Skip to main content

Structural Database for Lectins and the UniLectin Web Platform

  • Protocol
  • First Online:
Lectin Purification and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2132))

Abstract

The search for new biomolecules requires a clear understanding of biosynthesis and degradation pathways. This view applies to most metabolites as well as other molecule types such as glycans whose repertoire is still poorly characterized. Lectins are proteins that recognize specifically and interact noncovalently with glycans. This particular class of proteins is considered as playing a major role in biology. Glycan-binding is based on multivalence, which gives lectins a unique capacity to interact with surface glycans and significantly contribute to cell–cell recognition and interactions. Lectins have been studied for many years using multiple technologies and part of the resulting information is available online in databases. Unfortunately, the connectivity of these databases with the most popular omics databases (genomics, proteomics, and glycomics) remains limited. Moreover, lectin diversity is extended and requires setting out a flexible classification that remains compatible with new sequences and 3D structures that are continuously released. We have designed UniLectin as a new insight into the knowledge of lectins, their classification, and their biological role. This platform encompasses UniLectin3D, a curated database of lectin 3D structures that follows a periodically updated classification, a set of comparative and visualizing tools and gradually released modules dedicated to specific lectins predicted in sequence databases. The second module is PropLec, focused on β-propeller lectin prediction in all species based on five distinct family profiles. This chapter describes how UniLectin can be used to explore the diversity of lectins, their 3D structures, and associated functional information as well as to perform reliable predictions of β-propeller lectins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lis H, Sharon N (2002) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674

    Article  Google Scholar 

  2. Gallagher JT (1984) Carbohydrate-binding properties of lectins: a possible approach to lectin nomenclature and classification. Biosci Rep 4:621–632

    Article  CAS  Google Scholar 

  3. Peumans WJ, Van Damme EJ, Barre A et al (2001) Classification of plant lectins in families of structurally and evolutionary related proteins. Adv Exp Med Biol 491:27–54

    Article  CAS  Google Scholar 

  4. Kaltner H, Gabius H-J (2011) In: Wu AM (ed) Animal lectins: from initial description to elaborated structural and functional classification. The molecular immunology of complex carbohydrates—2 advances in experimental medicine and biology, vol 491. Springer, Boston, MA, pp 79–94

    Google Scholar 

  5. Fujimoto Z, Tateno H, Hirabayashi J (2014) Lectin structures: classification based on the 3-D structures. Methods Mol Biol 1200:579–606

    Article  CAS  Google Scholar 

  6. Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D2230

    Article  CAS  Google Scholar 

  7. Makyio H, Kato R (2016) Classification and comparison of fucose-binding lectins based on their structures. Trends Glycosci Glycotechnol 28:E25–E37

    Article  Google Scholar 

  8. The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506-D515.

    Google Scholar 

  9. Mir S, Alhroub Y, Anyango S et al (2018) PDBe: towards reusable data delivery infrastructure at protein data bank in Europe. Nucleic Acids Res 46:D486–D492

    Article  CAS  Google Scholar 

  10. Pérez S, Sarkar A, Rivet A et al (2015) Glyco3d: a portal for structural glycosciences. Methods Mol Biol 1273:241–258

    Article  Google Scholar 

  11. Hirabayashi J, Tateno H, Shikanai T et al (2015) The lectin frontier database (LfDB), and data generation based on frontal affinity chromatography. Molecules 20:951–973

    Article  Google Scholar 

  12. Chandra NR, Kumar N, Jeyakani J et al (2006) Lectindb: a plant lectin database. Glycobiology 16:938–946

    Article  CAS  Google Scholar 

  13. Mariethoz J, Khatib K, Alocci D et al (2016) SugarBindDB, a resource of glycan-mediated host-pathogen interactions. Nucleic Acids Res 44:D1243–D1250

    Article  CAS  Google Scholar 

  14. Alocci D, Mariethoz J, Gastaldello A et al (2019) GlyConnect: glycoproteomics goes visual, interactive, and analytical. J Proteome Res 18:664–677

    Article  CAS  Google Scholar 

  15. Sehnal D, Deshpande M, Vařeková RS et al (2017) LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat Methods 14:1121–1122

    Article  CAS  Google Scholar 

  16. Raman R, Venkataraman M, Ramakrishnan S et al (2006) Advancing glycomics: implementation strategies at the consortium for functional glycomics. Glycobiology 16:82R–90R

    Article  CAS  Google Scholar 

  17. Mehta AY, Cummings RD (2019) GLAD: GLycan Array Dashboard, a visual analytics tool for glycan microarrays. Bioinformatics 35(18):3536–3537

    Google Scholar 

  18. Marchler-Bauer A, Derbyshire MK, Gonzales NR et al (2015) CDD: NCBI's conserved domain database. Nucleic Acids Res 43:D222–226

    Google Scholar 

  19. Mitchell AL, Attwood TK, Babbitt PC et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360

    Google Scholar 

  20. Chandonia JM, Fox NK, Brenner SE (2019) SCOPe: classification of largemacromolecular structures in the structural classification of proteins-extendeddatabase. Nucleic Acids Res 47:D475–D48

    Google Scholar 

  21. Sillitoe I, Dawson N, Lewis TE et al (2019) CATH: expanding the horizons of structure-based functional annotations for genome sequences. Nucleic Acids Res 47:D280–D284

    Google Scholar 

  22. Lütteke T, von der Lieth CW (2004) PDB-care (PDB CArbohydrate REsidue check): a program to support annotation of complex carbohydrate structures in PDB files. BMC Bioinformatics 5:69

    Article  Google Scholar 

  23. Salentin S, Schreiber S, Haupt VJ et al (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43:W443–W447

    Article  CAS  Google Scholar 

  24. Varki A, Cummings RD, Aebi M et al (2015) Symbol nomenclature for graphical representation of glycans. Glycobiology 25:1323–1324

    Google Scholar 

  25. Rose AS, Bradley AR, Valasatava Y et al (2018) NGL viewer: web-based molecular graphics for large complexes. Bioinformatics 34:3755–3758

    Article  CAS  Google Scholar 

  26. Bienert S, Waterhouse A, De Beer TAP et al (2017) The SWISS-MODEL repository-new features and functionality. Nucleic Acids Res 45:D313–D319

    Article  CAS  Google Scholar 

  27. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC bioinformatics 10:421

    Article  Google Scholar 

  28. Finn RD, Clements J, Arndt W et al (2015) HMMER web server: 2015 Update. Nucleic Acids Res 43:W30–W38

    Article  CAS  Google Scholar 

  29. O'Leary NA, Wright MW, Brister JR et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745

    Article  CAS  Google Scholar 

  30. Brown GR, Hem V, Katz KS et al (2015) Gene: a gene-centered information resource at NCBI. Nucleic Acids Res 43:D36–D42

    Article  CAS  Google Scholar 

  31. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support by the ANR PIA Glyco@Alps (ANR-15-IDEX-02) and the Alliance Campus Rhodanien Co-funds (http://campusrhodanien.unige-cofunds.ch).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frédérique Lisacek or Anne Imberty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bonnardel, F., Perez, S., Lisacek, F., Imberty, A. (2020). Structural Database for Lectins and the UniLectin Web Platform. In: Hirabayashi, J. (eds) Lectin Purification and Analysis. Methods in Molecular Biology, vol 2132. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0430-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0430-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0429-8

  • Online ISBN: 978-1-0716-0430-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics