Skip to main content

Characterizing Channelrhodopsin Channel Properties Via Two-Electrode Voltage Clamp and Kinetic Modeling

  • Protocol
  • First Online:
Channelrhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2191))

Abstract

Two-electrode voltage clamp (TEVC) is a preferred electrophysiological technique used to study gating kinetics and ion selectivity of light-activated channelrhodopsins (ChRs). The method uses two intracellular microelectrodes to hold, or clamp, the membrane potential at a specific value and measure the flow of ions across the plasma membrane. Here, we describe the use of TEVC and a simple solution exchange protocol to measure cation selectivity and analyze gating kinetics of the C1C2 chimera expressed in Xenopus laevis oocytes. Detailed instructions on how to process the collected data and interpret the results are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cens T, Charnet P (2007) Use of Xenopus oocytes to measure ionic selectivity of pore-forming peptides and ion channels. In: Molnar P, Hickman JJ (eds) Patch-clamp methods and protocols, Methods in molecular biology, vol 288. Humana Press, Totowa, NJ, pp 287–302

    Chapter  Google Scholar 

  2. Guan B, Chen X, Zhang H (2013) Two-electrode voltage clamp. Methods Mol Biol 998:79–89

    Article  CAS  Google Scholar 

  3. Courjaret R, Machaca K (2016) Xenopus oocyte as a model system to study store-operated Ca2+ entry (SOCE). Front Cell Dev Biol 4:66. https://doi.org/10.3389/fcell.2016.00066

    Article  PubMed  PubMed Central  Google Scholar 

  4. Molnar P, Hickman JJ (eds) (2007) Patch-clamp methods and protocols, Methods in molecular biology. Humana Press, Inc., Totowa, NJ

    Google Scholar 

  5. Axon Instruments, Inc. (1993) Advanced methods in electrophysiology. In: The Axon guide for electrophysiology and biophysics: laboratory techniques. Axon Instruments, Inc., Foster City, CA

    Google Scholar 

  6. Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A 106:12317–12322

    Article  CAS  Google Scholar 

  7. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  Google Scholar 

  8. Haase A, Hartung K (2006) Activation and inactivation kinetics of a Ca2+-activated Cl− current: photolytic Ca2+ concentration and voltage jump experiments. Pflugers Arch 452:81–90

    Article  CAS  Google Scholar 

  9. Barish ME (1983) A transient calcium-dependent chloride current in the immature Xenopus oocyte. J Physiol 342:309–325

    Article  CAS  Google Scholar 

  10. Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C, Bamberg E (2011) Ultra light-sensitive and fast neuronal activation with the Ca2+ permeable channelrhodopsin CatCh. Nat Neurosci 14:513–518

    Article  CAS  Google Scholar 

  11. Lipovsek M, Fierro A, Pérez EG, Boffi JC, Millar NS, Fuchs PA, Katz E, Elgoyhen AB (2014) Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor. Mol Biol Evol 31:3250–3265

    Article  CAS  Google Scholar 

  12. Katz E, Verbitsky M, Rothlin CV, Vetter DE, Heinemann SF, Belén Elgoyhen A (2000) High calcium permeability and calcium block of the α9 nicotinic acetylcholine receptor. Hear Res 141:117–128

    Article  CAS  Google Scholar 

  13. Richards R, Dempski RE (2017) Adjacent channelrhodopsin-2 residues within transmembranes 2 and 7 regulate cation selectivity and distribution of the two open states. J Biol Chem 292:7314–7326

    Article  CAS  Google Scholar 

  14. Williams JC, Xu J, Lu Z, Klimas A, Chen X, Ambrosi CM, Cohen IS, Entcheva E (2013) Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model. PLoS Comput Biol 9:e1003220

    Article  CAS  Google Scholar 

  15. Stefanescu RA, Shivakeshavan RG, Khargonekar PP, Talathi SS (2013) Computational modeling of channelrhodopsin-2 photocurrent characteristics in relation to neural signaling. Bull Math Biol 75:2208–2240. http://arxiv.org/abs/1304.5635. Accessed 5 Dec 2017

    Article  CAS  Google Scholar 

  16. Nikolic K, Grossman N, Grubb MS, Burrone J, Toumazou C, Degenaar P (2009) Photocycles of channelrhodopsin-2. Photochem Photobiol 85:400–411

    Article  CAS  Google Scholar 

  17. Prignano L, Faal SG, Hera A, Dempski RE (2019) An optimized and automated approach to quantifying channelrhodopsin photocurrent kinetics. Anal Biochem 566:160–167

    Article  CAS  Google Scholar 

  18. Jatzke C, Watanabe J, Wollmuth LP (2002) Voltage and concentration dependence of Ca2+ permeability in recombinant glutamate receptor subtypes. J Physiol 538:25–39

    Article  CAS  Google Scholar 

  19. Wollmuth LP, Sakmann B (1998) Different mechanisms of Ca2+ transport in NMDA and Ca2+-permeable AMPA glutamate receptor channels. J Gen Physiol 112:623–636

    Article  CAS  Google Scholar 

  20. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Dempski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Prignano, L., Herchenroder, L., Dempski, R.E. (2021). Characterizing Channelrhodopsin Channel Properties Via Two-Electrode Voltage Clamp and Kinetic Modeling. In: Dempski, R. (eds) Channelrhodopsin. Methods in Molecular Biology, vol 2191. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0830-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0830-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0829-6

  • Online ISBN: 978-1-0716-0830-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics