Skip to main content

Purification Using Affinity Tag Technology

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1492 Accesses

Abstract

Affinity tag technology is a prerequisite for high and rapid purification of recombinant proteins in structural studies because of specific interactions of tags. Widely used tags are polyhistidine tags specific to metal-chelating ligands and glutathione S-transferase tag for glutathione-immobilized ligands. Furthermore, tags binding to antibodies, such as FLAG, Fc, and HA, are also popular for protein preparation and, in addition, are utilized for biological and biochemical analyses, e.g., western blotting, immunoprecipitation, immunofluorescence assay, and flow cytometry. Some tags improve the solubility of proteins. In this chapter, we introduce the features of these representative tags and show several practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas YM, Pichlmair A, Górna MW, Superti-Furga G, Nagar B (2013) Structural basis for viral 5′-PPP-RNA recognition by human IFIT proteins. Nature 494(7435):60–64. doi:10.1038/nature11783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, Ronai Z (1999) Regulation of JNK signaling by GSTp. EMBO J 18(5):1321–1334. doi:10.1093/emboj/18.5.1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Asano R, Ikoma K, Kawaguchi H, Ishiyama Y, Nakanishi T, Umetsu M, Hayashi H, Katayose Y, Unno M, Kudo T, Kumagai I (2010) Application of the Fc fusion format to generate tag-free bi-specific diabodies. FEBS J 277(2):477–487. doi:10.1111/j.1742-4658.2009.07499.x

    Article  CAS  PubMed  Google Scholar 

  4. Boyer TD (1989) The glutathione S-transferases: an update. Hepatology 9(3):486–496

    Article  CAS  PubMed  Google Scholar 

  5. Carter PJ (2011) Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 317(9):1261–1269. doi:10.1016/j.yexcr.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  6. Czajkowsky DM, Hu J, Shao Z, Pleass RJ (2012) Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med 4(10):1015–1028. doi:10.1002/emmm.201201379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diez J, Diederichs K, Greller G, Horlacher R, Boos W, Welte W (2001) The crystal structure of a liganded trehalose/maltose-binding protein from the hyperthermophilic Archaeon Thermococcus litoralis at 1.85 A. J Mol Biol 305(4):905–915. doi:10.1006/jmbi.2000.4203

    Article  CAS  PubMed  Google Scholar 

  8. Drew D, Newstead S, Sonoda Y, Kim H, von Heijne G, Iwata S (2008) GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat Protoc 3(5):784–798. doi:10.1038/nprot.2008.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Einhauer A, Jungbauer A (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49(1–3):455–465

    Article  CAS  PubMed  Google Scholar 

  10. Evan GI, Lewis GK, Ramsay G, Bishop JM (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5(12):3610–3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farrens DL, Dunham TD, Fay JF, Dews IC, Caldwell J, Nauert B (2002) Design, expression, and characterization of a synthetic human cannabinoid receptor and cannabinoid receptor/ G-protein fusion protein. J Pept Res 60(6):336–347

    Article  CAS  PubMed  Google Scholar 

  12. Finn FM, Iwata N, Titus G, Hofmann K (1981) Hormonal properties of avidin-biotinylinsulin and avidin-biotinylcorticotropin complexes. Hoppe Seylers Z Physiol Chem 362(6):679–684

    Article  CAS  PubMed  Google Scholar 

  13. Hay RT (2005) SUMO: a history of modification. Mol Cell 18(1):1–12. doi:10.1016/j.molcel.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  14. Heggeness MH, Ash JF (1977) Use of the avidin-biotin complex for the localization of actin and myosin with fluorescence microscopy. J Cell Biol 73(3):783–788

    Article  CAS  PubMed  Google Scholar 

  15. Hirsch JD, Eslamizar L, Filanoski BJ, Malekzadeh N, Haugland RP, Beechem JM (2002) Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal Biochem 308(2):343–357

    Article  CAS  PubMed  Google Scholar 

  16. Hochuli E, Bannwarth W, Döbeli H, Gentz R, Stüber D (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nat Biotechnol 6(11):1321–1325

    Article  CAS  Google Scholar 

  17. Hodges RS, Heaton RJ, Parker JM, Molday L, Molday RS (1988) Antigen-antibody interaction. Synthetic peptides define linear antigenic determinants recognized by monoclonal antibodies directed to the cytoplasmic carboxyl terminus of rhodopsin. J Biol Chem 263(24):11768–11775

    CAS  PubMed  Google Scholar 

  18. Hofmann K, Kiso Y (1976) An approach to the targeted attachment of peptides and proteins to solid supports. Proc Natl Acad Sci U S A 73(10):3516–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hopp TP, Prickett KS, Price VL, Libby RT, March CJ, Pat Cerretti D, Urdal DL, Conlon PJ (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Nat Biotech 6(10):1204–1210

    Article  CAS  Google Scholar 

  20. http://dshb.biology.uiowa.edu/c-myc

  21. Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, Wang R, Zhang Y, Martinon F, Miao D, Deng H, Wang J, Chang J, Chai J (2013) Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341(6142):172–175. doi:10.1126/science.1236381

    Article  CAS  PubMed  Google Scholar 

  22. Hughes SR, Sterner DE, Bischoff KM, Hector RE, Dowd PF, Qureshi N, Bang SS, Grynaviski N, Chakrabarty T, Johnson ET, Dien BS, Mertens JA, Caughey RJ, Liu S, Butt TR, LaBaer J, Cotta MA, Rich JO (2009) Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system. Plasmid 61(1):22–38. doi:10.1016/j.plasmid.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  23. Kontermann RE (2011) Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol 22(6):868–876. doi:10.1016/j.copbio.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  24. Laborde E (2010) Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ 17(9):1373–1380. doi:10.1038/cdd.2010.80

    Article  CAS  PubMed  Google Scholar 

  25. Li Y (2011) The tandem affinity purification technology: an overview. Biotechnol Lett 33(8):1487–1499. doi:10.1007/s10529-011-0592-x

    Article  CAS  PubMed  Google Scholar 

  26. Liu L, Spurrier J, Butt TR, Strickler JE (2008) Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions. Protein Expr Purif 62(1):21–28. doi:10.1016/j.pep.2008.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lizak C, Fan YY, Weber TC, Aebi M (2011) N-Linked glycosylation of antibody fragments in Escherichia coli. Bioconjug Chem 22(3):488–496. doi:10.1021/bc100511k

    Article  CAS  PubMed  Google Scholar 

  28. Loureiro S, Ren J, Phapugrangkul P, Colaco CA, Bailey CR, Shelton H, Molesti E, Temperton NJ, Barclay WS, Jones IM (2011) Adjuvant-free immunization with hemagglutinin-Fc fusion proteins as an approach to influenza vaccines. J Virol 85(6):3010–3014. doi:10.1128/JVI.01241-10

    Article  CAS  PubMed  Google Scholar 

  29. Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM (2011) Structural insights into RNA recognition by RIG-I. Cell 147(2):409–422. doi:10.1016/j.cell.2011.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genom 5(1–2):75–86. doi:10.1023/B:JSFG.0000029237.70316.52

    Article  CAS  Google Scholar 

  31. Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15(1):182–189. doi:10.1110/ps.051812706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McKern NM, Lou M, Frenkel MJ, Verkuylen A, Bentley JD, Lovrecz GO, Ivancic N, Elleman TC, Garrett TP, Cosgrove LJ, Ward CW (1997) Crystallization of the first three domains of the human insulin-like growth factor-1 receptor. Protein Sci 6(12):2663–2666. doi:10.1002/pro.5560061223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nikaido H (1994) Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett 346(1):55–58

    Article  CAS  PubMed  Google Scholar 

  34. Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47. doi:10.1038/nri2206

    Article  CAS  PubMed  Google Scholar 

  35. Peroutka RJ, Elshourbagy N, Piech T, Butt TR (2008) Enhanced protein expression in mammalian cells using engineered SUMO fusions: secreted phospholipase A2. Protein Sci 17(9):1586–1595. doi:10.1110/ps.035576.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3(4):263–281

    Article  CAS  PubMed  Google Scholar 

  37. Prickett KS, Amberg DC, Hopp TP (1989) A calcium-dependent antibody for identification and purification of recombinant proteins. Bio Tech 7:580–589

    CAS  Google Scholar 

  38. Rath T, Baker K, Dumont JA, Peters RT, Jiang H, Qiao SW, Lencer WI, Pierce GF, Blumberg RS (2013) Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol 35(2):235–254. doi:10.3109/07388551.2013.834293

    Article  PubMed  PubMed Central  Google Scholar 

  39. Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7(9):715–725. doi:10.1038/nri2155

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt TG, Skerra A (1993) The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng 6(1):109–122

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt TG, Skerra A (1994) One-step affinity purification of bacterially produced proteins by means of the “Strep tag” and immobilized recombinant core streptavidin. J Chromatogr A 676(2):337–345

    Article  CAS  PubMed  Google Scholar 

  42. Schwarz F, Huang W, Li C, Schulz BL, Lizak C, Palumbo A, Numao S, Neri D, Aebi M, Wang LX (2010) A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation. Nat Chem Biol 6(4):264–266. doi:10.1038/nchembio.314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60(5):523–533. doi:10.1007/s00253-002-1158-6

    Article  CAS  PubMed  Google Scholar 

  44. Wong JP, Reboul E, Molday RS, Kast J (2009) A carboxy-terminal affinity tag for the purification and mass spectrometric characterization of integral membrane proteins. J Proteome Res 8(5):2388–2396. doi:10.1021/pr801008c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhong M, Molday RS (2010) Binding of retinoids to ABCA4, the photoreceptor ABC transporter associated with Stargardt macular degeneration. Methods Mol Biol 652:163–176. doi:10.1007/978-1-60327-325-1_9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Furukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this protocol

Cite this protocol

Furukawa, A., Maenaka, K., Nomura, T. (2016). Purification Using Affinity Tag Technology. In: Senda, T., Maenaka, K. (eds) Advanced Methods in Structural Biology. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56030-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56030-2_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56028-9

  • Online ISBN: 978-4-431-56030-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics