Skip to main content

Tsetse Fly Transmission Studies of African Trypanosomes

  • Protocol
  • First Online:
Trypanosomatids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2116))

Abstract

African trypanosomes are naturally transmitted by bloodsucking tsetse flies in sub-Saharan Africa and these transmission cycles can be reproduced in the laboratory if clean tsetse flies and suitable trypanosomes are available for experiments. Tsetse transmission gives access to more trypanosome developmental stages than are available from in vitro culture, albeit in very small numbers; for example, the sexual stages of Trypanosoma brucei have been isolated from infected tsetse salivary glands, but have not yet been reported from culture. Tsetse transmission also allows for the natural transition between different developmental stages to be studied.

Both wild-type and genetically modified trypanosomes have been successfully fly transmitted, and it is possible to manipulate the trypanosome environment inside the fly to some extent, for example, the induction of expression of genes controlled by the Tet repressor by feeding flies with tetracycline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buxton PA (1955) The natural history of tsetse flies. Memoir 10 London School of hygiene and tropical medicine. HK Lewis, London

    Google Scholar 

  2. Hoare CA (1972) The trypanosomes of mammals. Blackwell Scientific Publications Oxford, Hoboken, New Jersey

    Google Scholar 

  3. Jefferies D, Helfrich MP, Molyneux DH (1987) Cibarial infections of Trypanosoma vivax and T. congolense in Glossina. Parasitol Res 73:289–292

    Article  CAS  Google Scholar 

  4. Peacock L, Cook S, Ferris V, Bailey M, Gibson W (2012) The life cycle of Trypanosoma (Nannomonas) congolense in the tsetse fly. Parasit Vectors 5:109

    Article  Google Scholar 

  5. Sharma R, Peacock L, Gluenz E, Gull K, Gibson W, Carrington M (2008) Asymmetric cell division as a route to reduction in cell length and change in cell morphology in trypanosomes. Protist 159:137–151

    Article  Google Scholar 

  6. Van den Abbeele J, Claes Y, Van Bockstaele D, Le Ray D, Coosemans M (1999) Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitology 118:469–478

    Article  Google Scholar 

  7. Lewis EA, Langridge WP (1947) Developmental forms of Trypanosoma brucei in the "saliva" of Glossina pallidipes and G. austeni. Ann Trop Med Parasitol 41:6–13

    Article  CAS  Google Scholar 

  8. Gibson W, Peacock L, Ferris V, Williams K, Bailey M (2008) The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei. Parasit Vectors 1:4

    Article  Google Scholar 

  9. Peacock L, Ferris V, Sharma R, Sunter J, Bailey M, Carrington M, Gibson W (2011) Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proc Natl Acad Sci U S A 108:3671–3676

    Article  CAS  Google Scholar 

  10. Peacock L, Bailey M, Carrington M, Gibson W (2014) Meiosis and haploid gametes in the pathogen Trypanosoma brucei. Curr Biol 24:1–6

    Article  Google Scholar 

  11. Gibson W, Kay C, Peacock L (2017) Trypanosoma congolense: molecular toolkit and resources for studying a major livestock pathogen and model trypanosome. Adv Parasitol 98:283–309

    Article  Google Scholar 

  12. Mews AR, Langley PA, Pimley RW, Flood MET (1977) Large-scale rearing of tsetse flies (Glossina spp.) in the absence of a living host. Bull Entomol Res 67:119–128

    Article  Google Scholar 

  13. Maser P, Grether-Buhler Y, Kaminsky R, Brun R (2002) An anti-contamination cocktail for the in vitro isolation and cultivation of parasitic protozoa. Parasitol Res 88:172–174

    Article  Google Scholar 

  14. Peacock L, Kay C, Bailey M, Gibson W (2018) Shape-shifting trypanosomes: Flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus. PLoS Pathog 14:e1007043

    Article  Google Scholar 

  15. Burtt E (1946) Salivation by Glossina morsitans onto glass slides: a technique for isolating infected flies. Ann Trop Med Parasitol 40:141–144

    Article  CAS  Google Scholar 

  16. Peacock L, Ferris V, Bailey M, Gibson W (2007) Dynamics of infection and competition between two strains of Trypanosoma brucei brucei in the tsetse fly observed using fluorescent markers. Kinetoplastid Biol Dis 6:4

    Article  Google Scholar 

  17. Galun R, Margalit J (1969) Adenine nucleotides as feeding stimulants of tsetse fly Glossina austeni Newst. Nature 222:583–584

    Article  CAS  Google Scholar 

  18. Macleod ET, Maudlin I, Darby AC, Welburn SC (2007) Antioxidants promote establishment of trypanosome infections in tsetse. Parasitology 134:827–831

    Article  CAS  Google Scholar 

  19. Peacock L, Ferris V, Bailey M, Gibson W (2006) Multiple effects of the lectin-inhibitory sugars D-glucosamine and N-acetyl-glucosamine on tsetse-trypanosome interactions. Parasitology 132:651–658

    Article  CAS  Google Scholar 

  20. Cunningham I (1977) New culture medium for maintenance of tsetse tissues and growth of trypanosomatids. J Protozool 24:325–329

    Article  CAS  Google Scholar 

  21. Gibson W, Peacock L, Hutchinson R (2017) Microarchitecture of the tsetse fly proboscis. Parasit Vectors 10:430

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge current support from the UK Biotechnology and Biological Sciences Research Council (BBSRC) for our work on tsetse–trypanosome interactions. We are ever grateful to the staff who run the tsetse colonies at the International Atomic Energy Agency in Vienna for their generous supply of tsetse pupae, and thank the many colleagues who have developed and shared the methods compiled in this chapter. We are indebted to Chris Kay and Sue Holwell for guidance and assistance on the video microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Gibson .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Dissection of the tsetse gut and salivary glands, Glossina pallidipes. See text Subheading 3.2.1 and Fig. 2. (MP4 21479 KB)

Dissection of the tsetse proboscis, Glossina pallidipes. See text Subheading 3.2.2 and Fig. 4. (MP4 8558 KB)

Dissection of the tsetse cibarium, Glossina pallidipes. See text Subheading 3.2.2 and Fig. 6 (MP4 9331 KB)

Cibarium (MP4 3591 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peacock, L., Gibson, W. (2020). Tsetse Fly Transmission Studies of African Trypanosomes. In: Michels, P., Ginger, M., Zilberstein, D. (eds) Trypanosomatids. Methods in Molecular Biology, vol 2116. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0294-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0294-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0293-5

  • Online ISBN: 978-1-0716-0294-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics