Skip to main content

Genome-Wide Proteomics and Phosphoproteomics Analysis of Trypanosoma cruzi During Differentiation

  • Protocol
  • First Online:
Trypanosomatids

Abstract

Trypanosoma cruzi is a pathogenic protozoan that still has an impact on public health, despite the decrease in the number of infection cases along the years. T. cruzi possesses an heteroxenic life cycle in which it differentiates in at least four forms. Among the differentiation processes, metacyclogenesis has been exploited in different views by researchers. An intriguing question that rises is how metacyclogenesis is triggered and controlled by cell signaling and which are the differentially expressed proteins and posttranslational modifications involved in this process. An important cell signaling pathway is the protein phosphorylation, and it is reinforced in T. cruzi in which the gene expression control occurs almost exclusively posttranscriptionally. Additionally, the number of protein kinases in T. cruzi is relatively high compared to other organisms. A way to approach these questions is evaluating the cells through phosphoproteomics and proteomics. In this chapter, we will describe the steps from the cell protein extraction, digestion and fractionation, phosphopeptide enrichment, to LC-MS/MS analysis as well as a brief overview on peptide identification. In addition, a published method for in vitro metacyclogenesis will be detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sullivan JJ (1982) Metacyclogenesis of Trypanosoma cruzi in vitro: a simplified procedure. Trans R Soc Trop Med Hyg 76(3):300–303

    Article  CAS  Google Scholar 

  2. Contreras VT, Salles JM, Thomas N, Morel CM, Goldenberg S (1985) In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol 16(3):315–327. 0166-6851(85)90073-8 [pii]

    Article  CAS  Google Scholar 

  3. Bonaldo MC, Souto-Padron T, de Souza W, Goldenberg S (1988) Cell-substrate adhesion during Trypanosoma cruzi differentiation. J Cell Biol 106(4):1349–1358

    Article  CAS  Google Scholar 

  4. de Camara Mde L, Bouvier LA, Miranda MR, Reigada C, Pereira CA (2013) Laboratory techniques to obtain different forms of Trypanosoma cruzi: applications to wild-type and genetically modified parasites. Folia Parasitol (Praha) 60(5):406–410

    Article  Google Scholar 

  5. Martinez-Diaz RA, Escario JA, Nogal-Ruiz JJ, Gomez-Barrio A (2001) Biological characterization of Trypanosoma cruzi strains. Mem Inst Oswaldo Cruz 96(1):53–59

    Article  CAS  Google Scholar 

  6. Goncalves CS, Avila AR, de Souza W, Motta MCM, Cavalcanti DP (2018) Revisiting the Trypanosoma cruzi metacyclogenesis: morphological and ultrastructural analyses during cell differentiation. Parasit Vectors 11(1):83. https://doi.org/10.1186/s13071-018-2664-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Sousa MA (1983) A simple method to purify biologically and antigenically preserved bloodstream trypomastigotes of Trypanosoma cruzi using DEAE-cellulose columns. Mem Inst Oswaldo Cruz 78(3):317–333

    Article  Google Scholar 

  8. Contreras VT, Morel CM, Goldenberg S (1985) Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis. Mol Biochem Parasitol 14(1):83–96. 0166-6851(85)90108-2 [pii]

    Article  CAS  Google Scholar 

  9. Krieger MA, Avila AR, Ogatta SF, Plazanet-Menut C, Goldenberg S (1999) Differential gene expression during Trypanosoma cruzi metacyclogenesis. Mem Inst Oswaldo Cruz 94(Suppl 1):165–168

    Article  Google Scholar 

  10. Marchini FK, de Godoy LM, Rampazzo RC, Pavoni DP, Probst CM, Gnad F, Mann M, Krieger MA (2011) Profiling the Trypanosoma cruzi phosphoproteome. PLoS One 6(9):e25381. https://doi.org/10.1371/journal.pone.0025381. PONE-D-11-10301 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Godoy LM, Marchini FK, Pavoni DP, Rampazzo Rde C, Probst CM, Goldenberg S, Krieger MA (2012) Quantitative proteomics of Trypanosoma cruzi during metacyclogenesis. Proteomics 12(17):2694–2703. https://doi.org/10.1002/pmic.201200078

    Article  CAS  PubMed  Google Scholar 

  12. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309(5733):409–415. 309/5733/409 [pii]. https://doi.org/10.1126/science.1112631

    Article  CAS  PubMed  Google Scholar 

  13. Batista M, Kugeratski FG, de Paula Lima CV, Probst CM, Kessler RL, de Godoy LM, Krieger MA, Marchini FK (2017) The MAP kinase MAPKLK1 is essential to Trypanosoma brucei proliferation and regulates proteins involved in mRNA metabolism. J Proteomics 154:118–127. S1874-3919(16)30527-9 [pii]. https://doi.org/10.1016/j.jprot.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  14. Kugeratski FG, Batista M, Lima CVP, Neilson LJ, da Cunha ES, de Godoy LM, Zanivan S, Krieger MA, Marchini FK (2018) Mitogen-activated protein kinase kinase 5 regulates proliferation and biosynthetic processes in procyclic forms of Trypanosoma brucei. J Proteome Res 17(1):108–118. https://doi.org/10.1021/acs.jproteome.7b00415

    Article  CAS  PubMed  Google Scholar 

  15. Amorim JC, Batista M, da Cunha ES, Lucena ACR, Lima CVP, Sousa K, Krieger MA, Marchini FK (2017) Quantitative proteome and phosphoproteome analyses highlight the adherent population during Trypanosoma cruzi metacyclogenesis. Sci Rep 7(1):9899. https://doi.org/10.1038/s41598-017-10292-3

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clayton CE (2002) Life without transcriptional control? From fly to man and back again. EMBO J 21(8):1881–1888. https://doi.org/10.1093/emboj/21.8.1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kramer S (2012) Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Mol Biochem Parasitol 181(2):61–72. S0166-6851(11)00225-8 [pii]. https://doi.org/10.1016/j.molbiopara.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  18. Parsons M, Worthey EA, Ward PN, Mottram JC (2005) Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6:127. . 1471-2164-6-127 [pii]. https://doi.org/10.1186/1471-2164-6-127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. . nmeth.1322 [pii]. https://doi.org/10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

  20. Wisniewski JR (2018) Filter-aided sample preparation for proteome analysis. Methods Mol Biol 1841:3–10. https://doi.org/10.1007/978-1-4939-8695-8_1

    Article  CAS  PubMed  Google Scholar 

  21. Gilar M, Olivova P, Daly AE, Gebler JC (2005) Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci 28(14):1694–1703

    Article  CAS  Google Scholar 

  22. Yang F, Shen Y, Camp DG 2nd, Smith RD (2012) High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev Proteomics 9(2):129–134. https://doi.org/10.1586/epr.12.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4(3):231–237. . nmeth1005 [pii]. https://doi.org/10.1038/nmeth1005

    Article  CAS  PubMed  Google Scholar 

  24. Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154(1):250–254. 0003-2697(86)90523-3 [pii]

    Article  CAS  Google Scholar 

  25. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71(14):2883–2892

    Article  CAS  Google Scholar 

  26. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76(14):3935–3943. https://doi.org/10.1021/ac0498617

    Article  CAS  PubMed  Google Scholar 

  27. Humphrey SJ, Karayel O, James DE, Mann M (2018) High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nat Protoc 13(9):1897–1916. https://doi.org/10.1038/s41596-018-0014-9

    Article  CAS  PubMed  Google Scholar 

  28. Kim MS, Choie W-S, Shin YS, Yu MH, Lee SW (2004) Development of ultra-high pressure capillary reverse-phase liquid chromatography/tandem mass spectrometry for high-sensitive and high-throughput proteomics. Bull Kor Chem Soc 25(12):1833–1839

    Article  CAS  Google Scholar 

  29. Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ (2004) A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem 76(13):3590–3598. https://doi.org/10.1021/ac0497104

    Article  CAS  PubMed  Google Scholar 

  30. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989. https://doi.org/10.1016/1044-0305(94)80016-2

    Article  CAS  PubMed  Google Scholar 

  31. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567. https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  32. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. . nbt.1511 [pii]. https://doi.org/10.1038/nbt.1511

    Article  CAS  Google Scholar 

  33. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. https://doi.org/10.1021/pr101065j

    Article  CAS  Google Scholar 

  34. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. nmeth.3901 [pii]. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

  35. Kessler RL, Soares MJ, Probst CM, Krieger MA (2013) Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death. PLoS One 8(1):e55497. https://doi.org/10.1371/journal.pone.0055497. PONE-D-12-29152 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wisniewski JR, Gaugaz FZ (2015) Fast and sensitive total protein and Peptide assays for proteomic analysis. Anal Chem 87(8):4110–4116. https://doi.org/10.1021/ac504689z

    Article  CAS  PubMed  Google Scholar 

  37. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670

    Article  CAS  Google Scholar 

  38. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. . nprot.2007.261 [pii]. https://doi.org/10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  39. Schaab C, Geiger T, Stoehr G, Cox J, Mann M (2012) Analysis of high accuracy, quantitative proteomics data in the MaxQB database. Mol Cell Proteomics 11(3):M111.014068. M111.014068 [pii]. https://doi.org/10.1074/mcp.M111.014068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tyanova S, Temu T, Carlson A, Sinitcyn P, Mann M, Cox J (2015) Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics 15(8):1453–1456. https://doi.org/10.1002/pmic.201400449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tyanova S, Cox J (2018) Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol Biol 1711:133–148. https://doi.org/10.1007/978-1-4939-7493-1_7

    Article  CAS  PubMed  Google Scholar 

  42. De Paula Lima CV, Batista M, Kugeratski FG, Vincent IM, Soares MJ, Probst CM, Krieger MA, Marchini FK (2014) LM14 defined medium enables continuous growth of Trypanosoma cruzi. BMC Microbiol 14:238. . s12866-014-0238-y [pii]. https://doi.org/10.1186/s12866-014-0238-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Greig N, Wyllie S, Patterson S, Fairlamb AH (2009) A comparative study of methylglyoxal metabolism in trypanosomatids. FEBS J 276(2):376–386. . EJB6788 [pii]. https://doi.org/10.1111/j.1742-4658.2008.06788.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roberts AJ, Fairlamb AH (2016) The N-myristoylome of Trypanosoma cruzi. Sci Rep 6:31078. srep31078 [pii]. https://doi.org/10.1038/srep31078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meyer JG, A Komives E (2012) Charge state coalescence during electrospray ionization improves peptide identification by tandem mass spectrometry. J Am Soc Mass Spectrom 23(8):1390–1399. https://doi.org/10.1007/s13361-012-0404-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hahne H, Pachl F, Ruprecht B, Maier SK, Klaeger S, Helm D, Medard G, Wilm M, Lemeer S, Kuster B (2013) DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nat Methods 10(10):989–991. nmeth.2610 [pii]. https://doi.org/10.1038/nmeth.2610

    Article  CAS  PubMed  Google Scholar 

  47. Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4(12):2010–2021. . T500030-MCP200 [pii]. https://doi.org/10.1074/mcp.T500030-MCP200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Dr. Rafael Luis Kessler for kindly providing the microscopy images of T. cruzi and to MSc Wagner Nagib de Souza Birbeire for assistance in artwork design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Klerynton Marchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Batista, M., Amorim, J.C., Lucena, A.C.R., Kugeratski, F.G., de Paula Lima, C.V., Marchini, F.K. (2020). Genome-Wide Proteomics and Phosphoproteomics Analysis of Trypanosoma cruzi During Differentiation. In: Michels, P., Ginger, M., Zilberstein, D. (eds) Trypanosomatids. Methods in Molecular Biology, vol 2116. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0294-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0294-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0293-5

  • Online ISBN: 978-1-0716-0294-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics