Skip to main content
Log in

Dopamine Affects the Change of Pain-Related Electrical Activity Induced by Morphine Dependence

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Morphine is among the most effective analgesics. However, many evidences suggest that, besides the well-know analgesic activity, repeated opioids treatment can induce some side effects such as dependence, hyperalgesia and tolerance. The mechanism of noxious information transmission in the central nervous system after dependence is not clear. An important neurotransmitter, dopamine (DA) participates not only in the process of opioid dependence but also in pain modulation in the central nervous system. In the present study we observed changes of electrical activities of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the caudate nucleus (Cd) following the development of morphine dependence. We also observed the role of DA on these changes. Our results revealed that both the latency of PEN discharges and the inhibitory duration of PIN discharges decreased, and the net increased values of PEN and PIN discharges increased in the Cd of morphine dependent rats. Those demonstrated that electrical activities of both PENs and PINs increased in morphine dependent rats. DA inhibited the electrical activities of PENs and enhanced those of PINs in morphine dependent rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benyamin R, Trescot AM, Datta S, Buenaventura R, Adlaka R, Sehgal N, Glaser SE, Vallejo R (2008) Opioid complications and side effects. Pain Physician 11:105–120

    Google Scholar 

  2. Ballantyne JC, Shin NS (2008) Efficacy of opioids for chronic pain: a review of the evidence. Clin J Pain 24:469–478

    Article  PubMed  Google Scholar 

  3. Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8:1442–1444

    Article  PubMed  CAS  Google Scholar 

  4. Wood PB (2008) Role of central dopamine in pain and analgesia. Expert Rev Neurother 8:781–797

    Article  PubMed  CAS  Google Scholar 

  5. Treister R, Pud D, Ebstein RP, Laiba E, Gershon E, Haddad M, Eisenberg E (2009) Associations between polymorphisms in dopamine neurotransmitter pathway genes and pain response in healthy humans. Pain 147:187–193

    Article  PubMed  CAS  Google Scholar 

  6. Meyer PJ, Morgan MM, Kozell LB, Ingram SL (2009) Contribution of dopamine receptors to periaqueductal gray-mediated antinociception. Psychopharmacology 204:531–540

    Article  PubMed  CAS  Google Scholar 

  7. Altier N, Stewart J (1999) The role of dopamine in the nucleus accumbens in analgesia. Life Sci 65:2269–2287

    Article  PubMed  CAS  Google Scholar 

  8. Coffeen U, López-Avila A, Ortega-Legaspi JM, del Angel R, López-Muñoz FJ, Pellicer F (2008) Dopamine receptors in the anterior insular cortex modulate longterm nociception in the rat. Eur J Pain 12:535–543

    Article  PubMed  CAS  Google Scholar 

  9. Ansah OB, Leite-Almeida H, Wei H, Pertovaara A (2007) Striatal dopamine D2 receptors attenuate neuropathic hypersensitivity in the rat. Exp Neurol 205:536–546

    Article  PubMed  CAS  Google Scholar 

  10. Magnusson JE, Fisher K (2000) The involvement of dopamine in nociception: the role of D1 and D2 receptors in the dorsolateral striatum. Brain Res 855:260–266

    Article  PubMed  CAS  Google Scholar 

  11. Milton AL, Everitt BJ (2010) The psychological and neurochemical mechanisms of drug memory reconsolidation: implications for the treatment of addiction. Eur J Neurosci 31:2308–2319

    Article  PubMed  Google Scholar 

  12. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed  Google Scholar 

  13. Zhao CY, Yan LX, Lu N, Zhang JY, Xu MY (2001) Making the model quickly for morphinomania in rats. J Harbin Med Univ 35:257–258

    Google Scholar 

  14. Louis P, Ann P, Anna C (1979) A stereotaxic atlas of the rat brain, 2nd edn. Plenum Press, New York, pp 81–85

    Google Scholar 

  15. Zhang XT (1973) The integration of thalamus in the process of acupunctureanalgesia. Sci China 1:28–52

    Google Scholar 

  16. Sun MZ, Chen LS, Gu HL, Cheng J, Yue LS (1980) Effect of acupuncture on unit discharge in nucleus parafascicularis of rat thalamus. Sheng Li Xue Bao 32:207–213

    Google Scholar 

  17. Neugebauer V (2006) Subcortical processing of nociceptive information: basal ganglia and amygdale. Neurology 81:141–158

    Google Scholar 

  18. Laulin JP, Larcher A, Célèrier E, Le Moal M, Simonnet G (1998) Long-lasting increased pain sensitivity in rat following exposure to heroin for the first time. Eur J Neurosci 10:782–785

    Article  PubMed  CAS  Google Scholar 

  19. Laulin JP, Célèrier E, Larcher A, Le Moal M, Simonnet G (1999) Opiate tolerance to daily heroin administration: an apparent phenomenon associated with enhanced pain sensitivity. Neuroscience 89:631–636

    Article  PubMed  CAS  Google Scholar 

  20. Célèrier E, Laulin JP, Corcuff JB, Le Moal M, Simonnet G (2001) Progressive enhancement of delayed hyperalgesia induced by repeated heroin administration: a sensitization process. J Neurosci 1:4074–4080

    Google Scholar 

  21. Zhang GW, Yang CX, Gao HR, Zhang D, Zhang Y, Jiao RS, Zhang H, Liang Y, Xu MY (2010) Microinjection of different doses of norepinephrine into the caudate putamen produces opposing effects in rats. Neurosci Lett 471:125–128

    Article  PubMed  CAS  Google Scholar 

  22. Wood PB (2006) Mesolimbic dopaminergic mechanisms and pain control. Pain 120:230–234

    Article  PubMed  CAS  Google Scholar 

  23. Austin PJ, Beyer K, Bembrick AL, Keay KA (2010) Peripheral nerve injury differentially regulates dopaminergic pathways in the nucleus accumbens of rats with either ‘pain alone’ or ‘pain and disability’. Neuroscience 171:329–343

    Article  PubMed  CAS  Google Scholar 

  24. Treister R, Pud D, Ebstein RP, Laiba E, Gershon E, Haddad M, Eisenberg E (2009) Associations between polymorphisms in dopamine neurotransmitter pathway genes and pain response in healthy humans. Pain 147:187–193

    Article  PubMed  CAS  Google Scholar 

  25. Sheng HY, Qu CL, Huo FQ, Du JQ, Tang JS (2009) D2-like but not D1-like dopamine receptors are involved in the ventrolateral orbital cortex-induced antinociception: a GABAergic modulation mechanism. Exp Neurol 215:128–134

    Article  PubMed  CAS  Google Scholar 

  26. Dang YH, Xing B, Zhao Y, Zhao XJ, Huo FQ, Tang JS, Qu CL, Chen T (2011) The role of dopamine receptors in ventrolateral orbital cortex-evoked antinociception in a rat formalin test model. Eur J Pharmacol 657:97–103

    Article  PubMed  CAS  Google Scholar 

  27. Greco R, Tassorelli C, Armentero MT, Sandrini G, Nappi G, Blandini F (2008) Role of central dopaminergic circuitry in pain processing and nitroglycerin-induced hyperalgesia. Brain Res 1238:215–223

    Article  PubMed  CAS  Google Scholar 

  28. Spangler R, Goddard NL, Avena NM, Hoebel BG, Leibowitz SF (2003) Elevated D3 dopamine receptor mRNA in dopaminergic and dopaminoceptive regions of the rat brain in response to morphine. Brain Res Mol Brain Res 111:74–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by China Postdoctoral Science Foundation (20080440913) and Heilongjiang province Postdoctoral Science Foundation (20080306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manying Xu.

Additional information

Ying Zhang and Fengmin Zhang authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhang, F., Yang, C. et al. Dopamine Affects the Change of Pain-Related Electrical Activity Induced by Morphine Dependence. Neurochem Res 37, 977–982 (2012). https://doi.org/10.1007/s11064-011-0690-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0690-0

Keywords

Navigation