Skip to main content

The Use of Peptide and Protein Vectors to Cross the Blood-Brain Barrier for the Delivery of Therapeutic Concentration of Biologics

  • Protocol
  • First Online:
Nanomedicines for Brain Drug Delivery

Part of the book series: Neuromethods ((NM,volume 157))

Abstract

The normal functioning of central nervous system is protected by the blood-brain barrier (BBB), which regulates the brain homeostasis and the transport of endogenous compounds. The BBB formed by the endothelial cells of the brain capillaries restricts access to brain cells of blood-borne compounds and allows only essential nutrients such as amino acids, glucose, and hormones to reach brain cells for their normal metabolism. The highly selective regulation of the brain homeostasis by the BBB presents a major obstacle in the incapacity of therapeutic compounds small and large to reach the brain. Diverse ranges of strategies are now being developed to enhance delivery of therapeutic compounds in the brain parenchyma. In this review, we will more specifically address new methods developed as physiological approaches to transport biologics across the BBB. Use of specific molecules such as protein and peptide vectors to facilitate the delivery of biologics to cross the BBB will be addressed. Additionally, their relevance to nanomedicines for brain drug delivery will also be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Domínguez A, Álvarez A, Hilario E et al (2013) Central nervous system diseases and the role of the blood-brain barrier in their treatment. Neurosci Discov 1:11. https://doi.org/10.7243/2052-6946-1-3

    Article  Google Scholar 

  2. Ereshefshy L, Evans R, Sood R, Williamson D, English BA (2016) Venturing into a new era of CNS drug development to improve success. Waltham, MA: Parexel. https://www.parexel.com/application/files_previous/4314/4113/4032/Venturing_Into_a_New_Era_of_CNS_Drug_Development_to_Improve_Success.pdf (accessed December 2, 2016)

  3. Jain KK (2014) Global drug delivery in central nervous system diseases – technologies, markets, companies. Research and Markets, Basel

    Google Scholar 

  4. Kesselheim AS, Hwang TJ, Franklin JM (2015) Two decades of new drug development for central nervous system disorders. Nat Rev Drug Discov 14:815–816. https://doi.org/10.1038/nrd4793

    Article  CAS  PubMed  Google Scholar 

  5. Thorne RG, Frey WH (2001) Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 40:907–946. https://doi.org/10.2165/00003088-200140120-00003

    Article  CAS  PubMed  Google Scholar 

  6. Abbott NJ (2013) Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36:437–449. https://doi.org/10.1007/s10545-013-9608-0

    Article  CAS  PubMed  Google Scholar 

  7. Palmer AM (2010) The role of the blood-CNS barrier in CNS disorders and their treatment. Neurobiol Dis 37:3–12. https://doi.org/10.1016/j.nbd.2009.07.029

    Article  CAS  PubMed  Google Scholar 

  8. Wolak DJ, Thorne RG (2013) Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm 10:1492–1504. https://doi.org/10.1038/nature13314.A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haar PJ, Broaddus WC, Chen ZJ et al (2010) Quantification of convection-enhanced delivery to the ischemic brain. Physiol Meas 31:1075–1089. https://doi.org/10.1088/0967-3334/31/9/001

    Article  PubMed  Google Scholar 

  10. Abbott NJ, Dolman DEM, Patabendige AK (2008) Assays to predict drug permeation across the blood-brain barrier, and distribution to brain. Curr Drug Metab 9:901–910. https://doi.org/10.2174/138920008786485182

    Article  CAS  PubMed  Google Scholar 

  11. de Boer AG, Gaillard PJ (2007) Drug targeting to the brain. Annu Rev Pharmacol Toxicol 47:323–355. https://doi.org/10.1146/annurev.pharmtox.47.120505.105237

    Article  CAS  PubMed  Google Scholar 

  12. Misra A, Ganesh S, Shahiwala A, Shah SP (2003) Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 6:252–273. https://doi.org/10.1007/978-1-60761-529-3

    Article  CAS  PubMed  Google Scholar 

  13. Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 37:48–57. https://doi.org/10.1016/j.nbd.2009.07.028

    Article  CAS  PubMed  Google Scholar 

  14. Banks WA (2016) From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 15:275–292. https://doi.org/10.1038/nrd.2015.21

    Article  CAS  PubMed  Google Scholar 

  15. Dohgu S, Fleegal-DeMotta M, Banks WA (2011) Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by luminal microvessel IL-6 and GM-CSF. J Neuroinflammation 8:167. https://doi.org/10.1186/1742-2094-8-167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song DK, Lonser RR (2008) Convection-enhanced delivery for the treatment of pediatric neurologic disorders. J Child Neurol 23:1231–1237

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bobo RH, Laske DW, Akbasak A et al (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 91:2076–2080. https://doi.org/10.1073/pnas.91.6.2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stiles DK, Zhang Z, Ge P et al (2012) Widespread suppression of huntingtin with convection-enhanced delivery of siRNA. Exp Neurol 233:463–471. https://doi.org/10.1016/j.expneurol.2011.11.020

    Article  CAS  PubMed  Google Scholar 

  19. Allhenn D, Shetab Boushehri MA, Lamprecht A (2012) Drug delivery strategies for the treatment of malignant gliomas. Int J Pharm 436:299–310. https://doi.org/10.1016/j.ijpharm.2012.06.025

    Article  CAS  PubMed  Google Scholar 

  20. Chen KS, Mitchell DA (2012) Monoclonal antibody therapy for malignant glioma. Adv Exp Med Biol 746:121–141

    Article  CAS  PubMed  Google Scholar 

  21. Mehta AI, Choi BD, Ajay D et al (2012) Convection enhanced delivery of macromolecules for brain tumors. Curr Drug Discov Technol 9:305–310. CDDT-EPUB-20120220-005 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bidros DS, Liu JK, Vogelbaum MA (2010) Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol 6:117–125. https://doi.org/10.2217/fon.09.135

    Article  CAS  PubMed  Google Scholar 

  23. Saito R, Tominaga T (2012) Convection-enhanced delivery: from mechanisms to clinical drug delivery for diseases of the central nervous system. Neurol Med Chir 52:531–538. https://doi.org/10.2176/nmc.52.531

    Article  Google Scholar 

  24. Barua NU, Miners JS, Bienemann AS et al (2012) Convection-enhanced delivery of neprilysin: a novel amyloid-β-degrading therapeutic strategy. J Alzheimers Dis 32:43–56. https://doi.org/10.3233/JAD-2012-120658

    Article  CAS  PubMed  Google Scholar 

  25. Miners JS, Barua N, Kehoe PG et al (2011) Aβ-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol 70:944–959. https://doi.org/10.1097/NEN.0b013e3182345e46

    Article  CAS  PubMed  Google Scholar 

  26. Lam MF, Thomas MG, Lind CRP (2011) Neurosurgical convection-enhanced delivery of treatments for Parkinson’s disease. J Clin Neurosci 18:1163–1167. https://doi.org/10.1016/j.jocn.2011.01.012

    Article  PubMed  Google Scholar 

  27. Rogawski MA (2009) Convection-enhanced delivery in the treatment of epilepsy. Neurotherapeutics 6:344–351. https://doi.org/10.1016/j.nurt.2009.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan Q, Matheson C, Sun J et al (1994) Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with trk receptor expression. Exp Neurol 127:23–36. https://doi.org/10.1006/exnr.1994.1076

    Article  CAS  PubMed  Google Scholar 

  29. Morrison PF, Laske DW, Bobo H et al (1994) High-flow microinfusion: tissue penetration and pharmacodynamics. Am J Phys 266:R292–R305

    CAS  Google Scholar 

  30. Gray S, Naqabhushan Kalburgi S, McCown TJ, Samulski J (2013) Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 20:450–459. https://doi.org/10.1038/gt.2012.101.Global

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Calias P, Papisov M, Pan J et al (2012) CNS penetration of intrathecal-lumbar idursulfase in the monkey, dog and mouse: Implications for neurological outcomes of lysosomal storage disorder. PLoS One. https://doi.org/10.1371/journal.pone.0030341

  32. La Rocca RV, Rezazadeh A (2011) Carmustine-impregnated wafers and their impact in the management of high-grade glioma. Expert Opin Pharmacother 12:1325–1332. https://doi.org/10.1517/14656566.2011.580737

    Article  CAS  PubMed  Google Scholar 

  33. Perry J, Chambers A, Spithoff K, Laperriere N (2007) Gliadel wafers in the treatment of malignant glioma: a systematic review. Curr Oncol 14:189–194. https://doi.org/10.3747/co.2007.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Santini JT, Cima MJ, Langer R (1999) A controlled-release microchip. Nature 397:335–338. https://doi.org/10.1038/16898

    Article  CAS  PubMed  Google Scholar 

  35. Richards Grayson AC, Choi IS, Tyler BM et al (2003) Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat Mater 2:767–772. https://doi.org/10.1038/nmat998

    Article  PubMed  Google Scholar 

  36. Farra R, Sheppard NF, McCabe L et al (2012) First-in-human testing of a wirelessly controlled drug delivery microchip. Sci Transl Med 4:122ra21–122ra21. https://doi.org/10.1126/scitranslmed.3003276

    Article  CAS  PubMed  Google Scholar 

  37. Chaichana KL, Pinheiro L, Brem H (2015) Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Ther Deliv 6:353–369. https://doi.org/10.4155/tde.14.114

    Article  CAS  PubMed  Google Scholar 

  38. Azad TD, Pan J, Connolly ID et al (2015) Therapeutic strategies to improve drug delivery across the blood-brain barrier. Neurosurg Focus 38:E9. https://doi.org/10.3171/2014.12.FOCUS14758

    Article  PubMed  PubMed Central  Google Scholar 

  39. Etame AB, Diaz RJ, Smith CA et al (2012) Focused ultrasound disruption of the blood-brain barrier: a new frontier for therapeutic delivery in molecular neurooncology. Neurosurg Focus 32:E3. https://doi.org/10.3171/2011.10.FOCUS11252

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220:640–646. https://doi.org/10.1148/radiol.2202001804

    Article  CAS  PubMed  Google Scholar 

  41. Hynynen K (2008) Ultrasound for drug and gene delivery to the brain. Adv Drug Deliv Rev 60:1209–1217. https://doi.org/10.1016/j.addr.2008.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sanovich E, Bartus RT, Friden PM et al (1995) Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7. Brain Res 705:125–135. https://doi.org/10.1016/0006-8993(95)01143-9

    Article  CAS  PubMed  Google Scholar 

  43. Liu LB, Xue YX, Liu YH (2010) Bradykinin increases the permeability of the blood-tumor barrier by the caveolae-mediated transcellular pathway. J Neuro-Oncol 99:187–194. https://doi.org/10.1007/s11060-010-0124-x

    Article  CAS  Google Scholar 

  44. Ma T, Xue Y (2016) MiRNA-200b regulates RMP7-induced increases in blood-tumor barrier permeability by targeting RhoA and ROCKII. Front Mol Neurosci 9:1–13. https://doi.org/10.3389/fnmol.2016.00009

    Article  CAS  Google Scholar 

  45. Warren K, Jakacki R, Widemann B et al (2006) Phase II trial of intravenous lobradimil and carboplatin in childhood brain tumors: a report from the Children’s Oncology Group. Cancer Chemother Pharmacol 58:343–347. https://doi.org/10.1007/s00280-005-0172-7

    Article  CAS  PubMed  Google Scholar 

  46. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  47. Lu CT, Zhao YZ, Wong HL et al (2014) Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 9:2241–2257. https://doi.org/10.2147/IJN.S61288

    Article  PubMed  PubMed Central  Google Scholar 

  48. Davis SS (1997) Biomédical applications of nanotechnology – implications for drug targeting and gene therapy. Trends Biotechnol 15:217–224. https://doi.org/10.1016/S0167-7799(97)01036-6

    Article  CAS  PubMed  Google Scholar 

  49. Brasnjevic I, Steinbusch HWM, Schmitz C, Martinez-Martinez P (2009) Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 87:212–251. https://doi.org/10.1016/j.pneurobio.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  50. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14. https://doi.org/10.1602/neurorx.2.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pardridge WM (2002) Drug and gene targeting to the brain with molecular trojan horses. Nat Rev Drug Discov 1:131–139. https://doi.org/10.1038/nrd725

    Article  CAS  PubMed  Google Scholar 

  52. Abbott NJ, Patabendige AAK, Dolman DEM et al (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  53. Banks WA, Audus KL, Davis TP (1992) Permeability of the blood-brain barrier to peptides: an approach to the development of therapeutically useful analogs. Peptides 13:1289–1294. https://doi.org/10.1016/0196-9781(92)90037-4

    Article  CAS  PubMed  Google Scholar 

  54. Deli MA (2011) Drug transport and the blood-brain barrier. J Cereb Blood Flow Metab. https://doi.org/10.2174/978160805120511101010144

  55. del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35:161–174. https://doi.org/10.1016/j.ejps.2008.06.015

    Article  CAS  PubMed  Google Scholar 

  56. Peura L, Malmioja K, Huttunen K et al (2013) Design, synthesis and brain uptake of lat1-targeted amino acid prodrugs of dopamine. Pharm Res 30:2523–2537. https://doi.org/10.1007/s11095-012-0966-3

    Article  CAS  PubMed  Google Scholar 

  57. Gynther M, Ropponen J, Laine K et al (2009) Glucose promoiety enables glucose transporter mediated brain uptake of ketoprofen and indomethacin prodrugs in rats. J Med Chem 52:3348–3353. https://doi.org/10.1021/jm8015409

    Article  CAS  PubMed  Google Scholar 

  58. Sampaio-Maia B, Serrão MP, Soares-da-Silva P (2001) Regulatory pathways and uptake of L-DOPA by capillary cerebral endothelial cells, astrocytes, and neuronal cells. Am J Physiol Cell Physiol 280:C333–C342

    Article  CAS  PubMed  Google Scholar 

  59. Zuchero YJY, Chen X, Bien-Ly N et al (2016) Discovery of novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron 89:70–82. https://doi.org/10.1016/j.neuron.2015.11.024

    Article  CAS  PubMed  Google Scholar 

  60. de la Ballina LR, Cano-Crespo S, González-Muñoz E et al (2016) Amino acid transport associated to cluster of differentiation 98 heavy chain (CD98hc) is at the crossroad of oxidative stress and amino acid availability. J Biol Chem 1:jbc.M115.704254. https://doi.org/10.1074/jbc.M115.704254

    Article  CAS  Google Scholar 

  61. Cai Q, Wang L, Deng G et al (2016) Systemic delivery to central nervous system by engineered PLGA nanoparticles. Am J Transl Res 8:749–764

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gaillard PJ (2011) Case study: to-BBB’s G-technology, getting the best from drug-delivery research with industry-academia partnerships. Ther Deliv 2:1391–1394. https://doi.org/10.4155/tde.11.111

    Article  PubMed  Google Scholar 

  63. Kannan R, Chakrabarti R, Tang D et al (2000) GSH transport in human cerebrovascular endothelial cells and human astrocytes: evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Res 852:374–382. https://doi.org/10.1016/S0006-8993(99)02184-8

    Article  CAS  PubMed  Google Scholar 

  64. Jain KK (2013) Applications of biotechnology in neurology. Appl Biotechnol Neurol. https://doi.org/10.1007/978-1-62703-272-8

  65. Gaillard PJ, Appeldoorn CCM, Rip J et al (2012) Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J Control Release 164:364–369

    Article  CAS  PubMed  Google Scholar 

  66. Lindqvist A, Rip J, Gaillard PJ et al (2013) Enhanced brain delivery of the opioid peptide damgo in glutathione pegylated liposomes: a microdialysis study. Mol Pharm 10:1533–1541. https://doi.org/10.1021/mp300272a

    Article  CAS  PubMed  Google Scholar 

  67. Sminia P, Westerman BA (2016) Blood-brain barrier crossing and breakthroughs in glioblastoma therapy. Br J Clin Pharmacol 81:1018–1020. https://doi.org/10.1111/bcp.12881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Georgieva JV, Hoekstra D, Zuhorn IS (2014) Smuggling drugs into the brain: an overview of ligands targeting transcytosis for drug delivery across the blood-brain barrier. Pharmaceutics 6:557–583. https://doi.org/10.3390/pharmaceutics6040557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lajoie JM, Shusta EV (2015) Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol 55:613–631. https://doi.org/10.1146/annurev-pharmtox-010814-124852

    Article  CAS  PubMed  Google Scholar 

  70. Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54:561–587. https://doi.org/10.1124/pr.54.4.561

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Y, Pardridge WM (2006) Blood-brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res 1111:227–229. https://doi.org/10.1016/j.brainres.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  72. Lee JH, Engler JA, Collawn JF, Moore BA (2001) Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 268:2004–2012. https://doi.org/10.1046/j.1432-1327.2001.02073.x

    Article  CAS  PubMed  Google Scholar 

  73. Wang Z, Zhao Y, Jiang Y et al (2015) Enhanced anti-ischemic stroke of ZL006 by T7-conjugated PEGylated liposomes drug delivery system. Sci Rep 5:12651. https://doi.org/10.1038/srep12651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jones AR, Shusta EV (2007) Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24:1759–1771. https://doi.org/10.1007/s11095-007-9379-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pardridge WM (2015) Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin Drug Deliv 12:207–222. https://doi.org/10.1517/17425247.2014.952627

    Article  CAS  PubMed  Google Scholar 

  76. Yu YJ, Zhang Y, Kenrick M et al (2011) Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 3:84ra44. https://doi.org/10.1126/scitranslmed.3002230

    Article  CAS  PubMed  Google Scholar 

  77. Niewoehner J, Bohrmann B, Collin L et al (2014) Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81:49–60. https://doi.org/10.1016/j.neuron.2013.10.061

    Article  CAS  PubMed  Google Scholar 

  78. Bohrmann B, Baumann K, Benz J et al (2012) Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J Alzheimers Dis 28:49–69. https://doi.org/10.3233/JAD-2011-110977

    Article  CAS  PubMed  Google Scholar 

  79. Wu C, Ying H, Grinnell C et al (2007) Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 25:1290–1297. https://doi.org/10.1038/nbt1345

    Article  CAS  PubMed  Google Scholar 

  80. Gu J, Ghayur T (2012) Generation of dual-variable-domain immunoglobulin molecules for dual-specific targeting. Methods Enzymol 502:25–41. https://doi.org/10.1016/B978-0-12-416039-2.00002-1

    Article  CAS  PubMed  Google Scholar 

  81. Jakob CG, Edalji R, Judge RA et al (2013) Structure reveals function of the dual variable domain immunoglobulin (DVD-Ig™) molecule. MAbs 5:358–363. https://doi.org/10.4161/mabs.23977

    Article  PubMed  PubMed Central  Google Scholar 

  82. Farid Gizatullin (AbbVie Bioresearch Center) (2014) Uptake and retention of DVD-Ig™ in mouse brain by intravenous or intraperitoneal injection no title. Biol Formul Deliv. Summit

    Google Scholar 

  83. Havrankova J, Brownstein M, Roth J (1981) Insulin and insulin receptors in rodent brain. Diabetologia 20(Suppl):268–273

    Article  CAS  PubMed  Google Scholar 

  84. Smith MW, Gumbleton M (2006) Endocytosis at the blood-brain barrier: from basic understanding to drug delivery strategies. J Drug Target 14:191–214. https://doi.org/10.1080/10611860600650086

    Article  CAS  PubMed  Google Scholar 

  85. Coloma MJ, Lee HJ, Kurihara A et al (2000) Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res 17:266–274. https://doi.org/10.1023/A:1007592720793

    Article  CAS  PubMed  Google Scholar 

  86. Boado RJ, Zhang Y, Zhang Y et al (2008) GDNF fusion protein for targeted-drug delivery across the human blood-brain barrier. Biotechnol Bioeng 100:387–396. https://doi.org/10.1002/bit.21764

    Article  CAS  PubMed  Google Scholar 

  87. Kingwell K (2016) Drug delivery: new targets for drug delivery across the BBB. Nat Rev Drug Discov 21:2016. https://doi.org/10.1038/nrd.2016.14

    Article  CAS  Google Scholar 

  88. Willnow TE, Nykjaer A, Herz J (1999) Lipoprotein receptors: new roles for ancient proteins. Nat Cell Biol 1:E157–E162. https://doi.org/10.1038/14109

    Article  CAS  PubMed  Google Scholar 

  89. Herz J, Beffert U (2000) Apolipoprotein E receptors: linking brain development and Alzheimer’s disease. Nat Rev Neurosci 1:51–58. https://doi.org/10.1038/35036221

    Article  CAS  PubMed  Google Scholar 

  90. Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784. https://doi.org/10.1172/JCI200113992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kounnas MZ, Moir RD, Rebeck GW et al (1995) LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted β-amyloid precursor protein and mediates its degradation. Cell 82:331–340. https://doi.org/10.1016/0092-8674(95)90320-8

    Article  CAS  PubMed  Google Scholar 

  92. Gonias SL, Wu L, Salicioni AM (2004) Low density lipoprotein receptor-related protein: regulation of the plasma membrane proteome. Thromb Haemost 91:1056–1064. https://doi.org/10.1160/TH04-01-0023

    Article  PubMed  Google Scholar 

  93. Lin L, Hu K (2014) LRP-1: functions, signaling and implications in kidney and other diseases. Int J Mol Sci 15:22887–22901. https://doi.org/10.3390/ijms151222887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Boucher P, Herz J (2011) Signaling through LRP1: protection from atherosclerosis and beyond. Biochem Pharmacol 81:1–5. https://doi.org/10.1016/j.bcp.2010.09.018

    Article  CAS  PubMed  Google Scholar 

  95. Strickland DK, Ranganathan S (2003) Diverse role of LDL receptor-related protein in the clearance of proteases and in signaling. J Thromb Haemost 1:1663–1670. https://doi.org/10.1046/j.1538-7836.2003.00330.x

    Article  CAS  PubMed  Google Scholar 

  96. Gonias SL, Campana WM (2014) LDL receptor-related protein-1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. Am J Pathol 184:18–27. https://doi.org/10.1016/j.ajpath.2013.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hussain MM (2001) Structural, biochemical and signaling properties of the low-density lipoprotein receptor gene family. Front Biosci 6:D417–D428

    CAS  PubMed  Google Scholar 

  98. Rebeck GW, Reiter JS, Strickland DK, Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 11:575–580. https://doi.org/10.1016/0896-6273(93)90070-8

    Article  CAS  PubMed  Google Scholar 

  99. Burgmans S, van de Haar HJ, Verhey FRJ, Backes WH (2013) Amyloid-β interacts with blood-brain barrier function in dementia: a systematic review. J Alzheimer’s Dis 35:859–873. https://doi.org/10.3233/JAD-122155

    Article  CAS  Google Scholar 

  100. Erickson MA, Banks WA (2013) Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 33:1500–1513. https://doi.org/10.1038/jcbfm.2013.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gaultier A, Wu X, Le Moan N et al (2009) Low-density lipoprotein receptor-related protein 1 is an essential receptor for myelin phagocytosis. J Cell Sci 122:1155–1162. https://doi.org/10.1242/jcs.040717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. DAE H, Koning N, Schuurman KG et al (2013) Selective upregulation of scavenger receptors in and around demyelinating areas in multiple sclerosis. J Neuropathol Exp Neurol 72:106–118. https://doi.org/10.1097/NEN.0b013e31827fd9e8

    Article  CAS  Google Scholar 

  103. Benes P, Jurajda M, Zaloudík J et al (2003) C766T low-density lipoprotein receptor-related protein 1 (LRP1) gene polymorphism and susceptibility to breast cancer. Breast Cancer Res 5:R77–R81. https://doi.org/10.1186/bcr591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Catasus L, Gallardo A, Llorente-Cortes V et al (2011) Low-density lipoprotein receptor-related protein 1 is associated with proliferation and invasiveness in Her-2/neu and triple-negative breast carcinomas. Hum Pathol 42:1581–1588. https://doi.org/10.1016/j.humpath.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  105. Yamamoto M, Ikeda K, Ohshima K et al (1997) Increased expression of low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor in human malignant astrocytomas. Cancer Res 57:2799–2805

    CAS  PubMed  Google Scholar 

  106. Huang X-Y, Shi G-M, Devbhandari RP et al (2012) Low level of low-density lipoprotein receptor-related protein 1 predicts an unfavorable prognosis of hepatocellular carcinoma after curative resection. PLoS One 7:e32775. https://doi.org/10.1371/journal.pone.0032775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cal R, Juan-Babot O, Brossa V et al (2012) Low density lipoprotein receptor-related protein 1 expression correlates with cholesteryl ester accumulation in the myocardium of ischemic cardiomyopathy patients. J Transl Med 10:160. https://doi.org/10.1186/1479-5876-10-160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 161:264–273. https://doi.org/10.1016/j.jconrel.2011.08.017

    Article  CAS  PubMed  Google Scholar 

  109. Kreuter J, Shamenkov D, Petrov V et al (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10:317–325. https://doi.org/10.1080/10611860290031877

    Article  CAS  PubMed  Google Scholar 

  110. Wagner S, Zensi A, Wien SL et al (2012) Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLoS One. https://doi.org/10.1371/journal.pone.0032568

  111. Lambert LA, Perri H, Meehan TJ (2005) Evolution of duplications in the transferrin family of proteins. Comp Biochem Physiol B Biochem Mol Biol 140:11–25. https://doi.org/10.1016/j.cbpc.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  112. Jefferies WA, Food MR, Gabathuler R et al (1996) Reactive microglia specifically associated with amyloid plaques in Alzheimer’s disease brain tissue express melanotransferrin. Brain Res 712:122–126. https://doi.org/10.1016/0006-8993(95)01407-1

    Article  CAS  PubMed  Google Scholar 

  113. Food MR, Rothenberger S, Gabathuler R et al (1994) Transport and expression in human melanomas of a transferrin-like glycosylphosphatidylinositol-anchored protein. J Biol Chem 269:3034–3040

    CAS  PubMed  Google Scholar 

  114. Demeule M, Poirier J, Jodoin J et al (2002) High transcytosis of melanotransferrin (P97) across the blood-brain barrier. J Neurochem 83:924–933. https://doi.org/10.1046/j.1471-4159.2002.01201.x

    Article  CAS  PubMed  Google Scholar 

  115. Gabathuler R, Arthur G, Kennard M et al (2005) Development of a potential protein vector (NeuroTrans) to deliver drugs across the blood-brain barrier. Int Congr Ser 1277:171–184. https://doi.org/10.1016/j.ics.2005.02.021

    Article  CAS  Google Scholar 

  116. Karkan D, Pfeifer C, Vitalis TZ et al (2008) A unique carrier for delivery of therapeutic compounds beyond the blood-brain barrier. PLoS One. https://doi.org/10.1371/journal.pone.0002469

  117. Nounou MI, Adkins CE, Rubinchik E et al (2016) Anti-cancer antibody trastuzumab-melanotransferrin conjugate (BT2111) for the treatment of metastatic HER2+ breast cancer tumors in the brain: an in-vivo study. Pharm Res 33:2930–2942. https://doi.org/10.1007/s11095-016-2015-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pan W, Kastin AJ, Zankel TC et al (2004) Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. J Cell Sci 117:5071–5078. https://doi.org/10.1242/jcs.01381

    Article  CAS  PubMed  Google Scholar 

  119. Migliorini MM, Behre EH, Brew S et al (2003) Allosteric modulation of ligand binding to low density lipoprotein receptor-related protein by the receptor-associated protein requires critical lysine residues within its carboxyl-terminal domain. J Biol Chem 278:17986–17992

    Article  CAS  PubMed  Google Scholar 

  120. Bu G, Rennke S (1996) Receptor-associated protein is a folding chaperone for low density lipoprotein receptor-related protein. J Biol Chem 271:22218–22224

    Article  CAS  PubMed  Google Scholar 

  121. Prince WS, McCormick LM, Wendt DJ et al (2004) Lipoprotein receptor binding, cellular uptake, and lysosomal delivery of fusions between the Receptor-associated Protein (RAP) and ∝-L-iduronidase or acid ∝-glucosidase. J Biol Chem 279:35037–35046. https://doi.org/10.1074/jbc.M402630200

    Article  CAS  PubMed  Google Scholar 

  122. Spencer BJ, Verma IM (2007) Targeted delivery of proteins across the blood-brain barrier. Proc Natl Acad Sci U S A 104:7594–7599. https://doi.org/10.1073/pnas.0702170104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vodicka MA (2001) Determinants for lentiviral infection of non-dividing cells. Somat Cell Mol Genet 26:35–49. https://doi.org/10.1023/A:1021022629126

    Article  CAS  PubMed  Google Scholar 

  124. Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L et al (2015) Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci 8:14. https://doi.org/10.3389/fnmol.2015.00014

    Article  PubMed  PubMed Central  Google Scholar 

  125. Naldini L, Blömer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267. https://doi.org/10.1126/science.272.5259.263

    Article  CAS  PubMed  Google Scholar 

  126. Zufferey R, Dull T, Mandel RJ et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Finkelshtein D, Werman A, Novick D et al (2013) LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci 110:7306–7311. https://doi.org/10.1073/pnas.1214441110

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bender E (2016) Gene therapy: industrial strength. Nature 537:S57–S59

    Article  CAS  PubMed  Google Scholar 

  130. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse [see comments]. Science (80) 285:1569–1572

    Article  CAS  Google Scholar 

  131. Oller-Salvia B, Sanchez-Navarro M, Giralt E, Teixido M (2016) Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem Soc Rev 45:4690–4707. https://doi.org/10.1039/C6CS00076B

    Article  CAS  PubMed  Google Scholar 

  132. Kumar P, Wu H, McBride JL et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43. https://doi.org/10.1038/nature05901

    Article  CAS  PubMed  Google Scholar 

  133. Demeule M, Régina A, Ché C et al (2008) Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 324:1064–1072. https://doi.org/10.1124/jpet.107.131318

    Article  CAS  PubMed  Google Scholar 

  134. Demeule M, Currie JC, Bertrand Y et al (2008) Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J Neurochem 106:1534–1544. https://doi.org/10.1111/j.1471-4159.2008.05492.x

    Article  CAS  PubMed  Google Scholar 

  135. Régina A, Demeule M, Ché C et al (2008) Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol 155:185–197. https://doi.org/10.1038/bjp.2008.260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kurzrock R, Gabrail N, Chandhasin C et al (2012) Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. Mol Cancer Ther 11:308–316. https://doi.org/10.1158/1535-7163.MCT-11-0566

    Article  CAS  PubMed  Google Scholar 

  137. Van Rooy I, Mastrobattista E, Storm G et al (2011) Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J Control Release 150:30–36. https://doi.org/10.1016/j.jconrel.2010.11.014

    Article  CAS  PubMed  Google Scholar 

  138. Malcor JD, Payrot N, David M et al (2012) Chemical optimization of new ligands of the low-density lipoprotein receptor as potential vectors for central nervous system targeting. J Med Chem 55:2227–2241. https://doi.org/10.1021/jm2014919

    Article  CAS  PubMed  Google Scholar 

  139. Jacquot G, Lécorché P, Malcor J-D et al (2016) Optimization and in vivo validation of peptide vectors targeting the LDL receptor. Mol Pharm. https://doi.org/10.1021/acs.molpharmaceut.6b00687

  140. Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448. https://doi.org/10.1038/363446a0

    Article  CAS  PubMed  Google Scholar 

  141. Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22. https://doi.org/10.1007/s00253-007-1142-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Muyldermans S, Lauwereys M (1999) Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies. J Mol Recognit 12:131–140. https://doi.org/10.1002/(SICI)1099-1352(199903/04)12:2<131::AID-JMR454>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  143. Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P et al (2013) Nanobodies and their potential applications. Nanomedicine 8:1013–1026. https://doi.org/10.2217/nnm.13.86

    Article  CAS  PubMed  Google Scholar 

  144. Tanha J, Dubuc G, Hirama T et al (2002) Selection by phage display of llama conventional VH fragments with heavy chain antibody VHH properties. J Immunol Methods 263:97–109. https://doi.org/10.1016/S0022-1759(02)00027-3

    Article  CAS  PubMed  Google Scholar 

  145. Abulrob A, Sprong H, Van Bergen En Henegouwen P, Stanimirovic D (2005) The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem 95:1201–1214. https://doi.org/10.1111/j.1471-4159.2005.03463.x

    Article  CAS  PubMed  Google Scholar 

  146. Muruganandam A, Tanha J, Narang S, Stanimirovic D (2002) Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood-brain barrier endothelium. FASEB J 16:240–242. https://doi.org/10.1096/fj.01-0343fje

    Article  CAS  PubMed  Google Scholar 

  147. Tanha J, ASD M (2003) Phage display technology for identifying specific antigens on brain endothelial cells. Methods Mol Med 89:435–449

    CAS  PubMed  Google Scholar 

  148. Haqqani AS, Caram-Salas N, Ding W et al (2013) Multiplexed evaluation of serum and CSF pharmacokinetics of brain-targeting single-domain antibodies using a NanoLC-SRM-ILIS method. Mol Pharm 10:1542–1556. https://doi.org/10.1021/mp3004995

    Article  CAS  PubMed  Google Scholar 

  149. Pardridge WM (2007) shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 59:141–152. https://doi.org/10.1016/j.addr.2007.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pardridge WM (2010) Biopharmaceutical drug targeting to the brain. J Drug Target 18:157–167. https://doi.org/10.3109/10611860903548354

    Article  CAS  PubMed  Google Scholar 

  151. Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 71:251–256. https://doi.org/10.1016/j.ejpb.2008.08.021

    Article  CAS  PubMed  Google Scholar 

  152. Paris-Robidas S, Emond V, Tremblay C et al (2011) In vivo labeling of brain capillary endothelial cells after intravenous injection of monoclonal antibodies targeting the transferrin receptor. Mol Pharmacol 80:32–39. https://doi.org/10.1124/mol.111.071027

    Article  CAS  PubMed  Google Scholar 

  153. Tosi G, Costantino L, Rivasi F et al (2007) Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with loperamide and rhodamine-123. J Control Release 122:1–9. https://doi.org/10.1016/j.jconrel.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  154. Tosi G, Fano RA, Bondioli L et al (2011) Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood-brain barrier. Nanomedicine (Lond) 6:423–436. https://doi.org/10.2217/nnm.11.11

    Article  CAS  Google Scholar 

  155. Salvalaio M, Rigon L, Belletti D et al (2016) Targeted polymeric nanoparticles for brain delivery of high molecular weight molecules in lysosomal storage disorders. PLoS One. https://doi.org/10.1371/journal.pone.0156452

  156. Chacko A-M, Li C, Pryma DA et al (2013) Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: crossing the blood-brain barrier divide. Expert Opin Drug Deliv 10:907–926. https://doi.org/10.1517/17425247.2013.808184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bickel U, Yoshikawa T, Pardridge WM (2001) Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev 46:247–279. https://doi.org/10.1016/S0169-409X(00)00139-3

    Article  CAS  PubMed  Google Scholar 

  158. Hervé F, Ghinea N, Scherrmann J-M (2008) CNS delivery via adsorptive transcytosis. AAPS J 10:455–472. https://doi.org/10.1208/s12248-008-9055-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Triguero D, Buciak JB, Yang J, Pardridge WM (1989) Blood-brain barrier transport of cationized immunoglobulin G: enhanced delivery compared to native protein. Proc Natl Acad Sci U S A 86:4761–4765. https://doi.org/10.1073/pnas.86.12.4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Drin G, Rousselle C, Scherrmann J-M et al (2002) Peptide delivery to the brain via adsorptive-mediated endocytosis: advances with SynB vectors. AAPS PharmSci 4:E26. https://doi.org/10.1208/ps040426

    Article  PubMed  Google Scholar 

  161. Drin G, Cottin S, Blanc E et al (2003) Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem 278:31192–31201. https://doi.org/10.1074/jbc.M303938200

    Article  CAS  PubMed  Google Scholar 

  162. Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202. https://doi.org/10.1016/j.addr.2005.09.017

    Article  CAS  PubMed  Google Scholar 

  163. Bosman AW, Janssen HM, Meijer EW (1999) About dendrimers: structure, physical properties, and applications. Chem Rev 99:1665–1688. https://doi.org/10.1021/cr970069y

    Article  CAS  PubMed  Google Scholar 

  164. Smith DK, Diederich F (1998) Functional dendrimers: unique biological mimics. Chem Eur J 4:1353–1361. https://doi.org/10.1002/(SICI)1521-3765(19980807)4:8<1353::AID-CHEM1353>3.0.CO;2-0

    Article  CAS  Google Scholar 

  165. Xu L, Zhang H, Wu Y (2014) Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci 5:2–13. https://doi.org/10.1021/cn400182z

    Article  CAS  PubMed  Google Scholar 

  166. Cheng Y, Wu Q, Li Y et al (2009) New insights into the interactions between dendrimers and surfactants: 2. Design of new drug formulations based on dendrimer-surfactant aggregates. J Phys Chem B 113:8339–8346. https://doi.org/10.1021/jp9021618

    Article  CAS  PubMed  Google Scholar 

  167. Jansen JF, de Brabander-van den Berg EMM, Meijer EW (1994) Encapsulation of guest molecules into a dendritic box. Science (80) 266:1226–1229. https://doi.org/10.1126/science.266.5188.1226

  168. Madaan K, Kumar S, Poonia N et al (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6:139–150. https://doi.org/10.4103/0975-7406.130965

    Article  PubMed  PubMed Central  Google Scholar 

  169. Chen HT, Neerman MF, Parrish AR, Simanek EE (2004) Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126:10044–10048. https://doi.org/10.1021/ja048548j

    Article  CAS  PubMed  Google Scholar 

  170. Domański DM, Klajnert B, Bryszewska M (2004) Influence of PAMAM dendrimers on human red blood cells. Bioelectrochemistry 63:189–191. https://doi.org/10.1016/j.bioelechem.2003.09.023

    Article  CAS  PubMed  Google Scholar 

  171. Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) starburst dendrimers. J Biomed Mater Res 30:53–65. https://doi.org/10.1002/(SICI)1097-4636(199601)30:1<53::AID-JBM8>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  172. Jones CF, Campbell RA, Franks Z et al (2012) Cationic PAMAM dendrimers disrupt key platelet functions. Mol Pharm 9:1599–1611. https://doi.org/10.1021/mp2006054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dutta T, Garg M, Dubey V et al (2008) Toxicological investigation of surface engineered fifth generation poly (propyleneimine) dendrimers in vivo. Nanotoxicology 2:62–70. https://doi.org/10.1080/17435390802105167

    Article  CAS  Google Scholar 

  174. Rousselle C, Smirnova M, Clair P et al (2001) Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: saturation kinetics and specificity. J Pharmacol Exp Ther 296:124–131

    CAS  PubMed  Google Scholar 

  175. Rousselle C, Clair P, Smirnova M et al (2003) Improved brain uptake and pharmacological activity of dalargin using a peptide-vector-mediated strategy. J Pharmacol Exp Ther 306:371–376. https://doi.org/10.1124/jpet.102.048520

    Article  CAS  PubMed  Google Scholar 

  176. Wender PA, Mitchell DJ, Pattabiraman K et al (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A 97:13003–13008. https://doi.org/10.1073/pnas.97.24.13003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Temsamani J, Rousselle C, Rees AR, Scherrmann JM (2001) Vector-mediated drug delivery to the brain. Expert Opin Biol Ther 1:773–782. https://doi.org/10.1517/14712598.1.5.773

    Article  CAS  PubMed  Google Scholar 

  178. Liu L, Guo K, Lu J et al (2008) Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 29:1509–1517. https://doi.org/10.1016/j.biomaterials.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  179. Pham W, Zhao BQ, Lo EH et al (2005) Crossing the blood-brain barrier: a potential application of myristoylated polyarginine for in vivo neuroimaging. NeuroImage 28:287–292. https://doi.org/10.1016/j.neuroimage.2005.06.007

    Article  PubMed  Google Scholar 

  180. van der Pol E, Böing AN, Harrison P et al (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705. https://doi.org/10.1124/pr.112.005983

    Article  CAS  PubMed  Google Scholar 

  181. Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593. https://doi.org/10.1038/nri2567

    Article  CAS  PubMed  Google Scholar 

  182. Muralidharan-Chari V, Clancy J, Plou C et al (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19:1875–1885. https://doi.org/10.1016/j.cub.2009.09.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Harding CV, Heuser JE, Stahl PD (2013) Exosomes: looking back three decades and into the future. J Cell Biol 200:367–371. https://doi.org/10.1083/jcb.201212113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Clayton A, Turkes A, Dewitt S et al (2004) Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J 18:977–979. https://doi.org/10.1096/fj.03-1094fje

    Article  CAS  PubMed  Google Scholar 

  186. Köppler B, Cohen C, Schlöndorff D, Mack M (2006) Differential mechanisms of microparticle transfer toB cells and monocytes: anti-inflammatory propertiesof microparticles. Eur J Immunol 36:648–660. https://doi.org/10.1002/eji.200535435

    Article  CAS  PubMed  Google Scholar 

  187. Parolini I, Federici C, Raggi C et al (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284:34211–34222. https://doi.org/10.1074/jbc.M109.041152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. https://doi.org/10.1371/journal.pone.0030679

  189. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518. https://doi.org/10.1073/pnas.0804549105

    Article  PubMed  PubMed Central  Google Scholar 

  190. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21. https://doi.org/10.1016/j.ygyno.2008.04.033

    Article  CAS  PubMed  Google Scholar 

  191. Peinado H, Alečković M, Lavotshkin S et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891. https://doi.org/10.1038/nm.2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Alvarez-Erviti L, Seow Y, Yin H et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:3–4. https://doi.org/10.1038/nbt.1807

    Article  CAS  Google Scholar 

  193. Van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem 140:13–21. https://doi.org/10.1093/jb/mvj128

    Article  CAS  PubMed  Google Scholar 

  194. Felicetti F, Parolini I, Bottero L et al (2009) Caveolin-1 tumor-promoting role in human melanoma. Int J Cancer 125:1514–1522. https://doi.org/10.1002/ijc.24451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Silverman JM, Reiner NE (2011) Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell Microbiol 13:1–9. https://doi.org/10.1111/j.1462-5822.2010.01537.x

    Article  CAS  PubMed  Google Scholar 

  196. Fevrier B, Vilette D, Archer F et al (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101:9683–9688. https://doi.org/10.1073/pnas.0308413101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Dhuria SV, Hanson LR, Frey WH (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99:1654–1673. https://doi.org/10.1002/jps.21924

    Article  CAS  PubMed  Google Scholar 

  198. Miyake MM, Bleier BS (2015) The blood-brain barrier and nasal drug delivery to the central nervous system. Am J Rhinol Allergy 29:124–127. https://doi.org/10.2500/ajra.2015.29.4149

    Article  PubMed  Google Scholar 

  199. Chen X-Q, Fawcett JR, Rahman Y-E et al (1998) Delivery of nerve growth factor to the brain via the olfactory pathway. J Alzheimers Dis 1:35–44

    Article  CAS  PubMed  Google Scholar 

  200. Frey WH, Liu J, Chen X et al (1997) Delivery of 125 I-NGF to the brain via the olfactory route. Drug Deliv 4:87–92. https://doi.org/10.3109/10717549709051878

    Article  CAS  Google Scholar 

  201. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127:481–496. https://doi.org/10.1016/j.neuroscience.2004.05.029

    Article  CAS  PubMed  Google Scholar 

  202. Ross TM, Martinez PM, Renner JC et al (2004) Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol 151:66–77. https://doi.org/10.1016/j.jneuroim.2004.02.011

    Article  CAS  PubMed  Google Scholar 

  203. Kanazawa T (2015) Brain delivery of small interfering ribonucleic acid and drugs through intranasal administration with nano-sized polymer micelles. Med Devices 8:57–64. https://doi.org/10.2147/MDER.S70856

    Article  CAS  Google Scholar 

  204. Chow HHS, Chen Z, Matsuura GT (1999) Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J Pharm Sci 88:754–758. https://doi.org/10.1021/js9900295

    Article  CAS  PubMed  Google Scholar 

  205. Westin U, Piras E, Jansson B et al (2005) Transfer of morphine along the olfactory pathway to the central nervous system after nasal administration to rodents. Eur J Pharm Sci 24:565–573. https://doi.org/10.1016/j.ejps.2005.01.009

    Article  CAS  PubMed  Google Scholar 

  206. Schulz C, Paulus K, Lehnert H (2004) Central nervous and metabolic effects of intranasally applied leptin. Endocrinology 145:2696–2701. https://doi.org/10.1210/en.2003-1431

    Article  CAS  PubMed  Google Scholar 

  207. Shimizu H, Oh-I S, Okada S, Mori M (2005) Inhibition of appetite by nasal leptin administration in rats. Int J Obes 29:858–863. https://doi.org/10.1038/sj.ijo.0802951

    Article  CAS  Google Scholar 

  208. Benedict C, Hallschmid M, Hatke A et al (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29:1326–1334. https://doi.org/10.1016/j.psyneuen.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  209. Reger MA, Watson GS, Green PS et al (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70:440–448. https://doi.org/10.1212/01.WNL.0000265401.62434.36

    Article  CAS  PubMed  Google Scholar 

  210. Renner DB, Frey WH, Hanson LR (2012) Intranasal delivery of siRNA to the olfactory bulbs of mice via the olfactory nerve pathway. Neurosci Lett 513:193–197. https://doi.org/10.1016/j.neulet.2012.02.037

    Article  CAS  PubMed  Google Scholar 

  211. Nishina K, Mizusawa H, Yokota T (2013) Short interfering RNA and the central nervous system: development of nonviral delivery systems. Expert Opin Drug Deliv 10:289–292. https://doi.org/10.1517/17425247.2013.748746

    Article  CAS  PubMed  Google Scholar 

  212. Kanazawa T, Akiyama F, Kakizaki S et al (2013) Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials 34:9220–9226. https://doi.org/10.1016/j.biomaterials.2013.08.036

    Article  CAS  PubMed  Google Scholar 

  213. Morrison EE, Costanzo RM (1992) Morphology of olfactory epithelium in humans and other vertebrates. Microsc Res Tech 23:49–61. https://doi.org/10.1002/jemt.1070230105

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Mei Tian or Reinhard Gabathuler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tian, M.M., Gabathuler, R. (2021). The Use of Peptide and Protein Vectors to Cross the Blood-Brain Barrier for the Delivery of Therapeutic Concentration of Biologics. In: Morales, J.O., Gaillard, P.J. (eds) Nanomedicines for Brain Drug Delivery. Neuromethods, vol 157. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0838-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0838-8_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0837-1

  • Online ISBN: 978-1-0716-0838-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics