Skip to main content

Protocols for High-Throughput Isolation and Cultivation

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The ability to isolate and cultivate cells in the laboratory has been key to progress in the life sciences. Methods that allow for automated and rapid isolation and cultivation of microorganisms in the laboratory can provide access to organisms that have previously not been propagated in the laboratory, thereby enabling in-depth studies of the physiology of these microbes. Here we describe an automated high-throughput method that combines encapsulation of cells into agarose microcapsules. After isolating individual cells by encapsulation, the population of cells can be incubated as a whole. Cells that divide and form distinct microcolonies within the microcapsule can subsequently be separated from each other by flow cytometry.

The original version of this chapter was revised: Corresponding author name was updated and acknowledgement content was added to the chapter. The erratum to this chapter is available at 10.1007/8623_2016_197

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ishikuri S, Hattori T (1985) Formation of bacterial colonies in successive time intervals. Appl Environ Microbiol 49:870–873

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Winding A, Binnerup SJ, Sørensen J (1994) Viability of indigenous soil bacteria assayed by respiratory activity and growth. Appl Environ Microbiol 60:2869–2875

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Janssen PH (2008) New cultivation strategies for terrestrial microorganisms. In: Zengler K (ed) Accessing uncultivated microorganisms: from the environment to organisms and genomes and back. ASM Press, Washington, DC, pp 173–192

    Chapter  Google Scholar 

  4. Watve M, Shejval V, Sonawane C et al (2000) The “K” selected oligotrophic bacteria: a key to uncultured diversity? Curr Sci 78:1535–1542

    Google Scholar 

  5. Button DK, Schut F, Quang P, Martin R, Roberston BR (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59:881–891

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schoenborn L, Yates PS, Grinton BE, Hugenholtz P, Janssen PH (2004) Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol 70:4363–4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Man JC (1975) The probability of most probable numbers. Eur J Appl Microbiol 1:67–78

    Article  Google Scholar 

  9. Porter J, Edwards C, Morgan JA, Pickup RW (1993) Rapid, automated separation of specific bacteria from lake water and sewage by flow cytometry and cell sorting. Appl Environ Microbiol 59:3327–3333

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferrari BC, Oregaard G, Sorensen SJ (2004) Recovery of GFP-labeled bacteria for culturing and molecular analysis after cell sorting using a benchtop flow cytometer. Microb Ecol 48:239–245

    Article  CAS  PubMed  Google Scholar 

  11. Ishii S, Ohno H, Tsuboi M, Otsuka S, Senoo K (2011) Identification and isolation of active N2O reducers in rice paddy soil. ISME J 5:1936–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taylor RJ, Falconnet D, Niemisto A et al (2009) Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform. Proc Natl Acad Sci U S A 106:3758–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marcy Y, Ouverney C, Bik EM et al (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A 104:11889–11894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pompano RR, Liu W, Du W, Ismagilov RF (2011) Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. Annu Rev Anal Chem 4:59–81

    Article  CAS  Google Scholar 

  15. Wang BL, Ghaderi A, Zhou H et al (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 32:473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fröhlich J, König H (1999) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst Appl Microbiol 22:249–257

    Article  PubMed  Google Scholar 

  17. Ishoy T, Kvist T, Westermann P, Ahring BK (2006) An improved method for single cell isolation of prokaryotes from meso-, thermo- and hyperthermophilic environments using micromanipulation. Appl Microbiol Biotechnol 69:510–514

    Article  CAS  PubMed  Google Scholar 

  18. Zengler K, Walcher M, Clark G et al (2005) High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol 397:124–130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Lars Behrendt, Søren Johannes S½rensen, and Jakob Winther (University of Copenhagen, Denmark) for providing results prior to publication that led to further improvements of the method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Zengler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Zengler, K. (2014). Protocols for High-Throughput Isolation and Cultivation. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2014_38

Download citation

  • DOI: https://doi.org/10.1007/8623_2014_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45178-6

  • Online ISBN: 978-3-662-45179-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics