Skip to main content

Use of Xenopus Oocytes to Measure Ionic Selectivity of Pore-Forming Peptides and Ion Channels

  • Protocol
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 403))

Summary

The Xenopus laevis oocyte is a widely used system for heterologous expression of exogenous ion channel proteins (1, 2). Among other advantages, these easy to obtain, mechanically and electrically stable, large-sized cells enable multiple types of electrophysiological recordings: two-electrode voltage-clamp, single-cell attached or cell-free patch-clamp, and macropatch recordings. The size of an oocyte (1 mm in diameter) also allows the use of additional electrodes (1–3) for injection of diverse materials (Ca2+ chelators, peptides, chemicals, antibodies, proteic-partners, and so on) before or during the course of the electrophysiological experiment. We have successfully used this system to analyze the biophysical properties of pore-forming peptides. Simple perfusion of these peptides induced the formation of channels in the oocyte plasma membrane; these channels can then be studied and characterized in diverse ionic conditions. The ease of the perfusion and the stability of the voltage-clamped oocyte make it a powerful tool for such analyses. Compared with artificial bilayers, oocytes offer a real animal plasma membrane where biophysical properties and toxicity can be studied in the same environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Snutch, T. P. (1988) The use of Xenopus oocytes to probe synaptic communication. Trends Neurosci. 11, 250–256.

    Article  CAS  PubMed  Google Scholar 

  2. Dascal, N. (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22, 317–387.

    Article  CAS  PubMed  Google Scholar 

  3. Pellegrin, P., Menard, C., Mery, J., Lory, P., Charnet, P. & Bennes, R. (1997) Cell cycle dependent toxicity of an amphiphilic synthetic peptide. FEBS Lett. 418, 101–105.

    Article  CAS  PubMed  Google Scholar 

  4. Charnet, P., Molle, G., Marion, D., Rousset, M. & Lullien-Pellerin, V. (2003) Puroindolines form ion channels in biological membranes. Biophys. J. 84, 2416–2426.

    Article  CAS  PubMed  Google Scholar 

  5. Hille, B. (2001) Ion Channels of Excitable Membranes. 3rd edition. Sinauer Associates Inc., Sunderland, MA.

    Google Scholar 

  6. Chaloin, L., De, E., Charnet, P., Molle, G. & Heitz, F. (1998) Ionic channels formed by a primary amphipathic peptide containing a signal peptide and a nuclear localization sequence. Biochim. Biophys. Acta 1375, 52–60.

    Article  CAS  PubMed  Google Scholar 

  7. Mangoni, M. E., Cens, T., Dalle, C., Nargeot, J. & Charnet, P. (1997) Characterisation of alpha1A Ba2+, Sr2+ and Ca2+ currents recorded with ancillary beta1-4 subunits. Receptors Channels 5, 1–14.

    CAS  PubMed  Google Scholar 

  8. Neher, E. (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 207, 123–131.

    Article  CAS  PubMed  Google Scholar 

  9. Rousset, M., Cens, T., Vanmau, N. & Charnet, P. (2004) Ca2+-dependent interaction of BAPTA with phospholipids. FEBS Lett. 576, 41–45.

    Article  CAS  PubMed  Google Scholar 

  10. Green, W. N. & Andersen, O. S. (1991) Surface charges and ion channel function. Annu. Rev. Physiol. 53, 341–359.

    Article  CAS  PubMed  Google Scholar 

  11. Begenisich, T. B. & Cahalan, M. D. (1980) Sodium channel permeation in squid axons. I: reversal potential experiments. J. Physiol. 307, 217–242.

    CAS  PubMed  Google Scholar 

  12. Campbell, D. L., Rasmusson, R. L. & Strauss, H. C. (1988) Theoretical study of the voltage and concentration dependence of the anomalous mole fraction effect in single calcium channels. New insights into the characterization of multi-ion channels. Biophys. J. 54, 945–954.

    Article  CAS  PubMed  Google Scholar 

  13. McCleskey, E. W. (1999) Calcium channel permeation: a field in flux. J. Gen. Physiol. 113, 765–772.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CNRS, INSERM, Association Française contre les Myopathies, Association pour la Recherche contre le Cancer, Fondation pour la Recherche sur le Cerveau, and Fondation Simone et Cino del Duca. The authors thank Dr. I. Lefevre for critical reading of the manuscript, Dr. V. Lullien-Pellerin for Discussion and J-M Donnay for oocyte preparation.

Authors

Editor information

Peter Molnar James J. Hickman

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Cens, T., Charnet, P. (2007). Use of Xenopus Oocytes to Measure Ionic Selectivity of Pore-Forming Peptides and Ion Channels. In: Molnar, P., Hickman, J.J. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology™, vol 403. Humana Press. https://doi.org/10.1007/978-1-59745-529-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-529-9_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-698-6

  • Online ISBN: 978-1-59745-529-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics