Skip to main content

Interrogating Membrane Protein Structure and Lipid Interactions by Native Mass Spectrometry

  • Protocol
  • First Online:
Biophysics of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2168))

Abstract

Native mass spectrometry and native ion mobility mass spectrometry are now established techniques in structural biology, with recent work developing these methods for the study of integral membrane proteins reconstituted in both lipid bilayer and detergent environments. Here we show how native mass spectrometry can be used to interrogate integral membrane proteins, providing insights into conformation, oligomerization, subunit composition/stoichiometry, and interactions with detergents/lipids/drugs. Furthermore, we discuss the sample requirements and experimental considerations unique to integral membrane protein native mass spectrometry research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopper JT, Robinson CV (2014) Mass spectrometry quantifies protein interactions—from molecular chaperones to membrane porins. Angew Chem Int Ed 53(51):14002–14015

    Article  CAS  Google Scholar 

  2. Konijnenberg A, van Dyck JF, Kailing LL, Sobott F (2015) Extending native mass spectrometry approaches to integral membrane proteins. Biol Chem 396(9–10):991–1002

    Article  CAS  PubMed  Google Scholar 

  3. Landreh M, Robinson CV (2015) A new window into the molecular physiology of membrane proteins. J Physiol 593(2):355–362

    Article  CAS  PubMed  Google Scholar 

  4. Mehmood S, Marcoux J, Gault J, Quigley A, Michaelis S, Young SG, Carpenter EP, Robinson CV (2016) Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24. Nat Chem 8:1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Knapman TW, Valette NM, Warriner SL, Ashcroft AE (2013) Ion mobility spectrometry-mass spectrometry of intrinsically unfolded proteins: trying to put order into disorder. Curr Anal Chem 9(2):181–191

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jurneczko E, Cruickshank F, Porrini M, Nikolova P, Campuzano ID, Morris M, Barran PE (2012) Intrinsic disorder in proteins: a challenge for (un)structural biology met by ion mobility-mass spectrometry. Biochem Soc Trans 40(5):1021–1026

    Article  CAS  PubMed  Google Scholar 

  7. Beveridge R, Chappuis Q, Macphee C, Barran P (2013) Mass spectrometry methods for intrinsically disordered proteins. Analyst 138(1):32–42

    Article  CAS  PubMed  Google Scholar 

  8. van den Heuvel RH, Heck AJ (2004) Native protein mass spectrometry: from intact oligomers to functional machineries. Curr Opin Chem Biol 8(5):519–526

    Article  PubMed  CAS  Google Scholar 

  9. Sharon M, Robinson CV (2007) The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu Rev Biochem 76:167–193

    Article  CAS  PubMed  Google Scholar 

  10. Konijnenberg A, Butterer A, Sobott F (2013) Native ion mobility-mass spectrometry and related methods in structural biology. Biochim Biophys Acta 1834(6):1239–1256

    Article  CAS  PubMed  Google Scholar 

  11. Marcoux J, Robinson CV (2013) Twenty years of gas phase structural biology. Structure 21(9):1541–1550

    Article  CAS  PubMed  Google Scholar 

  12. Hyung SJ, Ruotolo BT (2012) Integrating mass spectrometry of intact protein complexes into structural proteomics. Proteomics 12(10):1547–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lorenzen K, van Duijn E (2010) Native mass spectrometry as a tool in structural biology. Curr Protoc Protein Sci 62(1):17.12.1–17.12.17

    Google Scholar 

  14. Tsai YC, Mueller-Cajar O, Saschenbrecker S, Hartl FU, Hayer-Hartl M (2012) Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J Biol Chem 287(24):20471–20481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marcoux J, Wang SC, Politis A, Reading E, Ma J, Biggin PC, Zhou M, Tao H, Zhang Q, Chang G, Morgner N, Robinson CV (2013) Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc Natl Acad Sci U S A 110(24):9704–9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Woods LA, Radford SE, Ashcroft AE (2013) Advances in ion mobility spectrometry-mass spectrometry reveal key insights into amyloid assembly. Biochim Biophys Acta 1834(6):1257–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calabrese AN, Radford SE (2018) Mass spectrometry-enabled structural biology of membrane proteins. Methods 147:187–205

    Article  CAS  PubMed  Google Scholar 

  18. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5(12):993–996

    Article  CAS  PubMed  Google Scholar 

  19. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666(1–2):105–117

    Article  CAS  PubMed  Google Scholar 

  20. Lee SC, Knowles TJ, Postis VL, Jamshad M, Parslow RA, Lin YP, Goldman A, Sridhar P, Overduin M, Muench SP, Dafforn TR (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11(7):1149–1162

    Article  CAS  PubMed  Google Scholar 

  21. Popot JL, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flotenmeyer M, Giusti F, Gohon Y, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60(8):1559–1574

    Article  CAS  PubMed  Google Scholar 

  22. Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hernandez H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2(3):715–726

    Article  CAS  PubMed  Google Scholar 

  24. Sobott F, McCammon MG, Hernandez H, Robinson CV (2005) The flight of macromolecular complexes in a mass spectrometer. Philos Trans A Math Phys Eng Sci 363(1827):379–89; discussion 389–91

    CAS  PubMed  Google Scholar 

  25. Morgner N, Kleinschroth T, Barth HD, Ludwig B, Brutschy B (2007) A novel approach to analyze membrane proteins by laser mass spectrometry: from protein subunits to the integral complex. J Am Soc Mass Spectrom 18(8):1429–1438

    Article  CAS  PubMed  Google Scholar 

  26. Ambrose S, Housden NG, Gupta K, Fan J, White P, Yen HY, Marcoux J, Kleanthous C, Hopper JTS, Robinson CV (2017) Native desorption electrospray ionization liberates soluble and membrane protein complexes from surfaces. Angew Chem Int Ed 56(46):14463–14468

    Article  CAS  Google Scholar 

  27. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71

    Article  CAS  PubMed  Google Scholar 

  28. Meng CK, Fenn JB (1990) Analyzing organic molecules with electrospray mass spectrometry. Am Biotechnol Lab 8(4):54–60

    CAS  PubMed  Google Scholar 

  29. Mora JF, Van Berkel GJ, Enke CG, Cole RB, Martinez-Sanchez M, Fenn JB (2000) Electrochemical processes in electrospray ionization mass spectrometry. J Mass Spectrom 35(8):939–952

    Article  CAS  PubMed  Google Scholar 

  30. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68(1):1–8

    Article  CAS  PubMed  Google Scholar 

  31. Loo JA, Udseth HR, Smith RD (1989) Peptide and protein analysis by electrospray ionization-mass spectrometry and capillary electrophoresis-mass spectrometry. Anal Biochem 179(2):404–412

    Article  CAS  PubMed  Google Scholar 

  32. Testa L, Brocca S, Grandori R (2011) Charge-surface correlation in electrospray ionization of folded and unfolded proteins. Anal Chem 83(17):6459–6463

    Article  CAS  PubMed  Google Scholar 

  33. D’Urzo A, Konijnenberg A, Rossetti G, Habchi J, Li J, Carloni P, Sobott F, Longhi S, Grandori R (2015) Molecular basis for structural heterogeneity of an intrinsically disordered protein bound to a partner by combined ESI-IM-MS and modeling. J Am Soc Mass Spectrom 26(3):472–481

    Article  PubMed  CAS  Google Scholar 

  34. Barylyuk K, Balabin RM, Grunstein D, Kikkeri R, Frankevich V, Seeberger PH, Zenobi R (2011) What happens to hydrophobic interactions during transfer from the solution to the gas phase? The case of electrospray-based soft ionization methods. J Am Soc Mass Spectrom 22(7):1167–1177

    Article  CAS  PubMed  Google Scholar 

  35. Nemeth-Cawley JF, Rouse JC (2002) Identification and sequencing analysis of intact proteins via collision-induced dissociation and quadrupole time-of-flight mass spectrometry. J Mass Spectrom 37(3):270–282

    Article  CAS  PubMed  Google Scholar 

  36. Lemoine J, Fournet B, Despeyroux D, Jennings KR, Rosenberg R, de Hoffmann E (1993) Collision-induced dissociation of alkali metal cationized and permethylated oligosaccharides: influence of the collision energy and of the collision gas for the assignment of linkage position. J Am Soc Mass Spectrom 4(3):197–203

    Article  CAS  PubMed  Google Scholar 

  37. Benesch JL, Robinson CV (2006) Mass spectrometry of macromolecular assemblies: preservation and dissociation. Curr Opin Struct Biol 16(2):245–251

    Article  CAS  PubMed  Google Scholar 

  38. Pagel K, Hyung SJ, Ruotolo BT, Robinson CV (2010) Alternate dissociation pathways identified in charge-reduced protein complex ions. Anal Chem 82(12):5363–5372

    Article  CAS  PubMed  Google Scholar 

  39. Jurchen JC, Williams ER (2003) Origin of asymmetric charge partitioning in the dissociation of gas-phase protein homodimers. J Am Chem Soc 125(9):2817–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Benesch JL, Aquilina JA, Ruotolo BT, Sobott F, Robinson CV (2006) Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies. Chem Biol 13(6):597–605

    Article  CAS  PubMed  Google Scholar 

  41. Lanucara F, Holman SW, Gray CJ, Eyers CE (2014) The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 6(4):281–294

    Article  CAS  PubMed  Google Scholar 

  42. Smith DP, Knapman TW, Campuzano I, Malham RW, Berryman JT, Radford SE, Ashcroft AE (2009) Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur J Mass Spectrom 15(2):113–130

    Article  CAS  Google Scholar 

  43. Mason EA, Schamp HW (1958) Mobility of gaseous ions in weak electric fields. Ann Phys 4(3):233–270

    Article  CAS  Google Scholar 

  44. Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT (2010) Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem 82(22):9557–9565

    Article  CAS  PubMed  Google Scholar 

  45. Stojko J, Fieulaine S, Petiot-Bécard S, Van Dorsselaer A, Meinnel T, Giglione C, Cianférani S (2015) Ion mobility coupled to native mass spectrometry as a relevant tool to investigate extremely small ligand-induced conformational changes. Analyst 140(21):7234–7245

    Article  CAS  PubMed  Google Scholar 

  46. Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF (1996) Structural information from ion mobility measurements: effects of the long-range potential. J Phys Chem 100(40):16082–16086

    Article  CAS  Google Scholar 

  47. Marklund EG, Degiacomi MT, Robinson CV, Baldwin AJ, Benesch JL (2015) Collision cross sections for structural proteomics. Structure 23(4):791–799

    Article  CAS  PubMed  Google Scholar 

  48. Zanotto L, Heerdt G, Souza PCT, Araujo G, Skaf MS (2018) High performance collision cross section calculation-HPCCS. J Comput Chem 39(21):1675–1681

    Article  CAS  PubMed  Google Scholar 

  49. Politis A, Schmidt C (2018) Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling. J Proteome 175:34–41

    Article  CAS  Google Scholar 

  50. Konijnenberg A, Yilmaz D, Ingolfsson HI, Dimitrova A, Marrink SJ, Li Z, Venien-Bryan C, Sobott F, Kocer A (2014) Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry. Proc Natl Acad Sci U S A 111(48):17170–17175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhong Y, Han L, Ruotolo BT (2014) Collisional and Coulombic unfolding of gas-phase proteins: high correlation to their domain structures in solution. Angew Chem Int Ed 126(35):9363–9366

    Article  Google Scholar 

  52. Zhong Y, Han L, Ruotolo BT (2014) Collisional and Coulombic unfolding of gas-phase proteins: high correlation to their domain structures in solution. Angew Chem Int Ed 53(35):9209–9212

    Article  CAS  Google Scholar 

  53. Dixit SM, Polasky DA, Ruotolo BT (2018) Collision induced unfolding of isolated proteins in the gas phase: past, present, and future. Curr Opin Chem Biol 42:93–100

    Article  CAS  PubMed  Google Scholar 

  54. Allison TM, Reading E, Liko I, Baldwin AJ, Laganowsky A, Robinson CV (2015) Quantifying the stabilizing effects of protein–ligand interactions in the gas phase. Nat Commun 6:8551

    Article  CAS  PubMed  Google Scholar 

  55. Hopper JT, Oldham NJ (2009) Collision induced unfolding of protein ions in the gas phase studied by ion mobility-mass spectrometry: the effect of ligand binding on conformational stability. J Am Soc Mass Spectrom 20(10):1851–1858

    Article  CAS  PubMed  Google Scholar 

  56. Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, Robinson CV (2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510(7503):172–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marty MT, Hoi KK, Gault J, Robinson CV (2016) Probing the lipid annular belt by gas-phase dissociation of membrane proteins in nanodiscs. Angew Chem Int Ed 55(2):550–554

    Article  CAS  Google Scholar 

  58. Barrera NP, Zhou M, Robinson CV (2013) The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol 23(1):1–8

    Article  CAS  PubMed  Google Scholar 

  59. Grandori R (2003) Origin of the conformation dependence of protein charge-state distributions in electrospray ionization mass spectrometry. J Mass Spectrom 38(1):11–15

    Article  CAS  PubMed  Google Scholar 

  60. Samalikova M, Grandori R (2003) Role of opposite charges in protein electrospray ionization mass spectrometry. J Mass Spectrom 38(9):941–947

    Article  CAS  PubMed  Google Scholar 

  61. Laganowsky A, Reading E, Hopper JT, Robinson CV (2013) Mass spectrometry of intact membrane protein complexes. Nat Protoc 8(4):639–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sobott F, Hernandez H, McCammon MG, Tito MA, Robinson CV (2002) A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem 74(6):1402–1407

    Article  CAS  PubMed  Google Scholar 

  63. Landreh M, Liko I, Uzdavinys P, Coincon M, Hopper JT, Drew D, Robinson CV (2015) Controlling release, unfolding and dissociation of membrane protein complexes in the gas phase through collisional cooling. Chem Commun 51(85):15582–15584

    Article  CAS  Google Scholar 

  64. Chernushevich IV, Thomson BA (2004) Collisional cooling of large ions in electrospray mass spectrometry. Anal Chem 76(6):1754–1760

    Article  CAS  PubMed  Google Scholar 

  65. Ilag LL, Ubarretxena-Belandia I, Tate CG, Robinson CV (2004) Drug binding revealed by tandem mass spectrometry of a protein-micelle complex. J Am Chem Soc 126(44):14362–14363

    Article  CAS  PubMed  Google Scholar 

  66. Lossl P, Snijder J, Heck AJ (2014) Boundaries of mass resolution in native mass spectrometry. J Am Soc Mass Spectrom 25(6):906–917

    Article  PubMed  CAS  Google Scholar 

  67. Gupta K, Donlan JAC, Hopper JTS, Uzdavinys P, Landreh M, Struwe WB, Drew D, Baldwin AJ, Stansfeld PJ, Robinson CV (2017) The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541(7637):421–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261(1):1–12

    Article  CAS  Google Scholar 

  69. Rose RJ, Damoc E, Denisov E, Makarov A, Heck AJR (2012) High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 9:1084

    Article  CAS  PubMed  Google Scholar 

  70. van de Waterbeemd M, Fort KL, Boll D, Reinhardt-Szyba M, Routh A, Makarov A, Heck AJR (2017) High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat Methods 14:283

    Article  PubMed  CAS  Google Scholar 

  71. Gault J, Donlan JAC, Liko I, Hopper JTS, Gupta K, Housden NG, Struwe WB, Marty MT, Mize T, Bechara C, Zhu Y, Wu B, Kleanthous C, Belov M, Damoc E, Makarov A, Robinson CV (2016) High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat Methods 13:333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Pan P, McLuckey SA (2003) The effect of small cations on the positive electrospray responses of proteins at low pH. Anal Chem 75(20):5468–5474

    Article  CAS  PubMed  Google Scholar 

  73. Iavarone AT, Udekwu OA, Williams ER (2004) Buffer loading for counteracting metal salt-induced signal suppression in electrospray ionization. Anal Chem 76(14):3944–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Durr UH, Gildenberg M, Ramamoorthy A (2012) The magic of bicelles lights up membrane protein structure. Chem Rev 112(11):6054–6074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126(11):3477–3487

    Article  CAS  PubMed  Google Scholar 

  76. Barrera NP, Di Bartolo N, Booth PJ, Robinson CV (2008) Micelles protect membrane complexes from solution to vacuum. Science 321(5886):243–246

    Article  CAS  PubMed  Google Scholar 

  77. Wang SC, Politis A, Di Bartolo N, Bavro VN, Tucker SJ, Booth PJ, Barrera NP, Robinson CV (2010) Ion mobility mass spectrometry of two tetrameric membrane protein complexes reveals compact structures and differences in stability and packing. J Am Chem Soc 132(44):15468–15470

    Article  CAS  PubMed  Google Scholar 

  78. Reading E, Liko I, Allison TM, Benesch JL, Laganowsky A, Robinson CV (2015) The role of the detergent micelle in preserving the structure of membrane proteins in the gas phase. Angew Chem Int Ed 54(15):4577–4581

    Article  CAS  Google Scholar 

  79. Kalipatnapu S, Chattopadhyay A (2005) Membrane protein solubilization: recent advances and challenges in solubilization of serotonin1A receptors. IUBMB Life 57(7):505–512

    Article  CAS  PubMed  Google Scholar 

  80. Borysik AJ, Hewitt DJ, Robinson CV (2013) Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas-phase. J Am Chem Soc 135(16):6078–6083

    Article  CAS  PubMed  Google Scholar 

  81. Dorwart MR, Wray R, Brautigam CA, Jiang Y, Blount P (2010) S. aureus MscL is a pentamer in vivo but of variable stoichiometries in vitro: implications for detergent-solubilized membrane proteins. PLoS Biol 8(12):e1000555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Reading E, Walton TA, Liko I, Marty MT, Laganowsky A, Rees DC, Robinson CV (2015) The effect of detergent, temperature, and lipid on the oligomeric state of MscL constructs: insights from mass spectrometry. Chem Biol 22(5):593–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hopper JT, Yu YT, Li D, Raymond A, Bostock M, Liko I, Mikhailov V, Laganowsky A, Benesch JL, Caffrey M, Nietlispach D, Robinson CV (2013) Detergent-free mass spectrometry of membrane protein complexes. Nat Methods 10(12):1206–1208

    Article  CAS  PubMed  Google Scholar 

  84. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666(1–2):62–87

    Article  CAS  PubMed  Google Scholar 

  85. Calabrese AN, Watkinson TG, Henderson PJ, Radford SE, Ashcroft AE (2015) Amphipols outperform dodecylmaltoside micelles in stabilizing membrane protein structure in the gas phase. Anal Chem 87(2):1118–1126

    Article  CAS  PubMed  Google Scholar 

  86. Watkinson TG, Calabrese AN, Giusti F, Zoonens M, Radford SE, Ashcroft AE (2015) Systematic analysis of the use of amphipathic polymers for studies of outer membrane proteins using mass spectrometry. Int J Mass Spectrom 391:54–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gohon Y, Pavlov G, Timmins P, Tribet C, Popot JL, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334(2):318–334

    Article  CAS  PubMed  Google Scholar 

  88. Watkinson TG, Calabrese AN, Ault JR, Radford SE, Ashcroft AE (2017) FPOP-LC-MS/MS suggests differences in interaction sites of amphipols and detergents with outer membrane proteins. J Am Soc Mass Spectrom 28(1):50–55

    Article  CAS  PubMed  Google Scholar 

  89. Marty MT, Zhang H, Cui W, Blankenship RE, Gross ML, Sligar SG (2012) Native mass spectrometry characterization of intact nanodisc lipoprotein complexes. Anal Chem 84(21):8957–8960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sanders CR, Prosser RS (1998) Bicelles: a model membrane system for all seasons? Structure 6(10):1227–1234

    Article  CAS  PubMed  Google Scholar 

  91. Vold RR, Prosser RS, Deese AJ (1997) Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR 9(3):329–335

    Article  CAS  PubMed  Google Scholar 

  92. Schuler MA, Denisov IG, Sligar SG (2013) Nanodiscs as a new tool to examine lipid-protein interactions. Methods Mol Biol 974:415–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584(9):1721–1727

    Article  CAS  PubMed  Google Scholar 

  94. Hoi KK, Robinson CV, Marty MT (2016) Unraveling the composition and behavior of heterogeneous lipid nanodiscs by mass spectrometry. Anal Chem 88(12):6199–6204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Marty MT, Baldwin AJ, Marklund EG, Hochberg GK, Benesch JL, Robinson CV (2015) Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem 87(8):4370–4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Roos C, Kai L, Haberstock S, Proverbio D, Ghoshdastider U, Ma Y, Filipek S, Wang X, Dotsch V, Bernhard F (2014) High-level cell-free production of membrane proteins with nanodiscs. Methods Mol Biol 1118:109–130

    Article  CAS  PubMed  Google Scholar 

  97. Henrich E, Peetz O, Hein C, Laguerre A, Hoffmann B, Hoffmann J, Dötsch V, Bernhard F, Morgner N (2017) Analyzing native membrane protein assembly in nanodiscs by combined non-covalent mass spectrometry and synthetic biology. eLife 6:e20954

    Article  PubMed  PubMed Central  Google Scholar 

  98. Knowles TJ, Finka R, Smith C, Lin YP, Dafforn T, Overduin M (2009) Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131(22):7484–7485

    Article  CAS  PubMed  Google Scholar 

  99. Marcoux J, Politis A, Rinehart D, Marshall DP, Wallace MI, Tamm LK, Robinson CV (2014) Mass spectrometry defines the C-terminal dimerization domain and enables modeling of the structure of full-length OmpA. Structure 22(5):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Betanzos M, Chiang CS, Guy HR, Sukharev S (2002) A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat Struct Biol 9(9):704–710

    Article  CAS  PubMed  Google Scholar 

  101. Birkner JP, Poolman B, Kocer A (2012) Hydrophobic gating of mechanosensitive channel of large conductance evidenced by single-subunit resolution. Proc Natl Acad Sci U S A 109(32):12944–12949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kar UK, Simonian M, Whitelegge JP (2017) Integral membrane proteins: bottom-up, top-down and structural proteomics. Expert Rev Proteomics 14(8):715–723

    Article  CAS  PubMed  Google Scholar 

  103. Konijnenberg A, Bannwarth L, Yilmaz D, Kocer A, Venien-Bryan C, Sobott F (2015) Top-down mass spectrometry of intact membrane protein complexes reveals oligomeric state and sequence information in a single experiment. Protein Sci 24(8):1292–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Barrera NP, Isaacson SC, Zhou M, Bavro VN, Welch A, Schaedler TA, Seeger MA, Miguel RN, Korkhov VM, van Veen HW, Venter H, Walmsley AR, Tate CG, Robinson CV (2009) Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nat Methods 6(8):585–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cong X, Liu Y, Liu W, Liang X, Laganowsky A (2017) Allosteric modulation of protein-protein interactions by individual lipid binding events. Nat Commun 8(1):2203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Politis A, Stengel F, Hall Z, Hernandez H, Leitner A, Walzthoeni T, Robinson CV, Aebersold R (2014) A mass spectrometry-based hybrid method for structural modeling of protein complexes. Nat Methods 11(4):403–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hall Z, Politis A, Robinson CV (2012) Structural modeling of heteromeric protein complexes from disassembly pathways and ion mobility-mass spectrometry. Structure 20(9):1596–1609

    Article  CAS  PubMed  Google Scholar 

  108. Allison TM, Landreh M, Benesch JLP, Robinson CV (2016) Low charge and reduced mobility of membrane protein complexes has implications for calibration of collision cross section measurements. Anal Chem 88(11):5879–5884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Eschweiler JD, Rabuck-Gibbons JN, Tian Y, Ruotolo BT (2015) CIUSuite: a quantitative analysis package for collision induced unfolding measurements of gas-phase protein ions. Anal Chem 87(22):11516–11522

    Article  CAS  PubMed  Google Scholar 

  110. Steinberg MZ, Breuker K, Elber R, Gerber RB (2007) The dynamics of water evaporation from partially solvated cytochrome c in the gas phase. Phys Chem Chem Phys 9(33):4690–4697

    Article  CAS  PubMed  Google Scholar 

  111. Patriksson A, Marklund E, van der Spoel D (2007) Protein structures under electrospray conditions. Biochemist 46(4):933–945

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D.H., J.F.V.D., and F.S. acknowledge the Antwerp University Research Fund for the Concerted Research Actions grant (BOF-GOA 4D protein structure). A.N.C. acknowledges funding from the BBSRC (BB/P000037/1) and support from a University Academic Fellowship from the University of Leeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio N. Calabrese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hammerschmid, D., van Dyck, J.F., Sobott, F., Calabrese, A.N. (2020). Interrogating Membrane Protein Structure and Lipid Interactions by Native Mass Spectrometry. In: Postis, V.L.G., Goldman, A. (eds) Biophysics of Membrane Proteins. Methods in Molecular Biology, vol 2168. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0724-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0724-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0723-7

  • Online ISBN: 978-1-0716-0724-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics