Skip to main content

Effect of Cytomegalovirus on the Immune System: Implications for Aging and Mental Health

  • Chapter
  • First Online:
Microorganisms and Mental Health

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 61))

Abstract

Human cytomegalovirus (HCMV) is a major modulator of the immune system leading to long-term changes in T-lymphocytes, macrophages, and natural killer (NK) cells among others. Perhaps because of this immunomodulatory capacity, HCMV infection has been linked with a host of deleterious effects including accelerated immune aging (premature mortality, increased expression of immunosenescence-linked markers, telomere shortening, speeding-up of epigenetic “clocks”), decreased vaccine immunogenicity, and greater vulnerability to infectious diseases (e.g., tuberculosis) or infectious disease-associated pathology (e.g., HIV). Perhaps not surprisingly given the long co-evolution between HCMV and humans, the virus has also been associated with beneficial effects, such as increased vaccine responsiveness, heterologous protection against infections, and protection against relapse in the context of leukemia. Here, we provide an overview of this literature. Ultimately, we focus on one other deleterious effect of HCMV, namely the emerging literature suggesting that HCMV plays a pathophysiological role in psychiatric illness, particularly depression and schizophrenia. We discuss this literature through the lens of psychological stress and inflammation, two well-established risk factors for psychiatric illness that are also known to predispose to reactivation of HCMV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate DA, Watanabe S, Mocarski ES (2004) Major human cytomegalovirus structural protein pp65 (ppUL83) prevents interferon response factor 3 activation in the interferon response. J Virol 78:10995–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdoli A, Falahi S, Kenarkoohi A (2021) COVID-19-associated opportunistic infections: a snapshot on the current reports. Clin Exp Med. https://doi.org/10.1007/s10238-021-00751-7

  • Adler SP (1985) The molecular epidemiology of cytomegalovirus transmission among children attending a day care center. J Infect Dis 152:760–768

    Article  CAS  PubMed  Google Scholar 

  • Ahn K, Angulo A, Ghazal P et al (1996) Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci U S A 93:10990–10995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn K, Gruhler A, Galocha B et al (1997) The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6:613–621

    Article  CAS  PubMed  Google Scholar 

  • Aiello AE, Jayabalasingham B, Simanek AM et al (2017) The impact of pathogen burden on leukocyte telomere length in the Multi-Ethnic Study of Atherosclerosis. Epidemiol Infect 145:3076–3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alain S, Garnier-Geoffroy F, Labrunie A et al (2020) Cytomegalovirus (CMV) shedding in French day-care centers: a nationwide study of epidemiology, risk factors, centers’ practices, and parents’ awareness of CMV. J Pediatric Infect Dis Soc 9:686–694

    Article  PubMed  Google Scholar 

  • Alanio C, Verma A, Mathew D et al (2022) Cytomegalovirus latent infection is associated with an increased risk of COVID-19-related hospitalization. J Infect Dis. https://doi.org/10.1093/infdis/jiac020

  • Albrecht P, Boone E, Fuller Torrey E et al (1980) Raised cytomegalovirus-antibody level in cerebrospinal fluid of schizophrenic patients. Lancet 316:769–772

    Article  Google Scholar 

  • Alcendor DJ, Charest AM, Zhu WQ et al (2012) Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus. J Neuroinflammation 9:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almanzar G, Schwaiger S, Jenewein B et al (2005) Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol 79:3675–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiya S, Hirata H, Shiroyama T et al (2021) Fatal cytomegalovirus pneumonia in a critically ill patient with COVID-19. Respirol Case Rep 9:e00801

    Article  PubMed  PubMed Central  Google Scholar 

  • Amundson L, Boelts B, Kataria V, Spak C (2021) Ganciclovir therapy for CMV viremia in a patient on VV ECMO with COVID-19 after treatment with tocilizumab. Infect Dis Clin Pract (Baltim Md) 29:e191–e192

    Article  Google Scholar 

  • Anders DG, Kerry JA, Pari GS (2011) DNA synthesis and late viral gene expression. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge

    Google Scholar 

  • Andreou D, Jørgensen KN, Nerland S et al (2021) Cytomegalovirus infection associated with smaller dentate gyrus in men with severe mental illness. Brain Behav Immun 96:54–62

    Article  CAS  PubMed  Google Scholar 

  • Appay V, Dunbar PR, Callan M et al (2002) Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8:379–385

    Article  CAS  PubMed  Google Scholar 

  • Appels A, Bär FW, Bär J et al (2000) Inflammation, depressive symptomtology, and coronary artery disease. Psychosom Med 62:601–605

    Article  CAS  PubMed  Google Scholar 

  • Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579

    Article  CAS  PubMed  Google Scholar 

  • Avramopoulos D, Pearce BD, McGrath J et al (2015) Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation. PLoS One 10:e0116696

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacalini MG, Deelen J, Pirazzini C et al (2017) Systemic age-associated DNA hypermethylation of ELOVL2 gene: In vivo and in vitro evidences of a cell replication process. J Gerontol A Biol Sci Med Sci 72:1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Barbalat R, Lau L, Locksley RM, Barton GM (2009) Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol 10:1200–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bate SL, Dollard SC, Cannon MJ (2010) Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988-2004. Clin Infect Dis 50:1439–1447

    Article  PubMed  Google Scholar 

  • Beards S, Fisher HL, Gayer-Anderson C et al (2020) Threatening life events and difficulties and psychotic disorder. Schizophr Bull 46:814–822

    Article  PubMed  PubMed Central  Google Scholar 

  • Behrendt CE, Rosenthal J, Bolotin E et al (2009) Donor and recipient CMV serostatus and outcome of pediatric allogeneic HSCT for acute leukemia in the era of CMV-preemptive therapy. Biol Blood Marrow Transplant 15:54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JM, Glaser R, Malarkey WB et al (2012) Inflammation and reactivation of latent herpesviruses in older adults. Brain Behav Immun 26:739–746

    Article  CAS  PubMed  Google Scholar 

  • Bentz GL, Jarquin-Pardo M, Chan G et al (2006) Human cytomegalovirus (HCMV) infection of endothelial cells promotes naive monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV. J Virol 80:11539–11555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Béziat V, Rapaport F, Hu J et al (2021) Humans with inherited T cell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell 184:3812–3828.e30

    Article  PubMed  PubMed Central  Google Scholar 

  • Biolatti M, Dell’Oste V, De Andrea M, Landolfo S (2018a) The human cytomegalovirus tegument protein pp65 (pUL83): a key player in innate immune evasion. New Microbiol 41:87–94

    PubMed  Google Scholar 

  • Biolatti M, Dell’Oste V, Pautasso S et al (2018b) Human cytomegalovirus tegument protein pp65 (pUL83) Dampens type I interferon production by inactivating the DNA sensor cGAS without affecting STING. J Virol 92. https://doi.org/10.1128/JVI.01774-17

  • Boehme KW, Singh J, Perry ST, Compton T (2004) Human cytomegalovirus elicits a coordinated cellular antiviral response via envelope glycoprotein B. J Virol 78:1202–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehme KW, Guerrero M, Compton T (2006) Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J Immunol 177:7094–7102

    Article  CAS  PubMed  Google Scholar 

  • Bosch JA, Fischer JE, Fischer JC (2009) Psychologically adverse work conditions are associated with CD8+ T cell differentiation indicative of immunesenescence. Brain Behav Immun 23:527–534

    Article  CAS  PubMed  Google Scholar 

  • Bowyer G, Sharpe H, Venkatraman N et al (2020) Reduced Ebola vaccine responses in CMV+ young adults is associated with expansion of CD57+KLRG1+ T cells. J Exp Med 217. https://doi.org/10.1084/jem.20200004

  • Boyle KA, Pietropaolo RL, Compton T (1999) Engagement of the cellular receptor for glycoprotein B of human cytomegalovirus activates the interferon-responsive pathway. Mol Cell Biol 19:3607–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle CC, Cole SW, Dutcher JM et al (2019) Changes in eudaimonic well-being and the conserved transcriptional response to adversity in younger breast cancer survivors. Psychoneuroendocrinology 103:173–179

    Article  PubMed  Google Scholar 

  • Brander G, Pérez-Vigil A, Larsson H, Mataix-Cols D (2016) Systematic review of environmental risk factors for obsessive-compulsive disorder: a proposed roadmap from association to causation. Neurosci Biobehav Rev 65:36–62

    Article  PubMed  Google Scholar 

  • Brodin P, Jojic V, Gao T et al (2015) Variation in the human immune system is largely driven by non-heritable influences. Cell 160:37–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne EP, Shenk T (2003) Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc Natl Acad Sci U S A 100:11439–11444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne EP, Wing B, Coleman D, Shenk T (2001) Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J Virol 75:12319–12330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon MJ, Schmid DS, Hyde TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20:202–213

    Article  PubMed  Google Scholar 

  • Cannon MJ, Hyde TB, Schmid DS (2011) Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev Med Virol 21:240–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celada A, McKercher S, Maki RA (1993) Repression of major histocompatibility complex IA expression by glucocorticoids: the glucocorticoid receptor inhibits the DNA binding of the X box DNA binding protein. J Exp Med 177:691–698

    Article  CAS  PubMed  Google Scholar 

  • Chan G, Bivins-Smith ER, Smith MS et al (2008) Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. J Immunol 181:698–711

    Article  CAS  PubMed  Google Scholar 

  • Chang WLW, Barry PA (2010) Attenuation of innate immunity by cytomegalovirus IL-10 establishes a long-term deficit of adaptive antiviral immunity. Proc Natl Acad Sci U S A 107:22647–22652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang WLW, Barry PA, Szubin R et al (2009) Human cytomegalovirus suppresses type I interferon secretion by plasmacytoid dendritic cells through its interleukin 10 homolog. Virology 390:330–337

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Morris SR, Panigrahi S et al (2020) Cytomegalovirus coinfection is associated with increased vascular-homing CD57+ CD4 T cells in HIV infection. J Immunol 204:2722–2733

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Pawelec G, Trompet S et al (2021) Associations of cytomegalovirus infection with all-cause and cardiovascular mortality in multiple observational cohort studies of older adults. J Infect Dis 223:238–246

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ, Park A, Kang S et al (2018) Human cytomegalovirus-encoded US9 targets MAVS and STING signaling to evade type I interferon immune responses. Nat Commun 9:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen S, Williamson GM (1991) Stress and infectious disease in humans. Psychol Bull 109:5–24

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Tyrrell DA, Smith AP (1991) Psychological stress and susceptibility to the common cold. N Engl J Med 325:606–612

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Janicki-Deverts D, Doyle WJ et al (2012) Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci U S A 109:5995–5999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole SW (2019) The conserved transcriptional response to adversity. Curr Opin Behav Sci 28:31–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole SW, Levine ME, Arevalo JMG et al (2015) Loneliness, eudaimonia, and the human conserved transcriptional response to adversity. Psychoneuroendocrinology 62:11–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins-McMillen D, Buehler J, Peppenelli M, Goodrum F (2018) Molecular determinants and the regulation of human cytomegalovirus latency and reactivation. Viruses 10. https://doi.org/10.3390/v10080444

  • Collins-McMillen D, Kamil J, Moorman N, Goodrum F (2020) Control of immediate early gene expression for human cytomegalovirus reactivation. Front Cell Infect Microbiol 10:476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compton T, Nowlin DM, Cooper NR (1993) Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology 193:834–841

    Article  CAS  PubMed  Google Scholar 

  • Compton T, Kurt-Jones EA, Boehme KW et al (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 77:4588–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coryell W, Wilcox H, Evans SJ et al (2020) Latent infection, inflammatory markers and suicide attempt history in depressive disorders. J Affect Disord 270:97–101

    Article  CAS  PubMed  Google Scholar 

  • Crough T, Khanna R (2009) Immunobiology of human cytomegalovirus: from bench to bedside. Clin Microbiol Rev 22:76–98. Table of Contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalman C, Allebeck P, Gunnell D et al (2008) Infections in the CNS during childhood and the risk of subsequent psychotic illness: a cohort study of more than one million Swedish subjects. Am J Psychiatry 165:59–65

    Article  PubMed  Google Scholar 

  • Day R (1981) Life events and schizophrenia: the “triggering” hypothesis. Acta Psychiatr Scand 64:97–122

    Article  CAS  PubMed  Google Scholar 

  • de Bourcy CFA, Angel CJL, Vollmers C et al (2017) Phylogenetic analysis of the human antibody repertoire reveals quantitative signatures of immune senescence and aging. Proc Natl Acad Sci U S A 114:1105–1110

    Article  PubMed  PubMed Central  Google Scholar 

  • Deayton JR, Prof Sabin CA, Johnson MA et al (2004) Importance of cytomegalovirus viraemia in risk of disease progression and death in HIV-infected patients receiving highly active antiretroviral therapy. Lancet 363:2116–2121

    Article  CAS  PubMed  Google Scholar 

  • Dell’Oste V, Biolatti M, Galitska G et al (2020) Tuning the orchestra: HCMV vs. innate immunity. Front Microbiol 11:661

    Article  PubMed  PubMed Central  Google Scholar 

  • Detels R, Leach CT, Hennessey K et al (1994) Persistent cytomegalovirus infection of semen increases risk of AIDS. J Infect Dis 169:766–768

    Article  CAS  PubMed  Google Scholar 

  • Dickerson F, Wilcox HC, Adamos M et al (2017) Suicide attempts and markers of immune response in individuals with serious mental illness. J Psychiatr Res 87:37–43

    Article  PubMed  Google Scholar 

  • Dickerson F, Origoni A, Schweinfurth LAB et al (2018) Clinical and serological predictors of suicide in schizophrenia and major mood disorders. J Nerv Ment Dis 206:173–178

    Article  PubMed  Google Scholar 

  • Döcke WD, Prösch S, Fietze E et al (1994) Cytomegalovirus reactivation and tumour necrosis factor. Lancet 343:268–269

    Article  PubMed  Google Scholar 

  • Dowd JB, Aiello AE, Alley DE (2009) Socioeconomic disparities in the seroprevalence of cytomegalovirus infection in the US population: NHANES III. Epidemiol Infect 137:58–65

    Article  CAS  PubMed  Google Scholar 

  • Dowd JB, Palermo TM, Aiello AE (2012) Family poverty is associated with cytomegalovirus antibody titers in U.S. children. Health Psychol 31:5–10

    Article  PubMed  Google Scholar 

  • Dowd JB, Bosch JA, Steptoe A et al (2017) Persistent herpesvirus infections and telomere attrition over 3 years in the Whitehall II cohort. J Infect Dis 216:565–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Effros RB (2004) From Hayflick to Walford: the role of T cell replicative senescence in human aging. Exp Gerontol 39:885–890

    Article  CAS  PubMed  Google Scholar 

  • Elmaagacli AH, Steckel NK, Koldehoff M et al (2011) Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood 118:1402–1412

    Article  CAS  PubMed  Google Scholar 

  • Elste J, Kaltenbach D, Patel VR et al (2020) Inhibition of human cytomegalovirus entry into host cells through a pleiotropic small molecule. Int J Mol Sci 21. https://doi.org/10.3390/ijms21051676

  • Estrada LD, Ağaç D, Farrar JD (2016) Sympathetic neural signaling via the β2-adrenergic receptor suppresses T-cell receptor-mediated human and mouse CD8(+) T-cell effector function. Eur J Immunol 46:1948–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagundes CP, Glaser R, Malarkey WB, Kiecolt-Glaser JK (2013) Childhood adversity and herpesvirus latency in breast cancer survivors. Health Psychol 32:337–344

    Article  PubMed  Google Scholar 

  • Farrell HE, Stevenson PG (2019) Cytomegalovirus host entry and spread. J Gen Virol 100:545–553

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Sheng J, Vu G-P et al (2018) Human cytomegalovirus UL23 inhibits transcription of interferon-γ stimulated genes and blocks antiviral interferon-γ responses by interacting with human N-myc interactor protein. PLoS Pathog 14:e1006867

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson FG, Wikby A, Maxson P et al (1995) Immune parameters in a longitudinal study of a very old population of Swedish people: a comparison between survivors and nonsurvivors. J Gerontol A Biol Sci Med Sci 50:B378–B382

    Article  CAS  PubMed  Google Scholar 

  • Ford BN, Yolken RH, Aupperle RL et al (2019) Association of early-life stress with cytomegalovirus infection in adults with major depressive disorder. JAMA Psychiat 76:545–547

    Article  Google Scholar 

  • Ford BN, Teague TK, Bayouth M et al (2020) Diagnosis-independent loss of T-cell costimulatory molecules in individuals with cytomegalovirus infection. Brain Behav Immun 87:795–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler KB, Pass RF (2006) Risk factors for congenital cytomegalovirus infection in the offspring of young women: exposure to young children and recent onset of sexual activity. Pediatrics 118:e286–e292

    Article  PubMed  Google Scholar 

  • Foxworth MK 2nd, Wilms IR, Brookman RR et al (2014) Prevalence of CMV infection among sexually active adolescents: a matched case-control study. Adolesc Health Med Ther 5:73–78

    PubMed  PubMed Central  Google Scholar 

  • Frye MA, Coombes BJ, McElroy SL et al (2019) Association of cytomegalovirus and Toxoplasma gondii antibody titers with bipolar disorder. JAMA Psychiat. https://doi.org/10.1001/jamapsychiatry.2019.2499

  • Fu Y-Z, Su S, Gao Y-Q et al (2017) Human cytomegalovirus tegument protein UL82 inhibits STING-mediated signaling to evade antiviral immunity. Cell Host Microbe 21:231–243

    Article  CAS  PubMed  Google Scholar 

  • Fu Y-Z, Su S, Zou H-M et al (2019) Human cytomegalovirus DNA polymerase subunit UL44 antagonizes antiviral immune responses by suppressing IRF3- and NF-κB-mediated transcription. J Virol 93. https://doi.org/10.1128/JVI.00181-19

  • Furman D, Jojic V, Sharma S et al (2015) Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med 7:281ra43

    Article  PubMed  PubMed Central  Google Scholar 

  • Fusar-Poli P, Tantardini M, De Simone S et al (2017) Deconstructing vulnerability for psychosis: meta-analysis of environmental risk factors for psychosis in subjects at ultra high-risk. Eur Psychiatry 40:65–75

    Article  CAS  PubMed  Google Scholar 

  • Gale SD, Berrett AN, Erickson LD et al (2018) Association between virus exposure and depression in US adults. Psychiatry Res 261:73–79

    Article  PubMed  Google Scholar 

  • Gariano GR, Dell’Oste V, Bronzini M et al (2012) The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication. PLoS Pathog 8:e1002498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garson D, Dokhélar MC, Wakasugi H et al (1985) HLA class-I and class-II antigen expression by human leukemic K562 cells and by Burkitt-K562 hybrids: modulation by differentiation inducers and interferon. Exp Hematol 13:885–890

    CAS  PubMed  Google Scholar 

  • Gerna G, Kabanova A, Lilleri D (2019) Human cytomegalovirus cell tropism and host cell receptors. Vaccines (Basel) 7. https://doi.org/10.3390/vaccines7030070

  • Gianella S, Letendre S (2016) Cytomegalovirus and HIV: a dangerous Pas de Deux. J Infect Dis 214(Suppl 2):S67–S74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gkrania-Klotsas E, Langenberg C, Sharp SJ et al (2013) Seropositivity and higher immunoglobulin g antibody levels against cytomegalovirus are associated with mortality in the population-based European prospective investigation of cancer-Norfolk cohort. Clin Infect Dis 56:1421–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser R, Kiecolt-Glaser JK (1994) Stress-associated immune modulation and its implications for reactivation of latent herpesviruses. Infect Dis Ther Ser 13:245–245

    Google Scholar 

  • Goodrum F, Caviness K, Zagallo P (2012) Human cytomegalovirus persistence. Cell Microbiol 14:644–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin K, Viboud C, Simonsen L (2006) Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 24:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Goudot C, Coillard A, Villani A-C et al (2017) Aryl hydrocarbon receptor controls monocyte differentiation into dendritic cells versus macrophages. Immunity 47:582–596.e6

    Article  CAS  PubMed  Google Scholar 

  • Gozzi-Silva SC, Benard G, Alberca RW et al (2021) SARS-CoV-2 infection and CMV dissemination in transplant recipients as a treatment for Chagas cardiomyopathy: a case report. Trop Med Infect Dis 6:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Grattan MT (1989) Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA 261:3561–3566

    Article  CAS  PubMed  Google Scholar 

  • Gredmark S, Britt WB, Xie X et al (2004) Human cytomegalovirus induces inhibition of macrophage differentiation by binding to human aminopeptidase N/CD13. J Immunol 173:4897–4907

    Article  CAS  PubMed  Google Scholar 

  • Grosjean J, Trapes L, Hantz S et al (2014) Human cytomegalovirus quantification in toddlers saliva from day care centers and emergency unit: a feasibility study. J Clin Virol 61:371–377

    Article  CAS  PubMed  Google Scholar 

  • Groves IJ, Jackson SE, Poole EL et al (2021) Bromodomain proteins regulate human cytomegalovirus latency and reactivation allowing epigenetic therapeutic intervention. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2023025118

  • Gugliesi F, Coscia A, Griffante G et al (2020) Where do we stand after decades of studying human cytomegalovirus? Microorganisms 8:685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo G, Ye S, Xie S et al (2018) The cytomegalovirus protein US31 induces inflammation through mono-macrophages in systemic lupus erythematosus by promoting NF-κB2 activation. Cell Death Dis 9:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammen C (2018) Risk factors for depression: an autobiographical review. Annu Rev Clin Psychol 14:1–28

    Article  PubMed  Google Scholar 

  • Handsfield HH, Chandler SH, Caine VA et al (1985) Cytomegalovirus infection in sex partners: evidence for sexual transmission. J Infect Dis 151:344–348

    Article  CAS  PubMed  Google Scholar 

  • Hargett D, Shenk TE (2010) Experimental human cytomegalovirus latency in CD14+ monocytes. Proc Natl Acad Sci U S A 107:20039–20044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvala H, Stewart C, Muller K et al (2013) High risk of cytomegalovirus infection following solid organ transplantation despite prophylactic therapy. J Med Virol 85:893–898

    Article  CAS  PubMed  Google Scholar 

  • He C-S, Handzlik M, Muhamad A, Gleeson M (2013) Influence of CMV/EBV serostatus on respiratory infection incidence during 4 months of winter training in a student cohort of endurance athletes. Eur J Appl Physiol 113:2613–2619

    Article  PubMed  Google Scholar 

  • Hegde NR, Tomazin RA, Wisner TW et al (2002) Inhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: a novel mechanism for evading major histocompatibility complex class II antigen presentation. J Virol 76:10929–10941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herndler-Brandstetter D, Landgraf K, Tzankov A et al (2012) The impact of aging on memory T cell phenotype and function in the human bone marrow. J Leukoc Biol 91:197–205

    Article  PubMed  Google Scholar 

  • Ho WZ, Harouse JM, Rando RF et al (1990) Reciprocal enhancement of gene expression and viral replication between human cytomegalovirus and human immunodeficiency virus type 1. J Gen Virol 71(Pt 1):97–103

    Article  CAS  PubMed  Google Scholar 

  • Hoehl S, Berger A, Ciesek S, Rabenau HF (2020) Thirty years of CMV seroprevalence-a longitudinal analysis in a German university hospital. Eur J Clin Microbiol Infect Dis 39:1095–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtzman CW, Trotman HD, Goulding SM et al (2013) Stress and neurodevelopmental processes in the emergence of psychosis. Neuroscience 249:172–191

    Article  CAS  PubMed  Google Scholar 

  • Houenou J, d’Albis M-A, Daban C et al (2014) Cytomegalovirus seropositivity and serointensity are associated with hippocampal volume and verbal memory in schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 48:142–148

    Article  CAS  PubMed  Google Scholar 

  • Huang Z-F, Zou H-M, Liao B-W et al (2018) Human cytomegalovirus protein UL31 inhibits DNA sensing of cGAS to mediate immune evasion. Cell Host Microbe 24:69–80.e4

    Article  CAS  PubMed  Google Scholar 

  • Hung Y-Y, Kang H-Y, Huang K-W, Huang T-L (2014) Association between toll-like receptors expression and major depressive disorder. Psychiatry Res 220:283–286

    Article  CAS  PubMed  Google Scholar 

  • Hunt PW, Martin JN, Sinclair E et al (2011) Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis 203:1474–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay H, Limaye AP (2020) Current understanding of cytomegalovirus reactivation in critical illness. J Infect Dis 221:S94–S102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iñigo-Marco I, Alonso MM (2019) Destress and do not suppress: targeting adrenergic signaling in tumor immunosuppression. J Clin Invest. https://doi.org/10.1172/JCI133115

  • Irwin MR, Cole SW (2011) Reciprocal regulation of the neural and innate immune systems. Nat Rev Immunol 11:625–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacson MK, Juckem LK, Compton T (2008) Virus entry and innate immune activation. Curr Top Microbiol Immunol 325:85–100

    CAS  PubMed  Google Scholar 

  • Isnard S, Ramendra R, Lin J et al (2021) Anti-cytomegalovirus immunoglobulin G is linked to CD4 T-cell count decay in human immunodeficiency virus (HIV) elite controllers. Clin Infect Dis 73:144–147

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Pophali P, Co W et al (2013) CMV reactivation is associated with a lower incidence of relapse after allo-SCT for CML. Bone Marrow Transplant 48:1313–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwaszko M, Bogunia-Kubik K (2011) Clinical significance of the HLA-E and CD94/NKG2 interaction. Arch Immunol Ther Exp (Warsz) 59:353–367

    Article  CAS  PubMed  Google Scholar 

  • Janicki-Deverts D, Cohen S, Doyle WJ et al (2014) Childhood environments and cytomegalovirus serostatus and reactivation in adults. Brain Behav Immun 40:174–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaremka LM, Fagundes CP, Glaser R et al (2013) Loneliness predicts pain, depression, and fatigue: understanding the role of immune dysregulation. Psychoneuroendocrinology 38:1310–1317

    Article  CAS  PubMed  Google Scholar 

  • Jones TR, Sun L (1997) Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains. J Virol 71:2970–2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadambari S, Klenerman P, Pollard AJ (2020) Why the elderly appear to be more severely affected by COVID-19: The potential role of immunosenescence and CMV. Rev Med Virol 30:e2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalejta RF (2008) Functions of human cytomegalovirus tegument proteins prior to immediate early gene expression. Curr Top Microbiol Immunol 325:101–115

    CAS  PubMed  Google Scholar 

  • Kalil AC (2008) A silent killer: cytomegalovirus infection in the nonimmunocompromised critically ill patient. Crit Care Med 36:3261–3264

    Article  PubMed  Google Scholar 

  • Kalil AC, Florescu DF (2011) Is cytomegalovirus reactivation increasing the mortality of patients with severe sepsis? Crit Care 15:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Kananen L, Nevalainen T, Jylhävä J et al (2015) Cytomegalovirus infection accelerates epigenetic aging. Exp Gerontol 72:227–229

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann C, Weinberger D, Yolken R et al (1983) Viruses and schizophrenia. Lancet 322:1136–1137

    Article  Google Scholar 

  • Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156:837–841

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Thornton LM, Gardner CO (2000) Stressful life events and previous episodes in the etiology of major depression in women: an evaluation of the “kindling” hypothesis. Am J Psychiatry 157:1243–1251

    Article  CAS  PubMed  Google Scholar 

  • Kenneson A, Cannon MJ (2007) Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol 17:253–276

    Article  PubMed  Google Scholar 

  • Kessler RC (1997) The effects of stressful life events on depression. Annu Rev Psychol 48:191–214

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Hislop A, Gudgeon N et al (2004) Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol 173:7481–7489

    Article  CAS  PubMed  Google Scholar 

  • Klenerman P, Oxenius A (2016) T cell responses to cytomegalovirus. Nat Rev Immunol 16:367–377

    Article  CAS  PubMed  Google Scholar 

  • Kohrt BA, Worthman CM, Adhikari RP et al (2016) Psychological resilience and the gene regulatory impact of posttraumatic stress in Nepali child soldiers. Proc Natl Acad Sci U S A 113:8156–8161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolmus K, Tavernier J, Gerlo S (2015) β2-Adrenergic receptors in immunity and inflammation: stressing NF-κB. Brain Behav Immun 45:297–310

    Article  CAS  PubMed  Google Scholar 

  • Kosugi I, Kawasaki H, Arai Y, Tsutsui Y (2002) Innate immune responses to cytomegalovirus infection in the developing mouse brain and their evasion by virus-infected neurons. Am J Pathol 161:919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs A, Schluchter M, Easley K et al (1999) Cytomegalovirus infection and HIV-1 disease progression in infants born to HIV-1-infected women. Pediatric Pulmonary and Cardiovascular Complications of Vertically Transmitted HIV Infection Study Group. N Engl J Med 341:77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachmann R, Loenenbach A, Waterboer T et al (2018) Cytomegalovirus (CMV) seroprevalence in the adult population of Germany. PLoS One 13:e0200267

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambe G, Mansukhani D, Khodaiji S et al (2022) Immune modulation and cytomegalovirus reactivation in sepsis-induced immunosuppression: a pilot study. Indian J Crit Care Med 26:53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landais I, Pelton C, Streblow D et al (2015) Human cytomegalovirus miR-UL112-3p targets TLR2 and modulates the TLR2/IRAK1/NFκB signaling pathway. PLoS Pathog 11:e1004881

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Balc’h P, Pinceaux K, Pronier C et al (2020) Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients. Crit Care 24:530

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee AW, Wang N, Hornell TMC et al (2011) Human cytomegalovirus decreases constitutive transcription of MHC class II genes in mature Langerhans cells by reducing CIITA transcript levels. Mol Immunol 48:1160–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lex C, Bäzner E, Meyer TD (2017) Does stress play a significant role in bipolar disorder? A meta-analysis. J Affect Disord 208:298–308

    Article  PubMed  Google Scholar 

  • Li Z, Tang Y, Tang N et al (2017) High anti-human cytomegalovirus antibody levels are associated with the progression of essential hypertension and target organ damage in Han Chinese population. PLoS One 12:e0181440

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtner M, Cicconi P, Vita S et al (2015) Cytomegalovirus coinfection is associated with an increased risk of severe non-AIDS-defining events in a large cohort of HIV-infected patients. J Infect Dis 211:178–186

    Article  CAS  PubMed  Google Scholar 

  • Lim EY, Jackson SE, Wills MR (2020) The CD4+ T cell response to human cytomegalovirus in healthy and immunocompromised people. Front Cell Infect Microbiol 10:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limaye AP, Stapleton RD, Peng L et al (2017) Effect of ganciclovir on IL-6 levels among cytomegalovirus-seropositive adults with critical illness: a randomized clinical trial. JAMA 318:731–740

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Gao H, Wang B, Wang Y (2021) Cytomegalovirus infection and its relationship with leukocyte telomere length: a cross-sectional study. Mediators Inflamm 2021:6675353

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindau P, Mukherjee R, Gutschow MV et al (2019) Cytomegalovirus exposure in the elderly does not reduce CD8 T cell repertoire diversity. J Immunol 202:476–483

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Zhou ZH (2011) Comparative virion structures of human herpesviruses. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge

    Google Scholar 

  • Liu X-F, Jie C, Zhang Z et al (2016) Transplant-induced reactivation of murine cytomegalovirus immediate early gene expression is associated with recruitment of NF-κB and AP-1 to the major immediate early promoter. J Gen Virol 97:941–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljungman P, Boeckh M, Hirsch HH et al (2017) Definitions of cytomegalovirus infection and disease in transplant patients for use in clinical trials. Clin Infect Dis 64:87–91

    Article  PubMed  Google Scholar 

  • Lönnqvist B, Ringdèn O, Ljungman P et al (1986) Reduced risk of recurrent leukaemia in bone marrow transplant recipients after cytomegalovirus infection. Br J Haematol 63:671–679

    Article  PubMed  Google Scholar 

  • Luetke-Eversloh M, Hammer Q, Durek P et al (2014) Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog 10:e1004441

    Article  PubMed  PubMed Central  Google Scholar 

  • Maillet F, Pourbaix A, le Pluart D et al (2021) Cytomegalovirus proctitis as a complication of COVID-19 with immunosuppressive treatments. IDCases 24:e01111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall EE, Geballe AP (2009) Multifaceted evasion of the interferon response by cytomegalovirus. J Interferon Cytokine Res 29:609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez L, Nicol MP, Wedderburn CJ et al (2021) Cytomegalovirus acquisition in infancy and the risk of tuberculosis disease in childhood: a longitudinal birth cohort study in Cape Town, South Africa. Lancet Glob Health 9:e1740–e1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martland N, Martland R, Cullen AE, Bhattacharyya S (2020) Are adult stressful life events associated with psychotic relapse? A systematic review of 23 studies. Psychol Med 50:2302–2316

    Article  PubMed  Google Scholar 

  • McDonald K, Rector TS, Braulin EA et al (1989) Association of coronary artery disease in cardiac transplant recipients with cytomegalovirus infection. Am J Cardiol 64:359–362

    Article  CAS  PubMed  Google Scholar 

  • McDonald S, Maguire G, Duarte N et al (2004) C-reactive protein, cardiovascular risk, and renal disease in a remote Australian Aboriginal community. Clin Sci (Lond) 106:121–128

    Article  CAS  PubMed  Google Scholar 

  • McNab F, Mayer-Barber K, Sher A et al (2015) Type I interferons in infectious disease. Nat Rev Immunol 15:87–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mechawar N, Savitz J (2016) Neuropathology of mood disorders: do we see the stigmata of inflammation? Transl Psychiatry 6:e946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta SK, Stowe RP, Feiveson AH et al (2000) Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis 182:1761–1764

    Article  CAS  PubMed  Google Scholar 

  • Meltzer-Brody S, Larsen JT, Petersen L et al (2018) Adverse life events increase risk for postpartum psychiatric episodes: a population-based epidemiologic study. Depress Anxiety 35:160–167

    Article  CAS  PubMed  Google Scholar 

  • Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16:22–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller GE, Freedland KE, Duntley S, Carney RM (2005) Relation of depressive symptoms to C-reactive protein and pathogen burden (cytomegalovirus, herpes simplex virus, Epstein-Barr virus) in patients with earlier acute coronary syndromes. Am J Cardiol 95:317–321

    Article  CAS  PubMed  Google Scholar 

  • Min C-K, Shakya AK, Lee B-J et al (2020) The differentiation of human cytomegalovirus infected-monocytes is required for viral replication. Front Cell Infect Microbiol 10:368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal SK, Roche PA (2015) Suppression of antigen presentation by IL-10. Curr Opin Immunol 34:22–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadpour H, O’Neil R, Qiu J et al (2018) Blockade of Host β2-adrenergic receptor enhances graft-versus-tumor effect through modulating APCs. J Immunol 200:2479–2488

    Article  CAS  PubMed  Google Scholar 

  • Molaei H, Khedmat L, Nemati E et al (2021) Iranian kidney transplant recipients with COVID-19 infection: Clinical outcomes and cytomegalovirus coinfection. Transpl Infect Dis 23:e13455

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Peral P, Conejo-Cerón S, Motrico E et al (2014) Risk factors for the onset of panic and generalised anxiety disorders in the general adult population: a systematic review of cohort studies. J Affect Disord 168:337–348

    Article  PubMed  Google Scholar 

  • Moss P (2019) “From immunosenescence to immune modulation”: a re-appraisal of the role of cytomegalovirus as major regulator of human immune function. Med Microbiol Immunol 208:271–280

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Tanner R, Matsumiya M et al (2019) Cytomegalovirus infection is a risk factor for tuberculosis disease in infants. JCI Insight 4. https://doi.org/10.1172/jci.insight.130090

  • Murph JR, Bale JF Jr, Murray JC et al (1986) Cytomegalovirus transmission in a midwest day care center: possible relationship to child care practices. J Pediatr 109:35–39

    Article  CAS  PubMed  Google Scholar 

  • Murray MJ, Bonilla-Medrano NI, Lee QL et al (2020) Evasion of a human cytomegalovirus entry inhibitor with potent cysteine reactivity is concomitant with the utilization of a heparan sulfate proteoglycan-independent route of entry. J Virol 94. https://doi.org/10.1128/JVI.02012-19

  • Myerson D, Hackman RC, Nelson JA et al (1984) Widespread presence of histologically occult cytomegalovirus. Hum Pathol 15:430–439

    Article  CAS  PubMed  Google Scholar 

  • Nachtwey J, Spencer JV (2008) HCMV IL-10 suppresses cytokine expression in monocytes through inhibition of nuclear factor-kappaB. Viral Immunol 21:477–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardiello S, Digilio L, Pizzella T, Galanti B (1994) Cytomegalovirus as a co-factor of disease progression in human immunodeficiency virus type 1 infection. Int J Clin Lab Res 24:86–89

    Article  CAS  PubMed  Google Scholar 

  • Netterwald JR, Jones TR, Britt WJ et al (2004) Postattachment events associated with viral entry are necessary for induction of interferon-stimulated genes by human cytomegalovirus. J Virol 78:6688–6691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikitina E, Larionova I, Choinzonov E, Kzhyshkowska J (2018) Monocytes and macrophages as viral targets and reservoirs. Int J Mol Sci 19. https://doi.org/10.3390/ijms19092821

  • Noppert GA, Feinstein L, Dowd JB et al (2020) Pathogen burden and leukocyte telomere length in the United States. Immun Ageing 17:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman RM, Malla AK (1993) Stressful life events and schizophrenia. I: a review of the research. Br J Psychiatry 162:161–166

    Article  CAS  PubMed  Google Scholar 

  • Noyola DE, Valdez-López BH, Hernández-Salinas AE et al (2005) Cytomegalovirus excretion in children attending day-care centers. Arch Med Res 36:590–593

    Article  PubMed  Google Scholar 

  • Olbrich L, Stockdale L, Basu Roy R et al (2021) Understanding the interaction between cytomegalovirus and tuberculosis in children: the way forward. PLoS Pathog 17:e1010061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira-Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsson J, Wikby A, Johansson B et al (2000) Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev 121:187–201

    Article  CAS  PubMed  Google Scholar 

  • Oualim S, Elouarradi A, Hafid S et al (2020) A misleading CMV myocarditis during the COVID-19 pandemic: case report. Pan Afr Med J 36. https://doi.org/10.11604/pamj.2020.36.167.23922

  • Paijo J, Döring M, Spanier J et al (2016) cGAS senses human cytomegalovirus and induces type I interferon responses in human monocyte-derived cells. PLoS Pathog 12:e1005546

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer DB (2013) The effect of age on thymic function. Front Immunol 4:316

    Article  PubMed  PubMed Central  Google Scholar 

  • Pangrazzi L, Weinberger B (2020) T cells, aging and senescence. Exp Gerontol 134:110887

    Article  CAS  PubMed  Google Scholar 

  • Pape K, Tamouza R, Leboyer M, Zipp F (2019) Immunoneuropsychiatry – novel perspectives on brain disorders. Nat Rev Neurol. https://doi.org/10.1038/s41582-019-0174-4

  • Pariante CM, Carpiniello B, Orrù MG et al (1997) Chronic caregiving stress alters peripheral blood immune parameters: the role of age and severity of stress. Psychother Psychosom 66:199–207

    Article  CAS  PubMed  Google Scholar 

  • Park A, Ra EA, Lee TA et al (2019) HCMV-encoded US7 and US8 act as antagonists of innate immunity by distinctively targeting TLR-signaling pathways. Nat Commun 10:4670

    Article  PubMed  PubMed Central  Google Scholar 

  • Parry HM, Dowell AC, Zuo J et al (2021) PD-1 is imprinted on cytomegalovirus-specific CD4+ T cells and attenuates Th1 cytokine production whilst maintaining cytotoxicity. PLoS Pathog 17:e1009349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pass RF, Hutto C, Lyon MD, Cloud G (1990) Increased rate of cytomegalovirus infection among day care center workers. Pediatr Infect Dis J 9:465–470

    Article  CAS  PubMed  Google Scholar 

  • Patel AA, Zhang Y, Fullerton JN et al (2017a) The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 214:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel EU, Gianella S, Newell K et al (2017b) Elevated cytomegalovirus IgG antibody levels are associated with HIV-1 disease progression and immune activation. AIDS 31:807–813

    Article  CAS  PubMed  Google Scholar 

  • Pathirana J, Kwatra G, Maposa I et al (2021) Effect of cytomegalovirus infection on humoral immune responses to select vaccines administered during infancy. Vaccine 39:4793–4799

    Article  CAS  PubMed  Google Scholar 

  • Patrick EJ, Higgins CD, Crawford DH, McAulay KA (2014) A cohort study in university students: investigation of risk factors for cytomegalovirus infection. Epidemiol Infect 142:1990–1995

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G, Ferguson FG, Wikby A (2001) The SENIEUR protocol after 16 years. Mech Ageing Dev 122:132–134

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G, Akbar A, Caruso C et al (2005) Human immunosenescence: is it infectious? Immunol Rev 205:257–268

    Article  CAS  PubMed  Google Scholar 

  • Pawelec G, Derhovanessian E, Larbi A et al (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 19:47–56

    Article  CAS  PubMed  Google Scholar 

  • Phillips AC, Carroll D, Khan N, Moss P (2008) Cytomegalovirus is associated with depression and anxiety in older adults. Brain Behav Immun 22:52–55

    Article  CAS  PubMed  Google Scholar 

  • Pillinger T, Osimo EF, Brugger S et al (2019) A meta-analysis of immune parameters, variability, and assessment of modal distribution in psychosis and test of the immune subgroup hypothesis. Schizophr Bull 45:1120–1133

    Article  PubMed  Google Scholar 

  • Poloni C, Szyf M, Cheishvili D, Tsoukas CM (2021) Are the healthy vulnerable? Cytomegalovirus seropositivity in healthy adults is associated with accelerated epigenetic age and immune-dysregulation. J Infect Dis. https://doi.org/10.1093/infdis/jiab365

  • Poole E, Lau JCH, Sinclair J (2015) Latent infection of myeloid progenitors by human cytomegalovirus protects cells from FAS-mediated apoptosis through the cellular IL-10/PEA-15 pathway. J Gen Virol 96:2355–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole E, Neves TC, Oliveira MT et al (2020) Human cytomegalovirus interleukin 10 homologs: facing the immune system. Front Cell Infect Microbiol 10:245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prod’homme V, Tomasec P, Cunningham C et al (2012) Human cytomegalovirus UL40 signal peptide regulates cell surface expression of the NK cell ligands HLA-E and gpUL18. J Immunol 188:2794–2804

    Article  PubMed  Google Scholar 

  • Prösch S, Wendt CE, Reinke P et al (2000) A novel link between stress and human cytomegalovirus (HCMV) infection: sympathetic hyperactivity stimulates HCMV activation. Virology 272:357–365

    Article  PubMed  Google Scholar 

  • Prossin AR, Yolken RH, Kamali M et al (2015) Cytomegalovirus antibody elevation in bipolar disorder: relation to elevated mood states. Neural Plast 2015:939780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rector JL, Dowd JB, Loerbroks A et al (2014) Consistent associations between measures of psychological stress and CMV antibody levels in a large occupational sample. Brain Behav Immun 38:133–141

    Article  PubMed  Google Scholar 

  • Reed RG, Greenberg RN, Segerstrom SC (2017) Cytomegalovirus serostatus, inflammation, and antibody response to influenza vaccination in older adults: the moderating effect of beta blockade. Brain Behav Immun 61:14–20

    Article  CAS  PubMed  Google Scholar 

  • Reed RG, Presnell SR, Al-Attar A et al (2019) Perceived stress, cytomegalovirus titers, and late-differentiated T and NK cells: Between-, within-person associations in a longitudinal study of older adults. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2019.03.018

  • Reeves MB, Compton T (2011) Inhibition of inflammatory interleukin-6 activity via extracellular signal-regulated kinase-mitogen-activated protein kinase signaling antagonizes human cytomegalovirus reactivation from dendritic cells. J Virol 85:12750–12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves MB, Sinclair JH (2010) Analysis of latent viral gene expression in natural and experimental latency models of human cytomegalovirus and its correlation with histone modifications at a latent promoter. J Gen Virol 91:599–604

    Article  CAS  PubMed  Google Scholar 

  • Reeves MB, Sinclair JH (2013) Circulating dendritic cells isolated from healthy seropositive donors are sites of human cytomegalovirus reactivation in vivo. J Virol 87:10660–10667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzo LB, Do Prado CH, Grassi-Oliveira R et al (2013) Immunosenescence is associated with human cytomegalovirus and shortened telomeres in type I bipolar disorder. Bipolar Disord 15:832–838

    Article  CAS  PubMed  Google Scholar 

  • Robain M, Boufassa F, Hubert JB et al (2001) Cytomegalovirus seroconversion as a cofactor for progression to AIDS. AIDS 15:251–256

    Article  CAS  PubMed  Google Scholar 

  • Roberts ET, Haan MN, Dowd JB, Aiello AE (2010) Cytomegalovirus antibody levels, inflammation, and mortality among elderly Latinos over 9 years of follow-up. Am J Epidemiol 172:363–371

    Article  PubMed  PubMed Central  Google Scholar 

  • Rölle A, Brodin P (2016) Immune adaptation to environmental influence: the case of NK cells and HCMV. Trends Immunol 37:233–243

    Article  PubMed  Google Scholar 

  • Rölle A, Pollmann J, Ewen E-M et al (2014) IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. J Clin Invest 124:5305–5316

    Article  PubMed  PubMed Central  Google Scholar 

  • Rush AJ (2003) Toward an understanding of bipolar disorder and its origin. J Clin Psychiatry 64(Suppl 6):4–8. discussion 28

    PubMed  Google Scholar 

  • Sandhu PK, Buchkovich NJ (2020) Human cytomegalovirus decreases major histocompatibility complex class II by regulating class II transactivator transcript levels in a myeloid cell line. J Virol 94. https://doi.org/10.1128/JVI.01901-19

  • Sasaki S, Sullivan M, Narvaez CF et al (2011) Limited efficacy of inactivated influenza vaccine in elderly individuals is associated with decreased production of vaccine-specific antibodies. J Clin Invest 121:3109–3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savitz J (2019) The kynurenine pathway: a finger in every pie. Mol Psychiatry. https://doi.org/10.1038/s41380-019-0414-4

  • Savitz J, Harrison NA (2018) Interoception and inflammation in psychiatric disorders. Biol Psychiatry Cogn Neurosci Neuroimaging 3:514–524

    PubMed  PubMed Central  Google Scholar 

  • Savva GM, Pachnio A, Kaul B et al (2013) Cytomegalovirus infection is associated with increased mortality in the older population. Aging Cell 12:381–387

    Article  CAS  PubMed  Google Scholar 

  • Schmaltz HN, Fried LP, Xue Q-L et al (2005) Chronic cytomegalovirus infection and inflammation are associated with prevalent frailty in community-dwelling older women. J Am Geriatr Soc 53:747–754

    Article  PubMed  Google Scholar 

  • Schmidt D, Peterlik D, Reber SO et al (2016) Induction of suppressor cells and increased tumor growth following chronic psychosocial stress in male mice. PLoS One 11:e0159059

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnittman SR, Hunt PW (2021) Clinical consequences of asymptomatic cytomegalovirus in treated human immunodeficency virus infection. Curr Opin HIV AIDS 16:168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvey LA, Lim WH, Boan P et al (2017) Cytomegalovirus viraemia and mortality in renal transplant recipients in the era of antiviral prophylaxis. Lessons from the western Australian experience. BMC Infect Dis 17:501

    Article  PubMed  PubMed Central  Google Scholar 

  • Semmes EC, Hurst JH, Walsh KM, Permar SR (2020) Cytomegalovirus as an immunomodulator across the lifespan. Curr Opin Virol 44:112–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaikh AS, Shaim H, Caravedo MA et al (2021) A new viral coinfection: SARS-CoV-2 pneumonia and cytomegalovirus pneumonitis in a renal transplant recipient. COVID 1:115–119

    Article  CAS  Google Scholar 

  • Sharpe HR, Provine NM, Bowyer GS et al (2022) CMV-associated T cell and NK cell terminal differentiation does not affect immunogenicity of ChAdOx1 vaccination. JCI Insight 7. https://doi.org/10.1172/jci.insight.154187

  • Shimba A, Ikuta K (2020) Control of immunity by glucocorticoids in health and disease. Semin Immunopathol. https://doi.org/10.1007/s00281-020-00827-8

  • Shrock E, Fujimura E, Kula T et al (2020) Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 370. https://doi.org/10.1126/science.abd4250

  • Simanek AM, Dowd JB, Pawelec G et al (2011) Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS One 6:e16103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simanek AM, Cheng C, Yolken R et al (2014) Herpesviruses, inflammatory markers and incident depression in a longitudinal study of Detroit residents. Psychoneuroendocrinology 50:139–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Simanek AM, Zheng C, Yolken R et al (2018) A longitudinal study of the association between persistent pathogens and incident depression among older US Latinos. J Gerontol A Biol Sci Med Sci. https://doi.org/10.1093/gerona/gly172

  • Simmen KA, Singh J, Luukkonen BG et al (2001) Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc Natl Acad Sci U S A 98:7140–7145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonnet A, Engelmann I, Moreau A-S et al (2021) High incidence of Epstein-Barr virus, cytomegalovirus, and human-herpes virus-6 reactivations in critically ill patients with COVID-19. Infect Dis Now 51:296–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinicco A, Raiteri R, Sciandra M et al (1997) The influence of cytomegalovirus on the natural history of HIV infection: evidence of rapid course of HIV infection in HIV-positive patients infected with cytomegalovirus. Scand J Infect Dis 29:543–549

    Article  CAS  PubMed  Google Scholar 

  • Sinzger C, Digel M, Jahn G (2008) Cytomegalovirus cell tropism. In: Shenk TE, Stinski MF (eds) Human cytomegalovirus. Springer, Berlin, pp 63–83

    Chapter  Google Scholar 

  • Smith EM, Cadet P, Stefano GB et al (1999) IL-10 as a mediator in the HPA axis and brain. J Neuroimmunol 100:140–148

    Article  CAS  PubMed  Google Scholar 

  • Smith NA, Chan GC, O’Connor CM (2021) Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 18:207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Söderberg-Nauclér C, Fish KN, Nelson JA (1997a) Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91:119–126

    Article  PubMed  Google Scholar 

  • Söderberg-Nauclér C, Fish KN, Nelson JA (1997b) Interferon-gamma and tumor necrosis factor-alpha specifically induce formation of cytomegalovirus-permissive monocyte-derived macrophages that are refractory to the antiviral activity of these cytokines. J Clin Invest 100:3154–3163

    Article  PubMed  PubMed Central  Google Scholar 

  • Söderberg-Nauclér C, Streblow DN, Fish KN et al (2001) Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J Virol 75:7543–7554

    Article  PubMed  PubMed Central  Google Scholar 

  • Sølvsten Burgdorf K, Trabjerg B, Giørtz Pedersen M et al (2019) Large-scale study of Toxoplasma and Cytomegalovirus shows an association between infection and serious psychiatric disorders. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2019.01.026

  • Song BH, Lee GC, Moon MS et al (2001) Human cytomegalovirus binding to heparan sulfate proteoglycans on the cell surface and/or entry stimulates the expression of human leukocyte antigen class I. J Gen Virol 82:2405–2413

    Article  CAS  PubMed  Google Scholar 

  • Spencer RL, Deak T (2017) A users guide to HPA axis research. Physiol Behav 178:43–65

    Article  CAS  PubMed  Google Scholar 

  • Spencer JV, Lockridge KM, Barry PA et al (2002) Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol 76:1285–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spyridopoulos I, Hoffmann J, Aicher A et al (2009) Accelerated telomere shortening in leukocyte subpopulations of patients with coronary heart disease: role of cytomegalovirus seropositivity. Circulation 120:1364–1372

    Article  PubMed  Google Scholar 

  • Staras SAS, Dollard SC, Radford KW et al (2006) Seroprevalence of cytomegalovirus infection in the United States, 1988-1994. Clin Infect Dis 43:1143–1151

    Article  PubMed  Google Scholar 

  • Staras SAS, Flanders WD, Dollard SC et al (2008) Influence of sexual activity on cytomegalovirus seroprevalence in the United States, 1988-1994. Sex Transm Dis 35:472–479

    Article  PubMed  Google Scholar 

  • Stein J, Volk HD, Liebenthal C et al (1993) Tumour necrosis factor alpha stimulates the activity of the human cytomegalovirus major immediate early enhancer/promoter in immature monocytic cells. J Gen Virol 74(Pt 11):2333–2338

    Article  CAS  PubMed  Google Scholar 

  • Stein KR, Gardner TJ, Hernandez RE et al (2019) CD46 facilitates entry and dissemination of human cytomegalovirus. Nat Commun 10:2699

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevenson EV, Collins-McMillen D, Kim JH et al (2014) HCMV reprogramming of infected monocyte survival and differentiation: a Goldilocks phenomenon. Viruses 6:782–807

    Article  PubMed  PubMed Central  Google Scholar 

  • Stinski MF, Meier JL (2011) Immediate–early viral gene regulation and function. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge

    Google Scholar 

  • Stockdale L, Nash S, Farmer R et al (2020) Cytomegalovirus antibody responses associated with increased risk of tuberculosis disease in Ugandan adults. J Infect Dis 221:1127–1134

    CAS  PubMed  Google Scholar 

  • Stowell JD, Forlin-Passoni D, Din E et al (2012) Cytomegalovirus survival on common environmental surfaces: opportunities for viral transmission. J Infect Dis 205:211–214

    Article  PubMed  Google Scholar 

  • Stowell JD, Forlin-Passoni D, Radford K et al (2014) Cytomegalovirus survival and transferability and the effectiveness of common hand-washing agents against cytomegalovirus on live human hands. Appl Environ Microbiol 80:455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strandberg TE, Pitkala KH, Tilvis RS (2009) Cytomegalovirus antibody level and mortality among community-dwelling older adults with stable cardiovascular disease. JAMA 301:380–382

    Article  CAS  PubMed  Google Scholar 

  • Streblow DN, Nelson JA (2003) Models of HCMV latency and reactivation. Trends Microbiol 11:293–295

    Article  CAS  PubMed  Google Scholar 

  • Sylwester AW, Mitchell BL, Edgar JB et al (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Matsuda T, Hayes LN et al (2017) Infection and inflammation in schizophrenia and bipolar disorder. Neurosci Res 115:59–63

    Article  CAS  PubMed  Google Scholar 

  • Taylor-Wiedeman J, Sissons P, Sinclair J (1994) Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J Virol 68:1597–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedla Y, Shibre T, Ali O et al (2011) Serum antibodies to Toxoplasma gondii and Herpesvidae family viruses in individuals with schizophrenia and bipolar disorder: a case-control study. Ethiop Med J 49:211–220

    PubMed  Google Scholar 

  • Tomazin R, Boname J, Hegde NR et al (1999) Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD4+ T cells. Nat Med 5:1039–1043

    Article  CAS  PubMed  Google Scholar 

  • Torrey EF, Yolken RH, Winfrey CJ (1982) Cytomegalovirus antibody in cerebrospinal fluid of schizophrenic patients detected by enzyme immunoassay. Science 216:892–894

    Article  CAS  PubMed  Google Scholar 

  • Trzonkowski P, Myśliwska J, Szmit E et al (2003) Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination – an impact of immunosenescence. Vaccine 21:3826–3836

    Google Scholar 

  • Trzonkowski P, Myśliwska J, Godlewska B et al (2004) Immune consequences of the spontaneous pro-inflammatory status in depressed elderly patients. Brain Behav Immun 18:135–148

    Article  CAS  PubMed  Google Scholar 

  • Turki AT, Tsachakis-Mück N, Leserer S et al (2022) Impact of CMV reactivation on relapse of acute myeloid leukemia after HCT is dependent on disease stage and ATG. Blood Adv 6:28–36

    Article  CAS  PubMed  Google Scholar 

  • Valantine HA, Gao SZ, Menon SG et al (1999) Impact of prophylactic immediate posttransplant ganciclovir on development of transplant atherosclerosis: a post hoc analysis of a randomized, placebo-controlled study. Circulation 100:61–66

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela HF, Effros RB (2002) Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol 105:117–125

    Article  CAS  PubMed  Google Scholar 

  • Van Damme E, Van Loock M (2014) Functional annotation of human cytomegalovirus gene products: an update. Front Microbiol 5:218

    PubMed  PubMed Central  Google Scholar 

  • van de Berg PJEJ, Griffiths SJ, Yong S-L et al (2010) Cytomegalovirus infection reduces telomere length of the circulating T cell pool. J Immunol 184:3417–3423

    Article  PubMed  Google Scholar 

  • van den Berg SPH, Pardieck IN, Lanfermeijer J et al (2019a) The hallmarks of CMV-specific CD8 T-cell differentiation. Med Microbiol Immunol 208:365–373

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Berg SPH, Warmink K, Borghans JAM et al (2019b) Effect of latent cytomegalovirus infection on the antibody response to influenza vaccination: a systematic review and meta-analysis. Med Microbiol Immunol 208:305–321

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanarsdall AL, Johnson DC (2012) Human cytomegalovirus entry into cells. Curr Opin Virol 2:37–42

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Matsumoto N, Maenaka K et al (2004) The inhibitory NK cell receptor CD94/NKG2A and the activating receptor CD94/NKG2C bind the top of HLA-E through mostly shared but partly distinct sets of HLA-E residues. Eur J Immunol 34:81–90

    Article  CAS  PubMed  Google Scholar 

  • Wall N, Godlee A, Geh D et al (2021) Latent cytomegalovirus infection and previous capsular polysaccharide vaccination predict poor vaccine responses in older adults, independent of chronic kidney disease. Clin Infect Dis. https://doi.org/10.1093/cid/ciab078

  • Walter EA, Greenberg PD, Gilbert MJ et al (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044

    Article  CAS  PubMed  Google Scholar 

  • Wang GC, Kao WHL, Murakami P et al (2010) Cytomegalovirus infection and the risk of mortality and frailty in older women: a prospective observational cohort study. Am J Epidemiol 171:1144–1152

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Peng G, Bai J et al (2017) Cytomegalovirus infection and relative risk of cardiovascular disease (ischemic heart disease, stroke, and cardiovascular death): a meta-analysis of prospective studies up to 2016. J Am Heart Assoc 6. https://doi.org/10.1161/JAHA.116.005025

  • Wang L, Verschuuren EAM, Paap D et al (2021) Ageing of immune system and response to a live-attenuated herpes zoster vaccine in lung transplant candidates. Vaccines (Basel) 9. https://doi.org/10.3390/vaccines9030202

  • Watanabe M, Torigoe S, Ito M et al (2019) Salivary cytomegalovirus excretion in children in daycare centers and home care facilities in Japan. J Med Virol 91:2182–2187

    Article  CAS  PubMed  Google Scholar 

  • Webster A, Lee CA, Cook DG et al (1989) Cytomegalovirus infection and progression towards AIDS in haemophiliacs with human immunodeficiency virus infection. Lancet 2:63–66

    Article  CAS  PubMed  Google Scholar 

  • White EA, Spector DH (2011) Early viral gene expression and function. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge

    Google Scholar 

  • Wieduwild E, Girard-Madoux MJ, Quatrini L et al (2020) Β2-adrenergic signals downregulate the innate immune response and reduce host resistance to viral infection. J Exp Med 217. https://doi.org/10.1084/jem.20190554

  • Wiertz EJ, Jones TR, Sun L et al (1996) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779

    Article  CAS  PubMed  Google Scholar 

  • Wikby A, Johansson B, Olsson J et al (2002) Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol 37:445–453

    Article  CAS  PubMed  Google Scholar 

  • Wikby A, Ferguson F, Forsey R et al (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci 60:556–565

    Article  PubMed  Google Scholar 

  • Wills MR, Poole E, Lau B et al (2015) The immunology of human cytomegalovirus latency: could latent infection be cleared by novel immunotherapeutic strategies? Cell Mol Immunol 12:128–138

    Article  CAS  PubMed  Google Scholar 

  • Woods E, Zaiatz-Bittencourt V, Bannan C et al (2021) Specific human cytomegalovirus signature detected in NK cell metabolic changes post vaccination. NPJ Vaccines 6:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YS, Ho HN, Chen HF et al (1995) Cytomegalovirus infection and viral shedding in the genital tract of infertile couples. J Med Virol 45:179–182

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Qian Y, Yu W et al (2020) Functional profile of human cytomegalovirus genes and their associated diseases: a review. Front Microbiol 11:2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Yurochko AD, Huong SM, Huang ES (1999) Identification of human cytomegalovirus target sequences in the human immunodeficiency virus long terminal repeat. Potential role of IE2-86 binding to sequences between -120 and -20 in promoter transactivation. J Hum Virol 2:81–90

    CAS  PubMed  Google Scholar 

  • Zheng H, Ford BN, Bergamino M et al (2020) A hidden menace? Cytomegalovirus infection is associated with reduced cortical gray matter volume in major depressive disorder. Mol Psychiatry:1–11

    Google Scholar 

  • Zheng H, Bergamino M, Ford BN et al (2021a) Replicable association between human cytomegalovirus infection and reduced white matter fractional anisotropy in major depressive disorder. Neuropsychopharmacology. https://doi.org/10.1038/s41386-021-00971-1

  • Zheng H, Ford BN, Kuplicki R et al (2021b) Association between cytomegalovirus infection, reduced gray matter volume, and resting-state functional hypoconnectivity in major depressive disorder: a replication and extension. Transl Psychiatry 11:464

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Cong JP, Mamtora G et al (1998) Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc Natl Acad Sci U S A 95:14470–14475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Pan C, Sheng J et al (2018) Human cytomegalovirus reprogrammes haematopoietic progenitor cells into immunosuppressive monocytes to achieve latency. Nat Microbiol 3:503–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuravskaya T, Maciejewski JP, Netski DM et al (1997) Spread of human cytomegalovirus (HCMV) after infection of human hematopoietic progenitor cells: model of HCMV latency. Blood 90:2482–2491

    Article  CAS  PubMed  Google Scholar 

  • Zuhair M, Smit GSA, Wallis G et al (2019) Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev Med Virol:e2034

    Google Scholar 

Download references

Acknowledgments

BNF acknowledges support from the Brain and Behavior Research Foundation (30031). JS acknowledges support from the William K. Warren Foundation, the National Institute of Mental Health (R01MH123652) and the National Institute of General Medical Sciences (P20GM121312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart N. Ford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ford, B.N., Savitz, J. (2022). Effect of Cytomegalovirus on the Immune System: Implications for Aging and Mental Health. In: Savitz, J., Yolken, R.H. (eds) Microorganisms and Mental Health. Current Topics in Behavioral Neurosciences, vol 61. Springer, Cham. https://doi.org/10.1007/7854_2022_376

Download citation

Publish with us

Policies and ethics