Skip to main content

Single or Double Patch-Clamp Recordings In Ex Vivo Slice Preparation: Functional Connectivity, Synapse Dynamics, and Optogenetics

  • Protocol
  • First Online:
Patch Clamp Electrophysiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2188))

Abstract

Patch-clamp recordings are the method of choice to define cell-type specific electrophysiological properties of single neurons and the synaptic connectivity between pairs of connected neurons in brain slices. In combination with optogenetic tools, patch-clamp recordings allow for the investigation of long-range afferent connectivity from identified distant brain areas. Here we describe the necessary equipment to carry out patch clamp recordings, surgical methods for dissection and preparation of horizontal brain slices containing the hippocampus, and a step-by-step guide for establishing patch clamp recordings in the whole-cell configuration. We provide protocols for single neuron stimulation via the patch pipette and for photostimulation experiments that activate axon terminals expressing light sensitive ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802. https://doi.org/10.1038/260799a0

    Article  CAS  Google Scholar 

  2. Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  Google Scholar 

  3. Ogden DD, Stanfield PR (1999) Chapter 4 Patch clamp techniques for single channel and whole-cell recording

    Google Scholar 

  4. Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664. https://doi.org/10.1126/science.3059497

    Article  Google Scholar 

  5. Fricker D, Verheugen JAH, Miles R (1999) Cell-attached measurements of the firing threshold of rat hippocampal neurons. J Physiol 517:791–804. https://doi.org/10.1111/j.1469-7793.1999.0791s.x

    Article  CAS  Google Scholar 

  6. Pastoll H, Ramsden HL, Nolan MF (2012) Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. Front Neural Circuits 6:17. https://doi.org/10.3389/fncir.2012.00017

    Article  Google Scholar 

  7. Alonso A, Klink R (1993) Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J Neurophysiol 70:128–143. https://doi.org/10.1152/jn.1993.70.1.128

    Article  CAS  Google Scholar 

  8. Stell BM, Rostaing P, Triller A, Marty A (2007) Activation of presynaptic GABAA receptors induces glutamate release from parallel fiber synapses. J Neurosci 27:9022. https://doi.org/10.1523/JNEUROSCI.1954-07.2007

    Article  CAS  Google Scholar 

  9. Epsztein J, Brecht M, Lee AK (2011) Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70:109–120. https://doi.org/10.1016/j.neuron.2011.03.006

    Article  CAS  Google Scholar 

  10. Fricker D, Dinocourt C, Eugène E et al (2009) Pyramidal cells of rodent presubiculum express a tetrodotoxin-insensitive Na+ current. J Physiol Lond 587:4249–4264. https://doi.org/10.1113/jphysiol.2009.175349

    Article  CAS  Google Scholar 

  11. Huang L-W, Simonnet J, Nassar M et al (2017) Laminar localization and projection-specific properties of presubicular neurons targeting the lateral mammillary nucleus, thalamus, or medial entorhinal cortex. eNeuro 4(2):ENEURO.0370-16.2017. https://doi.org/10.1523/ENEURO.0370-16.2017

    Article  Google Scholar 

  12. Simonnet J, Eugène E, Cohen I et al (2013) Cellular neuroanatomy of rat presubiculum. Eur J Neurosci 37:583–597. https://doi.org/10.1111/ejn.12065

    Article  Google Scholar 

  13. Nassar M, Simonnet J, Lofredi R et al (2015) Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum. Front Neural Circuits 9:20. https://doi.org/10.3389/fncir.2015.00020

    Article  CAS  Google Scholar 

  14. Simonnet J, Nassar M, Stella F et al (2017) Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum. Nat Commun 8:16032. https://doi.org/10.1038/ncomms16032

    Article  CAS  Google Scholar 

  15. Nassar M, Simonnet J, Huang L-W et al (2018) Anterior thalamic excitation and feedforward inhibition of Presubicular neurons projecting to medial entorhinal cortex. J Neurosci 38:6411–6425. https://doi.org/10.1523/JNEUROSCI.0014-18.2018

    Article  CAS  Google Scholar 

  16. Penner R (1995) A practical guide to patch clamping. In: Sakmann B, Neher E (eds) Single-Channel recording. Springer US, Boston, MA, pp 3–30

    Chapter  Google Scholar 

  17. Marty A, Neher E (1995) Tight-seal whole-cell recording. In: Sakman B, Neher E (eds) Single channel recording. Plenum Press, New York, pp 31–52

    Chapter  Google Scholar 

  18. Molecular Devices (2012) The Axon Guide, Electrophysiology and Biophysics Laboratory Techniques Third Edition 1-2500-0102 D

    Google Scholar 

  19. Barbour B (2014) Electronics for electrophysiologists. Available online. https://www.biologie.ens.fr/~barbour/electronics_for_electrophysiologists.pdf

  20. Ting JT, Daigle TL, Chen Q, Feng G (2014) Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and Optogenetics. In: Martina M, Taverna S (eds) Patch-clamp methods and protocols. Springer New York, New York, NY, pp 221–242

    Chapter  Google Scholar 

  21. Williams SR, Mitchell SJ (2008) Direct measurement of somatic voltage clamp errors in central neurons. Nat Neurosci 11:790–798. https://doi.org/10.1038/nn.2137

    Article  CAS  Google Scholar 

  22. Verheugen JA, Fricker D, Miles R (1999) Noninvasive measurements of the membrane potential and GABAergic action in hippocampal interneurons. J Neurosci 19:2546–2555

    Article  CAS  Google Scholar 

  23. Barry PH, Lynch JW (1991) Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol 121:101–117

    Article  CAS  Google Scholar 

  24. Altwegg-Boussac T, Chavez M, Mahon S, Charpier S (2014) Excitability and responsiveness of rat barrel cortex neurons in the presence and absence of spontaneous synaptic activity in vivo. J Physiol Lond 592:3577–3595. https://doi.org/10.1113/jphysiol.2013.270561

    Article  CAS  Google Scholar 

  25. Fricker D, Miles R (2000) EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron 28:559–569

    Article  CAS  Google Scholar 

  26. Silberberg G, Markram H (2007) Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53:735–746. https://doi.org/10.1016/j.neuron.2007.02.012

    Article  CAS  Google Scholar 

  27. Richevaux L, Schenberg L, Beraneck M, Fricker D (2019) In Vivo Intracerebral Stereotaxic Injections for Optogenetic Stimulation of Long-Range Inputs in Mouse Brain Slices. J. Vis. Exp. (151), e59534, https://doi.org/10.3791/59534

  28. Jiang X, Wang G, Lee AJ et al (2013) The organization of two new cortical interneuronal circuits. Nat Neurosci 16:210–218. https://doi.org/10.1038/nn.3305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Humboldt Universiteat zu Berlin, Bernstein Center For Computational Neuroscience and Deutsche Forschungsgemeinschaft BR 3479/12-1 (J.S.), the French Ministry for Education and Research (L.R.) and Agence Nationale de la Recherche Grant ANR-18-CE92-0051-01 (D.F.). We thank François Simon and Brandon Stell for critically reading the manuscript.

Disclosures: The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desdemona Fricker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Simonnet, J., Richevaux, L., Fricker, D. (2021). Single or Double Patch-Clamp Recordings In Ex Vivo Slice Preparation: Functional Connectivity, Synapse Dynamics, and Optogenetics. In: Dallas, M., Bell, D. (eds) Patch Clamp Electrophysiology. Methods in Molecular Biology, vol 2188. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0818-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0818-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0817-3

  • Online ISBN: 978-1-0716-0818-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics