Allen CE, Heath PR, Milo M, Muqit MM, Reichert AS, Koster RW, Ingham PW, Bandmann O (2013) TigarB causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency. Ann Neurol 74(6):837–847. https://doi.org/10.1002/ana.23999

    Article  CAS  PubMed  Google Scholar 

  273. Matsui H, Gavinio R, Takahashi R (2012) Medaka fish Parkinson’s disease model. Exp Neurobiol 21(3):94–100. https://doi.org/10.5607/en.2012.21.3.94

    Article  PubMed  PubMed Central  Google Scholar 

  274. Matsui H, Taniguchi Y, Inoue H, Kobayashi Y, Sakaki Y, Toyoda A, Uemura K, Kobayashi D, Takeda S, Takahashi R (2010) Loss of PINK1 in medaka fish (Oryzias latipes) causes late-onset decrease in spontaneous movement. Neurosci Res 66(2):151–161. https://doi.org/10.1016/j.neures.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  275. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441(7097):1162–1166. https://doi.org/10.1038/nature04779

    Article  CAS  PubMed  Google Scholar 

  276. Todd AM, Staveley BE (2008) Pink1 suppresses alpha-synuclein-induced phenotypes in a Drosophila model of Parkinson’s disease. Genome 51(12):1040–1046. https://doi.org/10.1139/G08-085

    Article  CAS  PubMed  Google Scholar 

  277. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441(7097):1157–1161. https://doi.org/10.1038/nature04788

    Article  CAS  PubMed  Google Scholar 

  278. Cornelissen T, Vilain S, Vints K, Gounko N, Verstreken P, Vandenberghe W (2018) Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. elife 7. https://doi.org/10.7554/eLife.35878

  279. Song S, Jang S, Park J, Bang S, Choi S, Kwon KY, Zhuang X, Kim E, Chung J (2013) Characterization of PINK1 (PTEN-induced putative kinase 1) mutations associated with Parkinson disease in mammalian cells and Drosophila. J Biol Chem 288(8):5660–5672. https://doi.org/10.1074/jbc.M112.430801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Koh H, Kim H, Kim MJ, Park J, Lee HJ, Chung J (2012) Silent information regulator 2 (Sir2) and Forkhead box O (FOXO) complement mitochondrial dysfunction and dopaminergic neuron loss in Drosophila PTEN-induced kinase 1 (PINK1) null mutant. J Biol Chem 287(16):12750–12758. https://doi.org/10.1074/jbc.M111.337907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Samann J, Hegermann J, von Gromoff E, Eimer S, Baumeister R, Schmidt E (2009) Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem 284(24):16482–16491. https://doi.org/10.1074/jbc.M808255200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Vingill S, Connor-Robson N, Wade-Martins R (2018) Are rodent models of Parkinson’s disease behaving as they should? Behav Brain Res 352:133–141. https://doi.org/10.1016/j.bbr.2017.10.021

    Article  PubMed  Google Scholar 

  283. Lev N, Barhum Y, Ben-Zur T, Melamed E, Steiner I, Offen D (2013) Knocking out DJ-1 attenuates astrocytes neuroprotection against 6-hydroxydopamine toxicity. J Mol Neurosci 50(3):542–550. https://doi.org/10.1007/s12031-013-9984-9

    Article  CAS  PubMed  Google Scholar 

  284. Chandran JS, Lin X, Zapata A, Hoke A, Shimoji M, Moore SO, Galloway MP, Laird FM, Wong PC, Price DL, Bailey KR, Crawley JN, Shippenberg T, Cai H (2008) Progressive behavioral deficits in DJ-1-deficient mice are associated with normal nigrostriatal function. Neurobiol Dis 29(3):505–514. https://doi.org/10.1016/j.nbd.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  285. Ansai S, Sakuma T, Yamamoto T, Ariga H, Uemura N, Takahashi R, Kinoshita M (2013) Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics 193(3):739–749. https://doi.org/10.1534/genetics.112.147645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Lee JW, Tapias V, Di Maio R, Greenamyre JT, Cannon JR (2015) Behavioral, neurochemical, and pathologic alterations in bacterial artificial chromosome transgenic G2019S leucine-rich repeated kinase 2 rats. Neurobiol Aging 36(1):505–518. https://doi.org/10.1016/j.neurobiolaging.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  287. Zhou H, Huang C, Tong J, Hong WC, Liu YJ, Xia XG (2011) Temporal expression of mutant LRRK2 in adult rats impairs dopamine reuptake. Int J Biol Sci 7(6):753–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Tsika E, Nguyen AP, Dusonchet J, Colin P, Schneider BL, Moore DJ (2015) Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson’s disease. Neurobiol Dis 77:49–61

    Article  CAS  PubMed  Google Scholar 

  289. Dusonchet J, Kochubey O, Stafa K, Young SM Jr, Zufferey R, Moore DJ, Schneider BL, Aebischer P (2011) A rat model of progressive nigral neurodegeneration induced by the Parkinson’s disease-associated G2019S mutation in LRRK2. J Neurosci 31(3):907–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Tagliaferro P, Kareva T, Oo TF, Yarygina O, Kholodilov N, Burke RE (2015) An early axonopathy in a hLRRK2(R1441G) transgenic model of Parkinson disease. Neurobiol Dis 82:359–371. https://doi.org/10.1016/j.nbd.2015.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding J, Chen ZZ, Gallant PE, Tao-Cheng JH, Rudow G, Troncoso JC, Liu Z, Li Z, Cai H (2009) Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron 64(6):807–827. https://doi.org/10.1016/j.neuron.2009.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Sheng D, Qu D, Kwok KH, Ng SS, Lim AY, Aw SS, Lee CW, Sung WK, Tan EK, Lufkin T, Jesuthasan S, Sinnakaruppan M, Liu J (2010) Deletion of the WD40 domain of LRRK2 in Zebrafish causes Parkinsonism-like loss of neurons and locomotive defect. PLoS Genet 6(4):e1000914. https://doi.org/10.1371/journal.pgen.1000914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Prabhudesai S, Bensabeur FZ, Abdullah R, Basak I, Baez S, Alves G, Holtzman NG, Larsen JP, Moller SG (2016) LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation. J Neurosci Res 94(8):717–735. https://doi.org/10.1002/jnr.23754

    Article  CAS  PubMed  Google Scholar 

  294. Ren G, Xin S, Li S, Zhong H, Lin S (2011) Disruption of LRRK2 does not cause specific loss of dopaminergic neurons in zebrafish. PLoS One 6(6):e20630. https://doi.org/10.1371/journal.pone.0020630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Afsari F, Christensen KV, Smith GP, Hentzer M, Nippe OM, Elliott CJ, Wade AR (2014) Abnormal visual gain control in a Parkinson’s disease model. Hum Mol Genet 23(17):4465–4478. https://doi.org/10.1093/hmg/ddu159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Hindle S, Afsari F, Stark M, Middleton CA, Evans GJ, Sweeney ST, Elliott CJ (2013) Dopaminergic expression of the Parkinsonian gene LRRK2-G2019S leads to non-autonomous visual neurodegeneration, accelerated by increased neural demands for energy. Hum Mol Genet 22(11):2129–2140. https://doi.org/10.1093/hmg/ddt061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Hindle SJ, Elliott CJ (2013) Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease. Autophagy 9(6):936–938. https://doi.org/10.4161/auto.24397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Venderova K, Kabbach G, Abdel-Messih E, Zhang Y, Parks RJ, Imai Y, Gehrke S, Ngsee J, Lavoie MJ, Slack RS, Rao Y, Zhang Z, Lu B, Haque ME, Park DS (2009) Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson’s disease. Hum Mol Genet 18(22):4390–4404. https://doi.org/10.1093/hmg/ddp394

    Article  CAS  PubMed  Google Scholar 

  299. Rayaprolu S, Seven YB, Howard J, Duffy C, Altshuler M, Moloney C, Giasson BI, Lewis J (2018) Partial loss of ATP13A2 causes selective gliosis independent of robust lipofuscinosis. Mol Cell Neurosci 92:17–26. https://doi.org/10.1016/j.mcn.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  300. Lopes da Fonseca T, Correia A, Hasselaar W, van der Linde HC, Willemsen R, Outeiro TF (2013) The zebrafish homologue of Parkinson’s disease ATP13A2 is essential for embryonic survival. Brain Res Bull 90:118–126. https://doi.org/10.1016/j.brainresbull.2012.09.017

    Article  CAS  PubMed  Google Scholar 

  301. Matsui H, Sato F, Sato S, Koike M, Taruno Y, Saiki S, Funayama M, Ito H, Taniguchi Y, Uemura N, Toyoda A, Sakaki Y, Takeda S, Uchiyama Y, Hattori N, Takahashi R (2013) ATP13A2 deficiency induces a decrease in cathepsin D activity, fingerprint-like inclusion body formation, and selective degeneration of dopaminergic neurons. FEBS Lett 587(9):1316–1325. https://doi.org/10.1016/j.febslet.2013.02.046

    Article  CAS  PubMed  Google Scholar 

  302. Du TT, Wang L, Duan CL, Lu LL, Zhang JL, Gao G, Qiu XB, Wang XM, Yang H (2015) GBA deficiency promotes SNCA/alpha-synuclein accumulation through autophagic inhibition by inactivated PPP2A. Autophagy 11(10):1803–1820. https://doi.org/10.1080/15548627.2015.1086055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Sinclair GB, Jevon G, Colobong KE, Randall DR, Choy FY, Clarke LA (2007) Generation of a conditional knockout of murine glucocerebrosidase: utility for the study of Gaucher disease. Mol Genet Metab 90(2):148–156. https://doi.org/10.1016/j.ymgme.2006.09.008

    Article  CAS  PubMed  Google Scholar 

  304. Kim D, Hwang H, Choi S, Kwon SH, Lee S, Park JH, Kim S, Ko HS (2018) D409H GBA1 mutation accelerates the progression of pathology in A53T alpha-synuclein transgenic mouse model. Acta Neuropathol Commun 6(1):32. https://doi.org/10.1186/s40478-018-0538-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Enquist IB, Nilsson E, Ooka A, Mansson JE, Olsson K, Ehinger M, Brady RO, Richter J, Karlsson S (2006) Effective cell and gene therapy in a murine model of Gaucher disease. Proc Natl Acad Sci U S A 103(37):13819–13824. https://doi.org/10.1073/pnas.0606016103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Taguchi YV, Liu J, Ruan J, Pacheco J, Zhang X, Abbasi J, Keutzer J, Mistry PK, Chandra SS (2017) Glucosylsphingosine promotes alpha-synuclein pathology in mutant GBA-associated Parkinson’s disease. J Neurosci 37(40):9617–9631. https://doi.org/10.1523/JNEUROSCI.1525-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM, Passini MA, Grabowski GA, Schlossmacher MG, Sidman RL, Cheng SH, Shihabuddin LS (2011) CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci U S A 108(29):12101–12106. https://doi.org/10.1073/pnas.1108197108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Yun SP, Kim D, Kim S, Kim S, Karuppagounder SS, Kwon SH, Lee S, Kam TI, Lee S, Ham S, Park JH, Dawson VL, Dawson TM, Lee Y, Ko HS (2018) alpha-Synuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism. Mol Neurodegener 13(1):1. https://doi.org/10.1186/s13024-017-0233-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Papadopoulos VE, Nikolopoulou G, Antoniadou I, Karachaliou A, Arianoglou G, Emmanouilidou E, Sardi SP, Stefanis L, Vekrellis K (2018) Modulation of beta-glucocerebrosidase increases alpha-synuclein secretion and exosome release in mouse models of Parkinson’s disease. Hum Mol Genet 27(10):1696–1710. https://doi.org/10.1093/hmg/ddy075

    Article  CAS  PubMed  Google Scholar 

  310. Ginns EI, Mak SK, Ko N, Karlgren J, Akbarian S, Chou VP, Guo Y, Lim A, Samuelsson S, LaMarca ML, Vazquez-DeRose J, Manning-Bog AB (2014) Neuroinflammation and alpha-synuclein accumulation in response to glucocerebrosidase deficiency are accompanied by synaptic dysfunction. Mol Genet Metab 111(2):152–162. https://doi.org/10.1016/j.ymgme.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  311. Keatinge M, Bui H, Menke A, Chen YC, Sokol AM, Bai Q, Ellett F, Da Costa M, Burke D, Gegg M, Trollope L, Payne T, McTighe A, Mortiboys H, de Jager S, Nuthall H, Kuo MS, Fleming A, Schapira AH, Renshaw SA, Highley JR, Chacinska A, Panula P, Burton EA, O’Neill MJ, Bandmann O (2015) Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death. Hum Mol Genet 24(23):6640–6652. https://doi.org/10.1093/hmg/ddv369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa-Fujiwara T, Matsui H, Naruse K, Sakamoto N, Uchiyama Y, Todo T, Takeda S, Yamakado H, Takahashi R (2015) Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet 11(4):e1005065. https://doi.org/10.1371/journal.pgen.1005065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29(29):9148–9162. https://doi.org/10.1523/JNEUROSCI.0660-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Dansithong W, Paul S, Figueroa KP, Rinehart MD, Wiest S, Pflieger LT, Scoles DR, Pulst SM (2015) Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet 11(4):e1005182. https://doi.org/10.1371/journal.pgen.1005182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Meierhofer D, Halbach M, Sen NE, Gispert S, Auburger G (2016) Ataxin-2 (Atxn2)-knock-out mice show branched chain amino acids and fatty acids pathway alterations. Mol Cell Proteomics 15(5):1728–1739. https://doi.org/10.1074/mcp.M115.056770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Pfeffer M, Gispert S, Auburger G, Wicht H, Korf HW (2017) Impact of Ataxin-2 knock out on circadian locomotor behavior and PER immunoreaction in the SCN of mice. Chronobiol Int 34(1):129–137. https://doi.org/10.1080/07420528.2016.1245666

    Article  CAS  PubMed  Google Scholar 

  317. Alves-Cruzeiro JM, Mendonca L, Pereira de Almeida L, Nobrega C (2016) Motor dysfunctions and neuropathology in mouse models of spinocerebellar ataxia type 2: a comprehensive review. Front Neurosci 10:572. https://doi.org/10.3389/fnins.2016.00572

    Article  PubMed  PubMed Central  Google Scholar 

  318. Kelp A, Koeppen AH, Petrasch-Parwez E, Calaminus C, Bauer C, Portal E, Yu-Taeger L, Pichler B, Bauer P, Riess O, Nguyen HP (2013) A novel transgenic rat model for spinocerebellar ataxia type 17 recapitulates neuropathological changes and supplies in vivo imaging biomarkers. J Neurosci 33(21):9068–9081. https://doi.org/10.1523/JNEUROSCI.5622-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Cui Y, Yang S, Li XJ, Li S (2017) Genetically modified rodent models of SCA17. J Neurosci Res 95(8):1540–1547. https://doi.org/10.1002/jnr.23984

    Article  CAS  PubMed  Google Scholar 

  320. Chang YC, Lin CY, Hsu CM, Lin HC, Chen YH, Lee-Chen GJ, Su MT, Ro LS, Chen CM, Hsieh-Li HM (2011) Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17. J Neurochem 118(2):288–303. https://doi.org/10.1111/j.1471-4159.2011.07304.x

    Article  CAS  PubMed  Google Scholar 

  321. Chen ZZ, Wang CM, Lee GC, Hsu HC, Wu TL, Lin CW, Ma CK, Lee-Chen GJ, Huang HJ, Hsieh-Li HM (2015) Trehalose attenuates the gait ataxia and gliosis of spinocerebellar ataxia type 17 mice. Neurochem Res 40(4):800–810. https://doi.org/10.1007/s11064-015-1530-4

    Article  CAS  PubMed  Google Scholar 

  322. Huang DS, Lin HY, Lee-Chen GJ, Hsieh-Li HM, Wu CH, Lin JY (2016) Treatment with a Ginkgo biloba extract, EGb 761, inhibits excitotoxicity in an animal model of spinocerebellar ataxia type 17. Drug Des Devel Ther 10:723–731. https://doi.org/10.2147/DDDT.S98156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Myslinski E, Schuster C, Huet J, Sentenac A, Krol A, Carbon P (1993) Point mutations 5′ to the tRNA selenocysteine TATA box alter RNA polymerase III transcription by affecting the binding of TBP. Nucleic Acids Res 21(25):5852–5858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Przybyla M, Stevens CH, van der Hoven J, Harasta A, Bi M, Ittner A, van Hummel A, Hodges JR, Piguet O, Karl T, Kassiou M, Housley GD, Ke YD, Ittner LM, Eersel J (2016) Disinhibition-like behavior in a P301S mutant tau transgenic mouse model of frontotemporal dementia. Neurosci Lett 631:24–29. https://doi.org/10.1016/j.neulet.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  325. Tan DCS, Yao S, Ittner A, Bertz J, Ke YD, Ittner LM, Delerue F (2018) Generation of a new tau knockout (tauDeltaex1) line using CRISPR/Cas9 genome editing in mice. J Alzheimers Dis 62(2):571–578. https://doi.org/10.3233/JAD-171058

    Article  CAS  PubMed  Google Scholar 

  326. Wobst HJ, Denk F, Oliver PL, Livieratos A, Taylor TN, Knudsen MH, Bengoa-Vergniory N, Bannerman D, Wade-Martins R (2017) Increased 4R tau expression and behavioural changes in a novel MAPT-N296H genomic mouse model of tauopathy. Sci Rep 7:43198. https://doi.org/10.1038/srep43198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Vargas-Caballero M, Denk F, Wobst HJ, Arch E, Pegasiou CM, Oliver PL, Shipton OA, Paulsen O, Wade-Martins R (2017) Wild-type, but not mutant N296H, human tau restores abeta-mediated inhibition of LTP in Tau(−/−) mice. Front Neurosci 11:201. https://doi.org/10.3389/fnins.2017.00201

    Article  PubMed  PubMed Central  Google Scholar 

  328. Newman M, Ebrahimie E, Lardelli M (2014) Using the zebrafish model for Alzheimer’s disease research. Front Genet 5:189. https://doi.org/10.3389/fgene.2014.00189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Choudhary B, Mandelkow E, Mandelkow EM, Pir GJ (2018) Glutamatergic nervous system degeneration in a C. elegans Tau(A152T) tauopathy model involves pathways of excitotoxicity and Ca(2+) dysregulation. Neurobiol Dis 117:189–202. https://doi.org/10.1016/j.nbd.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  330. Morelli F, Romeo M, Barzago MM, Bolis M, Mattioni D, Rossi G, Tagliavini F, Bastone A, Salmona M, Diomede L (2018) V363I and V363A mutated tau affect aggregation and neuronal dysfunction differently in C. elegans. Neurobiol Dis 117:226–234. https://doi.org/10.1016/j.nbd.2018.06.018

    Article  CAS  PubMed  Google Scholar 

  331. Roy B, Jackson GR (2014) Interactions between Tau and alpha-synuclein augment neurotoxicity in a Drosophila model of Parkinson’s disease. Hum Mol Genet 23(11):3008–3023. https://doi.org/10.1093/hmg/ddu011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Chouhan AK, Guo C, Hsieh YC, Ye H, Senturk M, Zuo Z, Li Y, Chatterjee S, Botas J, Jackson GR, Bellen HJ, Shulman JM (2016) Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease. Acta Neuropathol Commun 4(1):62. https://doi.org/10.1186/s40478-016-0333-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Nishiyama J, Matsuda K, Kakegawa W, Yamada N, Motohashi J, Mizushima N, Yuzaki M (2010) Reevaluation of neurodegeneration in lurcher mice: constitutive ion fluxes cause cell death with, not by, autophagy. J Neurosci 30(6):2177–2187. https://doi.org/10.1523/JNEUROSCI.6030-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Li Q, Guo S, Jiang X, Bryk J, Naumann R, Enard W, Tomita M, Sugimoto M, Khaitovich P, Paabo S (2016) Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development. Proc Natl Acad Sci U S A 113(19):5358–5363. https://doi.org/10.1073/pnas.1519261113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Kotajima-Murakami H, Narumi S, Yuzaki M, Yanagihara D (2016) Involvement of GluD2 in fear-conditioned bradycardia in mice. PLoS One 11(11):e0166144. https://doi.org/10.1371/journal.pone.0166144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Plaitakis A, Kotzamani D, Petraki Z, Delidaki M, Rinotas V, Zaganas I, Douni E, Sidiropoulou K, Spanaki C (2018) Transgenic mice carrying GLUD2 as a tool for studying the expressional and the functional adaptation of this positive selected gene in human brain evolution. Neurochem Res. https://doi.org/10.1007/s11064-018-2546-3

  337. Hashizume M, Miyazaki T, Sakimura K, Watanabe M, Kitamura K, Kano M (2013) Disruption of cerebellar microzonal organization in GluD2 (GluRdelta2) knockout mouse. Front Neural Circuit 7:130. https://doi.org/10.3389/fncir.2013.00130

    Article  Google Scholar 

  338. Yuzaki M (2013) Cerebellar LTD vs. motor learning-lessons learned from studying GluD2. Neural Netw 47:36–41. https://doi.org/10.1016/j.neunet.2012.07.001

    Article  PubMed  Google Scholar 

  339. Zhang L, Le W, Xie W, Dani JA (2012) Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson’s disease. Neurobiol Aging 33(5):1001 e1007–1001 e1016. https://doi.org/10.1016/j.neurobiolaging.2011.03.022

    Article  CAS  Google Scholar 

  340. Le W, Zhang L, Xie W, Li S, Dani JA (2015) Pitx3 deficiency produces decreased dopamine signaling and induces motor deficits in Pitx3(−/−) mice. Neurobiol Aging 36(12):3314–3320. https://doi.org/10.1016/j.neurobiolaging.2015.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Hwang DY, Fleming SM, Ardayfio P, Moran-Gates T, Kim H, Tarazi FI, Chesselet MF, Kim KS (2005) 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson’s disease. J Neurosci 25(8):2132–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Suarez LM, Alberquilla S, Garcia-Montes JR, Moratalla R (2018) Differential synaptic remodeling by dopamine in direct and indirect striatal projection neurons in Pitx3(−/−) mice, a genetic model of Parkinson’s disease. J Neurosci 38(15):3619–3630. https://doi.org/10.1523/JNEUROSCI.3184-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Graw J (2017) From eyeless to neurological diseases. Exp Eye Res 156:5–9. https://doi.org/10.1016/j.exer.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  344. Nordstroma U, Beauvais G, Ghosh A, Pulikkaparambil Sasidharan BC, Lundblad M, Fuchs J, Joshi RL, Lipton JW, Roholt A, Medicetty S, Feinstein TN, Steiner JA, Escobar Galvis ML, Prochiantz A, Brundin P (2015) Progressive nigrostriatal terminal dysfunction and degeneration in the engrailed1 heterozygous mouse model of Parkinson’s disease. Neurobiol Dis 73:70–82. https://doi.org/10.1016/j.nbd.2014.09.012

    Article  CAS  PubMed  Google Scholar 

  345. Hanks MC, Loomis CA, Harris E, Tong CX, Anson-Cartwright L, Auerbach A, Joyner A (1998) Drosophila engrailed can substitute for mouse Engrailed1 function in mid-hindbrain, but not limb development. Development 125(22):4521–4530

    Article  CAS  PubMed  Google Scholar 

  346. Galter D, Pernold K, Yoshitake T, Lindqvist E, Hoffer B, Kehr J, Larsson NG, Olson L (2010) MitoPark mice mirror the slow progression of key symptoms and L-DOPA response in Parkinson’s disease. Genes Brain Behav 9(2):173–181. https://doi.org/10.1111/j.1601-183X.2009.00542.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Gubellini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kachidian, P., Gubellini, P. (2021). Genetic Models of Parkinson’s Disease. In: Perez-Lloret, S. (eds) Clinical Trials In Parkinson's Disease. Neuromethods, vol 160. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0912-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0912-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0911-8

  • Online ISBN: 978-1-0716-0912-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics