Skip to main content

Tight-Seal Whole-Cell Recording

  • Chapter
Single-Channel Recording

Abstract

The tight-seal whole-cell recording method, often abbreviated as “whole-cell recording” (WCR), allows one to record from cells and modify their internal environment by using a patch-clamp pipette. This has become the most commonly used configuration of the patch-clamp technique. In the present chapter, we first describe the basic experimental procedures used to obtain whole-cell recordings. We then discuss the pipette—cell interactions during whole-cell recording, first from an electrical point of view and then from a chemical point of view. We finally compare the tight-seal whole-cell recording with other methods for studying electrical properties of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, C. M., and Chow, R. H., 1987, Supercharging: A method for improving patch-clamp performance, Biophys. J. 52: 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Barry, P. H., 1993, JP Calc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurement, J. Neurosci. Methods 51: 107–116.

    Article  Google Scholar 

  • Barry, P. H., and Lynch, J. W., 1991, Liquid junction potentials and small cell effects in patch-clamp analysis, J. Membr. Biol. 121: 101–117.

    Article  PubMed  CAS  Google Scholar 

  • Brandt, B. L., Hagiwara, S., Kidokoro, Y., and Miyazaki, S., 1976, Action potential in the rat chromaffin cells and effects of acetylcholine, J. Physiol. 263: 417–439.

    PubMed  CAS  Google Scholar 

  • Dani, J. A., Sanchez, J. A., and Hille, B., 1983, Lyotropic anions. Na channel gating and Ca electrode response, J. Gen. Physiol. 81: 255–281.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, F. A., Konnerth, A., Sakmann, B., and Takahashi, T., 1989, A thin slice preparation for patch-clamp recordings from neurones of the mammalian central nervous system, Pflügers Arch. 414: 600–612.

    Article  PubMed  CAS  Google Scholar 

  • Fenwick, E. M., Marty, A., and Neher, E., 1982a, A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine, J. Physiol. 331: 577–597.

    PubMed  CAS  Google Scholar 

  • Fenwick, E. M., Marty, A., and Neher, E., 1982b, Sodium and calcium channels in bovine chromaffin cells, J. Physiol. 331: 599–635.

    PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E. Sakmann, B., and Sigworth, F. J. 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell free patches, Pflügers Arch. 391: 85–100.

    CAS  Google Scholar 

  • Hironaka, T., and Morimoto, S., 1979, The resting membrane potential of frog sartorius muscle, J. Physiol. 297: 1–8.

    PubMed  CAS  Google Scholar 

  • Horn, R., and Marty, A., 1988, Muscarinic activation of ionic currents measured by a new whole-cell recording method, J. Gen. Physiol. 94: 145–159.

    Article  Google Scholar 

  • Jackson, M. B., 1992, Cable analysis with the whole-cell patch-clamp. Theory and experiment, Biophys. J. 61: 756–766.

    Article  PubMed  CAS  Google Scholar 

  • Kleinberg, M. E., and Finkelstein, A., 1984, Single-length and double-length channels formed by nystatin in lipid bilayer membranes, J. Membr. Biol. 80: 257–269.

    Article  PubMed  CAS  Google Scholar 

  • Korn, S. J., Marty, A., Connor, J. A., and Horn, R., 1991, Perforated patch recording, Methods Neurosci. 4:26,4–273.

    Google Scholar 

  • Lindau, M., and Fernandez, J. M., 1986, IgE-mediated degranulation of mast cells does not require opening of ion channels, Nature 319: 150–153.

    Article  PubMed  CAS  Google Scholar 

  • Llano, I., Marty, A., Armstrong, C. M., and Konnerth, A., 1991, Synaptic-and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices, J. Physiol. 434: 183–213.

    PubMed  CAS  Google Scholar 

  • Mathias, R. T., Cohen, I. S., and Oliva, C., 1990, Limitations of the whole cell patch clamp technique in the control of intracellular concentrations, Biophys. J. 58: 759–770.

    Article  PubMed  CAS  Google Scholar 

  • Neher, E., 1992, Correction for liquid junction potentials in patch-clamp experiments, Methods Enzymol. 207: 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Oliva, C., Cohen, I. S., and Mathias, R. T., 1988, Calculation of time constants for intracellular diffusion in whole cell patch clamp configuration, Biophys. J. 54: 791–799.

    Article  PubMed  CAS  Google Scholar 

  • Perozo, E., and Bezanilla, F., 1990, Phosphorylation affects voltage gating of the delayed retifier K’ channel by electrostatic interactions, Neuron 5: 685–690.

    Article  PubMed  CAS  Google Scholar 

  • Pusch, M., and Neher, E., 1988, Rates of diffusional exchange between small cells and a measuring patch pipette, Pflügers Arch. 411: 204–211.

    Article  PubMed  CAS  Google Scholar 

  • Rae, J., Cooper, K., Gates, G., and Watsky M., 1991, Low access resistance perforated patch recordings using amphotericin B, J. Neurosci. Methods 37: 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Ruppersberg, J. P., Stocker, M., Pongs, O., Heinemann, S. H., Frank, R., and Koenen, M., 1991, Regulation of fast inactivation of cloned mammalian /K(A) channels by protein phosphorylation, Nature 352: 711–714.

    Article  PubMed  CAS  Google Scholar 

  • Sherman-Gold, R. (ed.), 1993, The Axon Guide, Axon Instruments, Inc., Foster City, CA.

    Google Scholar 

  • Staley, K. J., Otis, T. S., and Mody, I., 1992, Membrane properties of dentate gyros granule cells: Comparison of sharp microelectrode and whole-cell recordings, J. Neurophysiol. 67: 1346–1358.

    PubMed  CAS  Google Scholar 

  • Strupp, M., Quasthoff, S., Mitrovic, N., and Grafe, P., 1992, Glutathione accelerates sodium channel inactivation in excised rat axonal membrane patches, Pflügers Arch. 421: 283–285.

    Article  PubMed  CAS  Google Scholar 

  • Stuart, G. J., and Sakmann, B., 1994, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites, Nature 367: 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, A., and Neher, E., 1993, Mobile and immobile coalcium buffers in bovine adrenal chromaffin cells, J. Physiol. 469: 245–273.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marty, A., Neher, E. (1995). Tight-Seal Whole-Cell Recording. In: Sakmann, B., Neher, E. (eds) Single-Channel Recording. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1229-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1229-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1230-5

  • Online ISBN: 978-1-4419-1229-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics