Skip to main content

Staphylococcus aureus Pore-Forming Toxins

  • Chapter
  • First Online:
Staphylococcus aureus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 409))

Abstract

Staphylococcus aureus (S. aureus) is a formidable foe equipped with an armamentarium of virulence factors to thwart host defenses and establish a successful infection. Among these virulence factors, S. aureus produces several potent secreted proteins that act as cytotoxins, predominant among them the beta-barrel pore-forming toxins. These toxins play several roles in pathogenesis, including disruption of cellular adherens junctions at epithelial barriers, alteration of intracellular signaling events, modulation of host immune responses, and killing of eukaryotic immune and non-immune cells. This chapter provides an updated overview on the S. aureus beta-barrel pore-forming cytotoxins, the identification of toxin receptors on host cells, and their roles in pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADAM10:

A disintegrin and metalloprotease 10

CA-MRSA:

Community-acquired methicillin-resistant Staphylococcus aureus

CCR2:

C-C chemokine receptor type 2

CCR5:

C-C chemokine receptor type 5

CD11b:

Cluster of differentiation molecule 11b

cDNA:

Complementary deoxyribonucleic acid

CXCR1:

C-X-C chemokine receptor type 1

CXCR2:

C-X-C chemokine receptor type 2

DARC:

Duffy antigen receptor for chemokines

HEK:

Human embryonic kidney cells

Hla:

Alpha-toxin (also known as alpha-hemolysin)

HlgAB:

Gamma-hemolysin AB

HlgACB:

Gamma-hemolysins

HlgCB:

Gamma-hemolysin CB

LukAB/HG:

Leukocidin AB/HG

LukED:

Leukocidin ED

LukSF-PV/PVL:

Panton–Valentine Leukocidin

MAC-1:

Macrophage-1 integrin

PLEKHA7:

Pleckstrin homology domain-containing family A member 7

PMNs:

Polymorphonuclear neutrophils

S. aureus :

Staphylococcus aureus

SSTI:

Skin and soft tissue infection

WT:

Wild type

References

  • Alonzo F III, Benson MA, Chen J, Novick RP, Shopsin B, Torres VJ (2012) Staphylococcus aureus leucocidin ED contributes to systemic infection by targeting neutrophils and promoting bacterial growth in vivo. Mol Microbiol 83:423–435

    Article  CAS  PubMed  Google Scholar 

  • Alonzo F III, Kozhaya L, Rawlings SA, Reyes-Robles T, DuMont AL, Myszka DG, Landau NR, Unutmaz D, Torres VJ (2013) CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature 493:51–55

    Article  PubMed  CAS  Google Scholar 

  • Alonzo F III, Torres VJ (2014) The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 78:199–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218

    Article  CAS  PubMed  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  • Badarau A, Rouha H, Malafa S, Logan DT, Hakansson M, Stulik L, Dolezilkova I, Teubenbacher A, Gross K, Maierhofer B et al (2015) Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH. J Biol Chem 290:142–156

    Article  CAS  PubMed  Google Scholar 

  • Becker KW, Skaar EP (2014) Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiol Rev 38:1235–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berube BJ, Bubeck Wardenburg J (2013) Staphylococcus aureus alpha-toxin: nearly a century of intrigue. Toxins (Basel) 5:1140–1166

    Article  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1991) Alpha-toxin of Staphylococcus aureus. Microbiol Rev 55:733–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bubeck Wardenburg J, Bae T, Otto M, Deleo FR, Schneewind O (2007a) Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med 13:1405–1406

    Article  PubMed  CAS  Google Scholar 

  • Bubeck Wardenburg J, Patel RJ, Schneewind O (2007b) Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect Immun 75:1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Bubeck Wardenburg J, Palazzolo-Ballance AM, Otto M, Schneewind O, DeLeo FR (2008) Panton-Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J Infect Dis 198:1166–1170

    Article  PubMed  Google Scholar 

  • Burnet FM (1929) The exotoxins of Staphylococcus pyogenes aureus. J Pathol Bacteriol 32:717–734

    Article  CAS  Google Scholar 

  • Burnet FM (1930) The production of staphylococcal toxin. J Pathol Bacteriol 33:1–16

    Article  CAS  Google Scholar 

  • Cassidy P, Harshman S (1976) Studies on the binding of staphylococcal 125I-labeled alpha-toxin to rabbit erythrocytes. Biochemistry 15:2348–2355

    Article  CAS  PubMed  Google Scholar 

  • Colin DA, Mazurier I, Sire S, Finck-Barbancon V (1994) Interaction of the two components of leukocidin from Staphylococcus aureus with human polymorphonuclear leukocyte membranes: sequential binding and subsequent activation. Infect Immun 62:3184–3188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney J, Kienle Z, Foster TJ, O’Toole PW (1993) The gamma-hemolysin locus of Staphylococcus aureus comprises three linked genes, two of which are identical to the genes for the F and S components of leukocidin. Infect Immun 61:768–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Craven R, Gao X, Allen I, Gris D, Bubeck Wardenburg J, McElvania-Tekippe E, Ting J, Duncan J (2009) Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PloS One 4

    Google Scholar 

  • Cremieux AC, Dumitrescu O, Lina G, Vallee C, Cote JF, Muffat-Joly M, Lilin T, Etienne J, Vandenesch F, Saleh-Mghir A (2009) Panton-valentine leukocidin enhances the severity of community-associated methicillin-resistant Staphylococcus aureus rabbit osteomyelitis. PLoS One 4:e7204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dajcs JJ, Austin MS, Sloop GD, Moreau JM, Hume EB, Thompson HW, McAleese FM, Foster TJ, O’Callaghan RJ (2002a) Corneal pathogenesis of Staphylococcus aureus strain Newman. Invest Ophthalmol Vis Sci 43:1109–1115

    PubMed  Google Scholar 

  • Dajcs JJ, Thibodeaux BA, Girgis DO, O’Callaghan RJ (2002b) Corneal virulence of Staphylococcus aureus in an experimental model of keratitis. DNA Cell Biol 21:375–382

    Article  CAS  PubMed  Google Scholar 

  • Dalla Serra M, Coraiola M, Viero G, Comai M, Potrich C, Ferreras M, Baba-Moussa L, Colin DA, Menestrina G, Bhakdi S et al (2005) Staphylococcus aureus bicomponent gamma-hemolysins, HlgA, HlgB, and HlgC, can form mixed pores containing all components. J Chem Inf Model 45:1539–1545

    Article  CAS  PubMed  Google Scholar 

  • Denys J, Van de Velde H (1895) Sur la production d’une antileucocidine chez les lapin vaccinés contre le staphylocoque pyogène. La Cellule, 359–372

    Google Scholar 

  • Diep BA, Chan L, Tattevin P, Kajikawa O, Martin TR, Basuino L, Mai TT, Marbach H, Braughton KR, Whitney AR et al (2010) Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury. Proc Natl Acad Sci USA 107:5587–5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuMont AL, Nygaard TK, Watkins RL, Smith A, Kozhaya L, Kreiswirth BN, Shopsin B, Unutmaz D, Voyich JM, Torres VJ (2011) Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol 79:814–825

    Article  CAS  PubMed  Google Scholar 

  • DuMont AL, Torres VJ (2014) Cell targeting by the Staphylococcus aureus pore-forming toxins: it’s not just about lipids. Trends Microbiol 22:21–27

    Article  CAS  PubMed  Google Scholar 

  • DuMont AL, Yoong P, Day CJ, Alonzo F III, McDonald WH, Jennings MP, Torres VJ (2013a) Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proc Natl Acad Sci USA 110:10794–10799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuMont AL, Yoong P, Surewaard BG, Benson MA, Nijland R, van Strijp JA, Torres VJ (2013b) Staphylococcus aureus elaborates leukocidin AB to mediate escape from within human neutrophils. Infect Immun 81:1830–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuMont AL, Yoong P, Liu X, Day CJ, Chumbler NM, James DB, Alonzo F III, Bode NJ, Lacy DB, Jennings MP et al (2014) Identification of a crucial residue required for Staphylococcus aureus LukAB cytotoxicity and receptor recognition. Infect Immun 82:1268–1276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fackrell HB, Wiseman GM (1976) Properties of the gamma haemolysin of Staphylococcus aureus ‘Smith 5R’. J Gen Microbiol 92:11–24

    Article  CAS  PubMed  Google Scholar 

  • Galy R, Bergeret F, Keller D, Mourey L, Prévost G, Maveyraud L (2012) Crystallization and preliminary crystallographic studies of both components of the staphylococcal LukE-LukD leukotoxin. Acta Cryst 68:663–667

    Google Scholar 

  • Gauduchon V, Werner S, Prevost G, Monteil H, Colin DA (2001) Flow cytometric determination of Panton-Valentine leucocidin S component binding. Infect Immun 69:2390–2395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladstone GP, Van Heyningen WE (1957) Staphylococcal leucocidins. Br J Exp Pathol 38:123–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glenny AT, Stevens MF (1935) Staphylococcus toxins and antitoxins. J Pathol Bacteriol 40:201–210

    Article  CAS  Google Scholar 

  • Gouaux JE, Braha O, Hobaugh MR, Song L, Cheley S, Shustak C, Bayley H (1994) Subunit stoichiometry of staphylococcal alpha-hemolysin in crystals and on membranes: a heptameric transmembrane pore. Proc Natl Acad Sci USA 91:12828–12831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graves SF, Kobayashi SD, Braughton KR, Whitney AR, Sturdevant DE, Rasmussen DL, Kirpotina LN, Quinn MT, DeLeo FR (2012) Sublytic concentrations of Staphylococcus aureus Panton-Valentine leukocidin alter human PMN gene expression and enhance bactericidal capacity. J Leukoc Biol 92:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravet A, Colin DA, Keller D, Girardot R, Monteil H, Prevost G (1998) Characterization of a novel structural member, LukE-LukD, of the bi-component staphylococcal leucotoxins family. FEBS Lett 436:202–208

    Article  CAS  PubMed  Google Scholar 

  • Gray GS, Kehoe M (1984) Primary sequence of the alpha-toxin gene from Staphylococcus aureus wood 46. Infect Immun 46:615–618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green HJ (Ed) (1928) Royal commission of inquiry into fatalities at Bundaberg. Report of the Royal Commission of Inquity into Fatalities at Bundaberg, Together with Appendices. Government Printer; Melbourne, Australia

    Google Scholar 

  • Guillet V, Keller D, Prevost G, Mourey L (2004a) Crystallization and preliminary crystallographic data of a leucotoxin S component from Staphylococcus aureus. Acta Crystallogr D Biol Crystallogr 60:310–313

    Article  PubMed  CAS  Google Scholar 

  • Guillet V, Roblin P, Werner S, Coraiola M, Menestrina G, Monteil H, Prevost G, Mourey L (2004b) Crystal structure of leucotoxin S component: new insight into the Staphylococcal beta-barrel pore-forming toxins. J Biol Chem 279:41028–41037

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand A, Pohl M, Bhakdi S (1991) Staphylococcus aureus alpha-toxin. Dual mechanism of binding to target cells. J Biol Chem 266:17195–17200

    CAS  PubMed  Google Scholar 

  • Inoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM, Wang Y, Bubeck Wardenburg J (2011) A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17:1310–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasinghe L, Bayley H (2005) The leukocidin pore: evidence for an octamer with four LukF subunits and four LukS subunits alternating around a central axis. Protein Sci 14:2550–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joubert O, Voegelin J, Guillet V, Tranier S, Werner S, Colin DA, Serra MD, Keller D, Monteil H, Mourey L et al (2007) Distinction between pore assembly by Staphylococcal alpha-Toxin versus Leukotoxins. J Biomed Biotechnol 2007:25935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Julianelle LA (1922) Studies of hemolytic staphylococci—Hemolytic activity—Biochemical reactions—Serologic reactions. J Infect Dis 31:256–284

    Article  CAS  Google Scholar 

  • Labandeira-Rey M, Couzon F, Boisset S, Brown EL, Bes M, Benito Y, Barbu EM, Vazquez V, Hook M, Etienne J et al (2007) Staphylococcus aureus panton-valentine leukocidin causes necrotizing pneumonia. Science 315:1130–1133

    Article  CAS  PubMed  Google Scholar 

  • Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J (1999) Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Loffler B, Hussain M, Grundmeier M, Bruck M, Holzinger D, Varga G, Roth J, Kahl BC, Proctor RA, Peters G (2010) Staphylococcus aureus Panton-Valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog 6:e1000715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loffler B, Niemann S, Ehrhardt C, Horn D, Lanckohr C, Lina G, Ludwig S, Peters G (2013) Pathogenesis of Staphylococcus aureus necrotizing pneumonia: the role of PVL and an influenza coinfection. Expert Rev Anti Infect Ther 11:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Lubkin A, Torres VJ (2015) The ever-emerging complexity of alpha-toxin’s interaction with host cells. Proc Natl Acad Sci USA 112:14123–14124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malachowa N, Kobayashi SD, Braughton KR, Whitney AR, Parnell MJ, Gardner DJ, Deleo FR (2012) Staphylococcus aureus Leukotoxin GH promotes inflammation. J Infect Dis 206:1185–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malachowa N, Kobayashi SD, Freedman B, Dorward DW, DeLeo FR (2013) Staphylococcus aureus leukotoxin GH promotes formation of neutrophil extracellular traps. J Immunol 191:6022–6029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malachowa N, Whitney AR, Kobayashi SD, Sturdevant DE, Kennedy AD, Braughton KR, Shabb DW, Diep BA, Chambers HF, Otto M et al (2011) Global changes in Staphylococcus aureus gene expression in human blood. PLoS One 6:e18617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer K, Reyes-Robles T, Alonzo F III, Durbin J, Torres VJ, Cadwell K (2015) Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host Microbe 17:429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy AJ, Lindsay JA (2013) Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study. Infect Genet Evol 19C:7–14

    Article  CAS  Google Scholar 

  • Melehani JH, James DB, DuMont AL, Torres VJ, Duncan JA (2015) Staphylococcus aureus Leukocidin A/B (LukAB) kills human monocytes via Host NLRP3 and ASC when extracellular, but not intracellular. PLoS Pathog 11:e1004970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menestrina G, Dalla Serra M, Comai M, Coraiola M, Viero G, Werner S, Colin DA, Monteil H, Prevost G (2003) Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus. FEBS Lett 552:54–60

    Article  CAS  PubMed  Google Scholar 

  • Miles G, Movileanu L, Bayley H (2002) Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore. Protein Sci 11:894–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monma N, Nguyen VT, Kaneko J, Higuchi H, Kamio Y (2004) Essential residues, W177 and R198, of LukF for phosphatidylcholine-binding and pore-formation by staphylococcal gamma-hemolysin on human erythrocyte membranes. J Biochem 136:427–431

    Article  CAS  PubMed  Google Scholar 

  • Morinaga N, Kaihou Y, Noda M (2003) Purification, cloning and characterization of variant LukE-LukD with strong leukocidal activity of staphylococcal bi-component leukotoxin family. Microbiol Immunol 47:81–90

    Article  CAS  PubMed  Google Scholar 

  • Mueller EA, Merriman JA, Schlievert PA (2015) Toxic shock syndrome toxin-1, not alpha toxin, mediated Bundaberg fatalities. Microbiology 161:2361–2368

    Google Scholar 

  • Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, Johnson SK, Vandenesch F, Fridkin S, O’Boyle C et al (2003) Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 290:2976–2984

    Article  CAS  PubMed  Google Scholar 

  • Neisser M, Wechsberg F (1901) Ueber das staphylotoxin. Med Microbiol Immunol 36:299–349

    Google Scholar 

  • Nilsson IM, Hartford O, Foster T, Tarkowski A (1999) Alpha-toxin and gamma-toxin jointly promote Staphylococcus aureus virulence in murine septic arthritis. Infect Immun 67:1045–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noda M, Kato I, Hirayama T, Matsuda F (1980) Fixation and inactivation of staphylococcal leukocidin by phosphatidylcholine and ganglioside GM1 in rabbit polymorphonuclear leukocytes. Infect Immun 29:678–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novick RP, Subedi A (2007) The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem Immunol Allergy 93:42–57

    Article  CAS  PubMed  Google Scholar 

  • Nygaard TK, Pallister KB, Dumont AL, Dewald M, Watkins RL, Pallister EQ, Malone C, Griffith S, Horswill AR, Torres VJ et al (2012) Alpha-toxin induces programmed cell death of human T cells, B cells, and monocytes during USA300 infection. PLoS One 7:e36532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson R, Nariya H, Yokota K, Kamio Y, Gouaux E (1999) Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat Struct Biol 6:134–140

    Article  CAS  PubMed  Google Scholar 

  • Ozawa T, Kaneko J, Kamio Y (1995) Essential binding of LukF of staphylococcal gamma-hemolysin followed by the binding of H gamma II for the hemolysis of human erythrocytes. Biosci Biotechnol Biochem 59:1181–1183

    Article  CAS  PubMed  Google Scholar 

  • Panton PN, Valentine FCO (1932) Staphylococcal toxin. Lancet 1:506–508

    Google Scholar 

  • Pedelacq JD, Maveyraud L, Prevost G, Baba-Moussa L, Gonzalez A, Courcelle E, Shepard W, Monteil H, Samama JP, Mourey L (1999) The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure 7:277–287

    Article  CAS  PubMed  Google Scholar 

  • Perret M, Badiou C, Lina G, Burbaud S, Benito Y, Bes M, Cottin V, Couzon F, Juruj C, Dauwalder O et al (2012) Cross-talk between S. aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner. Cell Microbiol 14:1019–1036

    Google Scholar 

  • Popov LM, Marceau CD, Starkl PM, Lumb JH, Shah J, Guerrera D, Cooper RL, Merakou C, Bouley DM, Meng W et al (2015) The adherens junctions control susceptibility to Staphylococcus aureus alpha-toxin. Proc Natl Acad Sci USA 112:14337–14342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potrich C, Bastiani H, Colin DA, Huck S, Prevost G, Dalla Serra M (2009) The influence of membrane lipids in Staphylococcus aureus gamma-hemolysins pore formation. J Membr Biol 227:13–24

    Article  CAS  PubMed  Google Scholar 

  • Powers ME, Becker RE, Sailer A, Turner JR, Bubeck Wardenburg J (2015) Synergistic action of Staphylococcus aureus alpha-toxin on platelets and myeloid lineage cells contributes to lethal sepsis. Cell Host Microbe 17:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers ME, Kim HK, Wang Y, Bubeck Wardenburg J (2012) ADAM10 mediates vascular injury induced by Staphylococcus aureus alpha-hemolysin. J Infect Dis 206:352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prevost G, Mourey L, Colin DA, Menestrina G (2001) Staphylococcal pore-forming toxins. Curr Top Microbiol Immunol 257:53–83

    CAS  PubMed  Google Scholar 

  • Reyes-Robles T, Alonzo F III, Kozhaya L, Lacy DB, Unutmaz D, Torres VJ (2013) Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14:453–459

    Article  CAS  PubMed  Google Scholar 

  • Rouha H, Badarau A, Visram ZC, Battles MB, Prinz B, Magyarics Z, Nagy G, Mirkina I, Stulik L, Zerbs M et al (2015) Five birds, one stone: neutralization of alpha-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs 7:243–254

    Article  CAS  PubMed  Google Scholar 

  • Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2:946–953

    Article  CAS  PubMed  Google Scholar 

  • Scherr TD, Hanke ML, Huang O, James DB, Horswill AR, Bayles KW, Fey PD, Torres VJ, Kielian T (2015) Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin AB and alpha-toxin. MBio 6:

    Google Scholar 

  • Schwiering M, Brack A, Stork R, Hellmann N (2013) Lipid and phase specificity of alpha-toxin from S. aureus. Biochim Biophys Acta 1828:1962–1972

    Article  CAS  PubMed  Google Scholar 

  • Siqueira JA, Speeg-Schatz C, Freitas FI, Sahel J, Monteil H, Prevost G (1997) Channel-forming leucotoxins from Staphylococcus aureus cause severe inflammatory reactions in a rabbit eye model. J Med Microbiol 46:486–494

    Article  CAS  PubMed  Google Scholar 

  • Skaar EP, Raffatellu M (2015) Metals in infectious diseases and nutritional immunity. Metallomics 7:926–928

    Article  PubMed  Google Scholar 

  • Skaar EP, Schneewind O (2004) Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. Microbes Infect 6:390–397

    Article  CAS  PubMed  Google Scholar 

  • Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Article  CAS  PubMed  Google Scholar 

  • Spaan AN, Henry T, van Rooijen WJ, Perret M, Badiou C, Aerts PC, Kemmink J, de Haas CJ, van Kessel KP, Vandenesch F et al (2013) The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell Host Microbe 13:584–594

    Article  CAS  PubMed  Google Scholar 

  • Spaan AN, Reyes-Robles T, Badiou C, Cochet S, Yoong P, Day CJ, de Haas CJC, Boguslawski K, van Kessel KPM, Vandenesh F et al (2015a). Staphylococcus aureus targets the Duffy antigen receptor for chemokines (DARC) to lyse erythrocytes. Cell Host Microbe (in press)

    Google Scholar 

  • Spaan AN, Schiepers A, de Haas CJ, van Hooijdonk DD, Badiou C, Contamin H, Vandenesch F, Lina G, Gerard NP, Gerard C et al. (2015b) Differential interaction of the staphylococcal toxins panton-valentine leukocidin and gamma-hemolysin CB with human C5a Receptors. J Immunol

    Google Scholar 

  • Spaan AN, Vrieling M, Wallet P, Badiou C, Reyes-Robles T, Ohneck EA, Benito Y, de Haas CJ, Day CJ, Jennings MP et al (2014) The staphylococcal toxins gamma-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nat Commun 5:5438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara T, Yamashita D, Kato K, Peng Z, Ueda J, Kaneko J, Kamio Y, Tanaka Y, Yao M (2015) Structural basis for pore-forming mechanism of staphylococcal alpha-hemolysin. Toxicon 108:226–231

    Article  CAS  PubMed  Google Scholar 

  • Supersac G, Piemont Y, Kubina M, Prevost G, Foster TJ (1998) Assessment of the role of gamma-toxin in experimental endophthalmitis using a hlg-deficient mutant of Staphylococcus aureus. Microb Pathog 24:241–251

    Article  CAS  PubMed  Google Scholar 

  • Szmigielski S, Jeljaszewicz J, Kobus M, Luczak M, Ludwicka A, Mollby R, Wadstrom T (1976) Cytotoxic effects of staphylococcal alpha-hemolysins, beta-hemolysins and gamma-hemolysins. Zbl Bakt-Int J Med M 691–705

    Google Scholar 

  • Thomsen IP, Dumont AL, James DB, Yoong P, Saville BR, Soper N, Torres VJ, Creech CB (2014) Children with invasive Staphylococcus aureus disease exhibit a potently neutralizing antibody response to the cytotoxin LukAB. Infect Immun 82:1234–1242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomita N, Abe K, Kamio Y, Ohta M (2011) Cluster-forming property correlated with hemolytic activity by staphylococcal gamma-hemolysin transmembrane pores. FEBS Lett 585:3452–3456

    Article  CAS  PubMed  Google Scholar 

  • Tomita T, Watanabe M, Yarita Y (1993) Assembly and channel-forming activity of a naturally-occurring nicked molecule of Staphylococcus aureus alpha-toxin. Biochim Biophys Acta 1145:51–57

    Article  CAS  PubMed  Google Scholar 

  • Valeva A, Hellmann N, Walev I, Strand D, Plate M, Boukhallouk F, Brack A, Hanada K, Decker H, Bhakdi S (2006) Evidence that clustered phosphocholine head groups serve as sites for binding and assembly of an oligomeric protein pore. J Biol Chem 281:26014–26021

    Article  CAS  PubMed  Google Scholar 

  • Van de Velde H (1894) Etude sur le mécanisme de la virulence du staphylocoque pyogène. La Cellule, 403–460

    Google Scholar 

  • Vandenesch F, Couzon F, Boisset S, Benito Y, Brown EL, Lina G, Etienne J, Bowden MG (2010) The Panton-Valentine leukocidin is a virulence factor in a murine model of necrotizing pneumonia. J Infect Dis 201, 967–969 (author reply 969–970)

    Google Scholar 

  • Vandenesch F, Lina G, Henry T (2012) Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol 2:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, Liassine N, Bes M, Greenland T, Reverdy ME et al (2003) Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9:978–984

    Article  PubMed  PubMed Central  Google Scholar 

  • Ventura CL, Malachowa N, Hammer CH, Nardone GA, Robinson MA, Kobayashi SD, DeLeo FR (2010) Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PLoS One 5:e11634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker B, Krishnasastry M, Zorn L, Bayley H (1992) Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-hemolysin examined by truncation mutagenesis. J Biol Chem 267:21782–21786

    CAS  PubMed  Google Scholar 

  • Watanabe M, Tomita T, Yasuda T (1987) Membrane-damaging action of staphylococcal alpha-toxin on phospholipid-cholesterol liposomes. Biochim Biophys Acta 898:257–265

    Article  CAS  PubMed  Google Scholar 

  • Weinberg ED (1975) Nutritional immunity. Host’s attempt to withold iron from microbial invaders. JAMA 231:39–41

    Article  CAS  PubMed  Google Scholar 

  • Weld JT, Gunther A (1931) Differentiation between certain toxic properties of filtrates of hemolytic Staphylococcus aureus. J Exp Med 54:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilke GA, Bubeck Wardenburg J (2010) Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci USA 107:13473–13478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodin AM (1960) Purification of the two components of leucocidin from Staphylococcus aureus. Biochem J 75:158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright J (1936) Staphylococcal leucocidin (Neisser-Wechsberg type) and antileucocidin. Lancet 1:1002–1004

    Article  Google Scholar 

  • Yamashita D, Sugawara T, Takeshita M, Kaneko J, Kamio Y, Tanaka I, Tanaka Y, Yao M (2014) Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins. Nat Commun 5:4897

    Article  CAS  PubMed  Google Scholar 

  • Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Ohta M, Kamio Y, Yao M, Tanaka I (2011) Crystal structure of the octameric pore of staphylococcal gamma-hemolysin reveals the beta-barrel pore formation mechanism by two components. Proc Natl Acad Sci USA 108:17314–17319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanai M, Rocha MA, Matolek AZ, Chintalacharuvu A, Taira Y, Chintalacharuvu K, Beenhouwer DO (2014) Separately or combined, LukG/LukH is functionally unique compared to other staphylococcal bicomponent leukotoxins. PLoS One 9:e89308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokota K, Kamio Y (2000) Tyrosine72 residue at the bottom of rim domain in LukF crucial for the sequential binding of the staphylococcal gamma-hemolysin to human erythrocytes. Biosci Biotechnol Biochem 64:2744–2747

    Article  CAS  PubMed  Google Scholar 

  • Yoong P, Pier GB (2012) Immune-activating properties of Panton-Valentine leukocidin improve the outcome in a model of methicillin-resistant Staphylococcus aureus pneumonia. Infect Immun 80:2894–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoong P, Torres VJ (2013) The effects of Staphylococcus aureus leukotoxins on the host: cell lysis and beyond. Curr Opin Microbiol 16:63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoong P, Torres VJ (2015) Counter inhibition between leukotoxins attenuates Staphylococcus aureus virulence. Nat Commun (in press)

    Google Scholar 

  • Zivkovic A, Sharif O, Stich K, Doninger B, Biaggio M, Colinge J, Bilban M, Mesteri I, Hazemi P, Lemmens-Gruber R et al (2011) TLR 2 and CD14 mediate innate immunity and lung inflammation to staphylococcal Panton-Valentine leukocidin in vivo. J Immunol 186:1608–1617

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and/or funding sources:

We thank Francis Alonzo for critically reviewing this manuscript. Work on pore-forming toxins in Torres laboratory was supported by grants from the US National Institute of Allergy and Infectious Diseases AI007180 and AI112290 to TRR, and AI099394 and AI105129 to VJT. VJT is a Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor J. Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reyes-Robles, T., Torres, V.J. (2016). Staphylococcus aureus Pore-Forming Toxins. In: Bagnoli, F., Rappuoli, R., Grandi, G. (eds) Staphylococcus aureus. Current Topics in Microbiology and Immunology, vol 409. Springer, Cham. https://doi.org/10.1007/82_2016_16

Download citation

Publish with us

Policies and ethics