Skip to main content

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 49))

Abstract

OCD has lagged behind other psychiatric illnesses in the identification of molecular treatment targets, due in part to a lack of significant findings in genome-wide association studies. However, while progress in this area is being made, OCD’s symptoms of obsessions, compulsions, and anxiety can be deconstructed into distinct neural functions that can be dissected in animal models. Studies in rodents and non-human primates have highlighted the importance of cortico-basal ganglia-thalamic circuits in OCD pathophysiology, and emerging studies in human post-mortem brain tissue point to glutamatergic synapse abnormalities as a potential cellular substrate for observed dysfunctional behaviors. In addition, accumulated evidence points to a potential role for neuromodulators including serotonin and dopamine in both OCD pathology and treatment. Here, we review current efforts to use animal models for the identification of molecules, cell types, and circuits relevant to OCD pathophysiology. We start by describing features of OCD that can be modeled in animals, including circuit abnormalities and genetic findings. We then review different strategies that have been used to study OCD using animal model systems, including transgenic models, circuit manipulations, and dissection of OCD-relevant neural constructs. Finally, we discuss how these findings may ultimately help to develop new treatment strategies for OCD and other related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmari SE, Risbrough VB, Geyer MA, Simpson HB (2012) Impaired sensorimotor gating in unmedicated adults with obsessive-compulsive disorder. Neuropsychopharmacology 37:1216–1223

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K, Gordon JA, Hen R (2013) Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340:1234–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmari SE, Eich T, Cebenoyan D, Smith EE, Blair Simpson H (2014) Assessing neurocognitive function in psychiatric disorders: a roadmap for enhancing consensus. Neurobiol Learn Mem 115:10–20

    Article  PubMed  Google Scholar 

  • Ahmari SE, Risbrough VB, Geyer MA, Simpson HB (2016) Prepulse inhibition deficits in obsessive-compulsive disorder are more pronounced in females. Neuropsychopharmacology 41:2963–2964

    Article  PubMed  PubMed Central  Google Scholar 

  • Akam T, Rodrigues-Vaz I, Marcelo I, Zhang X, Pereira M, Oliveira RF, Dayan P, Costa RM (2017) Anterior cingulate cortex represents action-state predictions and causally mediates model-based reinforcement learning in a two-step decision task. biorxiv. https://doi.org/10.1101/126292

  • Amiez C, Joseph JP, Procyk E (2006) Reward encoding in the monkey anterior cingulate cortex. Cereb Cortex 16:1040–1055

    Article  CAS  PubMed  Google Scholar 

  • Apergis-Schoute AM, Gillan CM, Fineberg NA, Fernandez-Egea E, Sahakian BJ, Robbins TW (2017) Neural basis of impaired safety signaling in obsessive compulsive disorder. Proc Natl Acad Sci U S A 114:3216–3221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold PD, Sicard T, Burroughs E, Richter MA, Kennedy JL (2006) Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder. Arch Gen Psychiatry 63:769–776

    Article  CAS  PubMed  Google Scholar 

  • Aruga J, Yokota N, Mikoshiba K (2003) Human SLITRK family genes: genomic organization and expression profiling in normal brain and brain tumor tissue. Gene 315:87–94

    Article  CAS  PubMed  Google Scholar 

  • Atmaca M, Yildirim H, Ozdemir H, Ozler S, Kara B, Ozler Z, Kanmaz E, Mermi O, Tezcan E (2008) Hippocampus and amygdalar volumes in patients with refractory obsessive-compulsive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1283–1286

    Article  Google Scholar 

  • Baldan LC, Williams KA, Gallezot JD, Pogorelov V, Rapanelli M, Crowley M, Anderson GM, Loring E, Gorczyca R, Billingslea E, Wasylink S, Panza KE, Ercan-Sencicek AG, Krusong K, Leventhal BL, Ohtsu H, Bloch MH, Hughes ZA, Krystal JH, Mayes L, de Araujo I, Ding YS, State MW, Pittenger C (2014) Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron 81:77–90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bari A, Robbins TW (2013) Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol 108:44–79

    Article  PubMed  Google Scholar 

  • Barr LC, Goodman WK, Price LH, McDougle CJ, et al (1992) The serotonin hypothesis of obsessive compulsive disorder: implications of pharmacologic challenge studies. J Clin Psychiatry 53(4, Suppl):17–28

    Google Scholar 

  • Bellini S, Fleming KE, De M, McCauley JP, Petroccione MA, D'Brant LY, Tkachenko A, Kwon S, Jones LA, Scimemi A (2018) Neuronal glutamate transporters control dopaminergic signaling and compulsive behaviors. J Neurosci 38:937–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlin HA, Schulz KP, Zhang S, Turetzky R, Rosenthal D, Goodman W (2015) Neural correlates of emotional response inhibition in obsessive-compulsive disorder: a preliminary study. Psychiatry Res 234:259–264

    Article  PubMed  Google Scholar 

  • Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, Witherspoon K, Gerdts J, Baker C, Vulto-van Silfhout AT, Schuurs-Hoeijmakers JH, Fichera M, Bosco P, Buono S, Alberti A, Failla P, Peeters H, Steyaert J, Lelm V, Francescatto L, Mefford HC, Rosenfeld JA, Bakken T, O'Roak BJ, Pawlus M, Moon R, Shendure J, Amaral DG, Lein E, Rankin J, Romano C, de Vries BBA, Katsanis N, Eichler EE (2014) Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein JG, Garrity PA, Boyden ES (2012) Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr Opin Neurobiol 22:61–71

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC, Aldridge JW, Houchard KR, Zhuang X (2005) Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette’s. BMC Biol 3:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beucke JC, Sepulcre J, Talukdar T, Linnman C, Zschenderlein K, Endrass T, Kaufmann C, Kathmann N (2013) Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. JAMA Psychiat 70:619–629

    Article  Google Scholar 

  • Bienvenu OJ, Wang Y, Shugart YY, Welch JM, Grados MA, Fyer AJ, Rauch SL, McCracken JT, Rasmussen SA, Murphy DL, Cullen B, Valle D, Hoehn-Saric R, Greenberg BD, Pinto A, Knowles JA, Piacentini J, Pauls DL, Liang KY, Willour VL, Riddle M, Samuels JF, Feng G, Nestadt G (2009) Sapap3 and pathological grooming in humans: results from the OCD collaborative genetics study. Am J Med Genet B Neuropsychiatr Genet 150B:710–720

    Article  CAS  PubMed  Google Scholar 

  • Bjorn-Yoshimoto WE, Underhill SM (2016) The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem Int 98:4–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bloch MH, Leckman JF (2009) Clinical course of Tourette syndrome. J Psychosom Res 67:497–501

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloch MH, Green C, Kichuk SA, Dombrowski PA, Wasylink S, Billingslea E, Landeros-Weisenberger A, Kelmendi B, Goodman WK, Leckman JF, Coric V, Pittenger C (2013) Long-term outcome in adults with obsessive-compulsive disorder. Depress Anxiety 30:716–722

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloch Y, Arad S, Levkovitz Y (2016) Deep TMS add-on treatment for intractable Tourette syndrome: a feasibility study. World J Biol Psychiatry 17:557–561

    Article  PubMed  Google Scholar 

  • Bohlhalter S, Goldfine A, Matteson S, Garraux G, Hanakawa T, Kansaku K, Wurzman R, Hallett M (2006) Neural correlates of tic generation in Tourette syndrome: an event-related functional MRI study. Brain 129:2029–2037

    Article  CAS  PubMed  Google Scholar 

  • Bohn I, Giertler C, Hauber W (2003) Orbital prefrontal cortex and guidance of instrumental behaviour in rats under reversal conditions. Behav Brain Res 143:49–56

    Article  PubMed  Google Scholar 

  • Boulougouris V, Robbins TW (2010) Enhancement of spatial reversal learning by 5-HT2C receptor antagonism is neuroanatomically specific. J Neurosci 30:930–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulougouris V, Dalley JW, Robbins TW (2007) Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res 179:219–228

    Article  PubMed  Google Scholar 

  • Boulougouris V, Glennon JC, Robbins TW (2008) Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 33:2007–2019

    Article  CAS  PubMed  Google Scholar 

  • Braun AR, Stoetter B, Randolph C, Hsiao JK, Vladar K, Gernert J, Carson RE, Herscovitch P, Chase TN (1993) The functional neuroanatomy of Tourette's syndrome: an FDG-PET study. I. Regional changes in cerebral glucose metabolism differentiating patients and controls. Neuropsychopharmacology 9:277–291

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Rivera C, Roman-Ortiz C, Brignoni-Perez E, Sotres-Bayon F, Quirk GJ (2014) Neural structures mediating expression and extinction of platform-mediated avoidance. J Neurosci 34:9736–9742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo-Rivera C, Roman-Ortiz C, Montesinos-Cartagena M, Quirk GJ (2015) Persistent active avoidance correlates with activity in prelimbic cortex and ventral striatum. Front Behav Neurosci 9:184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breiter HC, Rauch SL, Kwong KK, Baker JR, Weisskoff RM, Kennedy DN, Kendrick AD, Davis TL, Jiang A, Cohen MS, Stern CE, Belliveau JW, Baer L, O'Sullivan RL, Savage CR, Jenike MA, Rosen BR (1996) Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch Gen Psychiatry 53:595–606

    Article  CAS  PubMed  Google Scholar 

  • Brigman JL, Rothblat LA (2008) Stimulus specific deficit on visual reversal learning after lesions of medial prefrontal cortex in the mouse. Behav Brain Res 187:405–410

    Article  CAS  PubMed  Google Scholar 

  • Broocks A, Pigott TA, Hill JL, Canter S, Grady TA, L'Heureux F, Murphy DL (1998) Acute intravenous administration of ondansetron and m-CPP, alone and in combination, in patients with obsessive-compulsive disorder (OCD): behavioral and biological results. Psychiatry Res 79:11–20

    Article  CAS  PubMed  Google Scholar 

  • Brown JW, Braver TS (2005) Learned predictions of error likelihood in the anterior cingulate cortex. Science 307:1118–1121

    Article  CAS  PubMed  Google Scholar 

  • Burguiere E, Monteiro P, Feng G, Graybiel AM (2013) Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340:1243–1246

    Article  CAS  PubMed  Google Scholar 

  • Burguiere E, Monteiro P, Mallet L, Feng G, Graybiel AM (2015) Striatal circuits, habits, and implications for obsessive-compulsive disorder. Curr Opin Neurobiol 30:59–65

    Article  CAS  PubMed  Google Scholar 

  • Burke KA, Takahashi YK, Correll J, Brown PL, Schoenbaum G (2009) Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with 'disinhibition' of responding for previously unrewarded cues. Eur J Neurosci 30:1941–1946

    Article  PubMed  PubMed Central  Google Scholar 

  • Camarena B, Aguilar A, Loyzaga C, Nicolini H (2004) A family-based association study of the 5-HT-1Dbeta receptor gene in obsessive-compulsive disorder. Int J Neuropsychopharmacol 7:49–53

    Article  CAS  PubMed  Google Scholar 

  • Campbell KM, de Lecea L, Severynse DM, Caron MG, McGrath MJ, Sparber SB, Sun LY, Burton FH (1999) OCD-like behaviors caused by a neuropotentiating transgene targeted to cortical and limbic D1+ neurons. J Neurosci 19:5044–5053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capecchi MR (1997) Hox genes and mammalian development. Cold Spring Harb Symp Quant Biol 62:273–281

    Article  CAS  PubMed  Google Scholar 

  • Cappi C, Oliphant ME, Peter Z, Zai G, do Rosario MC, Sullivan CAW, Gupta AR, Hoffman EJ, Virdee M, Olfson E, Abdallah SB, Willsey AJ, Shavitt RG, Miguel EC, Kennedy JL, Richter MA, Fernandez TV (2020) De novo damaging DNA coding mutations are associated with obsessive-compulsive disorder and overlap with Tourette’s disorder and autism. Biol Psychiatry 87:1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Castellan Baldan L, Williams KA, Gallezot JD, Pogorelov V, Rapanelli M, Crowley M, Anderson GM, Loring E, Gorczyca R, Billingslea E, Wasylink S, Panza KE, Ercan-Sencicek AG, Krusong K, Leventhal BL, Ohtsu H, Bloch MH, Hughes ZA, Krystal JH, Mayes L, de Araujo I, Ding YS, State MW, Pittenger C (2014) Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron 81:77–90

    Article  CAS  Google Scholar 

  • Chamberlain SR, Menzies L, Hampshire A, Suckling J, Fineberg NA, del Campo N, Aitken M, Craig K, Owen AM, Bullmore ET, Robbins TW, Sahakian BJ (2008) Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science 321:421–422

    Article  CAS  PubMed  Google Scholar 

  • Chaouloff F, Courvoisier H, Moisan MP, Mormede P (1999) GR 127935 reduces basal locomotor activity and prevents RU 24969-, but not D-amphetamine-induced hyperlocomotion, in the Wistar-Kyoto hyperactive (WKHA) rat. Psychopharmacology 141:326–331

    Article  CAS  PubMed  Google Scholar 

  • Cheetham SC, Heal DJ (1993) Evidence that RU 24969-induced locomotor activity in C57/B1/6 mice is specifically mediated by the 5-HT1B receptor. Br J Pharmacol 110:1621–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, Capecchi MR (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141:775–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou-Green JM, Holscher TD, Dallman MF, Akana SF (2003) Compulsive behavior in the 5-HT2C receptor knockout mouse. Physiol Behav 78:641–649

    Article  CAS  PubMed  Google Scholar 

  • Christian CJ, Lencz T, Robinson DG, Burdick KE, Ashtari M, Malhotra AK, Betensky JD, Szeszko PR (2008) Gray matter structural alterations in obsessive-compulsive disorder: relationship to neuropsychological functions. Psychiatry Res 164:123–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Chudasama Y, Daniels TE, Gorrin DP, Rhodes SE, Rudebeck PH, Murray EA (2013) The role of the anterior cingulate cortex in choices based on reward value and reward contingency. Cereb Cortex 23:2884–2898

    Article  PubMed  Google Scholar 

  • Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304:878–880

    Article  CAS  PubMed  Google Scholar 

  • Clarke HF, Walker SC, Crofts HS, Dalley JW, Robbins TW, Roberts AC (2005) Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci 25:532–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC (2007) Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex 17:18–27

    Article  CAS  PubMed  Google Scholar 

  • Corbit VL, Manning EE, Gittis AH, Ahmari SE (2019) Strengthened inputs from secondary motor cortex to striatum in a mouse model of compulsive behavior. J Neurosci 39:2965–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbit VL, Piantadosi SC, Wood J, Liu G, Choi C, Witten IB, Gittis AH, Ahmari SE (2020) Dissociable roles of central striatum and anterior lateral motor area in initiating and sustaining naturalistic behavior. bioRxiv: 2020.01.08.899070

    Google Scholar 

  • D’Cruz AM, Ragozzino ME, Mosconi MW, Pavuluri MN, Sweeney JA (2011) Human reversal learning under conditions of certain versus uncertain outcomes. NeuroImage 56:315–322

    Article  PubMed  Google Scholar 

  • Dajani DR, Uddin LQ (2015) Demystifying cognitive flexibility: implications for clinical and developmental neuroscience. Trends Neurosci 38:571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton GL, Wang NY, Phillips AG, Floresco SB (2016) Multifaceted contributions by different regions of the orbitofrontal and medial prefrontal cortex to probabilistic reversal learning. J Neurosci 36:1996–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Brouwer G, Fick A, Harvey BH, Wolmarans W (2019) A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: mapping the way forward. Cogn Affect Behav Neurosci 19:1–39

    Article  PubMed  Google Scholar 

  • de Vries FE, Cath DC, Hoogendoorn AW, van Oppen P, Glas G, Veltman DJ, van den Heuvel OA, van Balkom AJ (2016) Tic-related versus Tic-free obsessive-compulsive disorder: clinical picture and 2-year natural course. J Clin Psychiatry 77:e1240–e1e47

    Article  PubMed  Google Scholar 

  • de Wit SJ, de Vries FE, van der Werf YD, Cath DC, Heslenfeld DJ, Veltman EM, van Balkom AJ, Veltman DJ, van den Heuvel OA (2012) Presupplementary motor area hyperactivity during response inhibition: a candidate endophenotype of obsessive-compulsive disorder. Am J Psychiatry 169:1100–1108

    Article  PubMed  Google Scholar 

  • de Wolmarans W, Stein DJ, Harvey BH (2016) Of mice and marbles: novel perspectives on burying behavior as a screening test for psychiatric illness. Cogn Affect Behav Neurosci 16:551–560

    Article  Google Scholar 

  • Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18:1213–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado-Acevedo C, Estay SF, Radke AK, Sengupta A, Escobar AP, Henriquez-Belmar F, Reyes CA, Haro-Acuna V, Utreras E, Sotomayor-Zarate R, Cho A, Wendland JR, Kulkarni AB, Holmes A, Murphy DL, Chavez AE, Moya PR (2019) Behavioral and synaptic alterations relevant to obsessive-compulsive disorder in mice with increased EAAT3 expression. Neuropsychopharmacology 44:1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72

    Article  CAS  PubMed  Google Scholar 

  • Dickel DE, Veenstra-VanderWeele J, Cox NJ, Wu X, Fischer DJ, Van Etten-Lee M, Himle JA, Leventhal BL, Cook EH Jr, Hanna GL (2006) Association testing of the positional and functional candidate gene SLC1A1/EAAC1 in early-onset obsessive-compulsive disorder. Arch Gen Psychiatry 63:778–785

    Article  CAS  PubMed  Google Scholar 

  • Diehl MM, Bravo-Rivera C, Rodriguez-Romaguera J, Pagan-Rivera PA, Burgos-Robles A, Roman-Ortiz C, Quirk GJ (2018) Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex. eLife 7

    Google Scholar 

  • Diehl MM, Bravo-Rivera C, Quirk GJ (2019) The study of active avoidance: a platform for discussion. Neurosci Biobehav Rev 107:229–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djodari-Irani A, Klein J, Banzhaf J, Joel D, Heinz A, Harnack D, Lagemann T, Juckel G, Kupsch A, Morgenstern R, Winter C (2011) Activity modulation of the globus pallidus and the nucleus entopeduncularis affects compulsive checking in rats. Behav Brain Res 219:149–158

    Article  PubMed  Google Scholar 

  • Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, Fetcho RN, Zebley B, Oathes DJ, Etkin A, Schatzberg AF, Sudheimer K, Keller J, Mayberg HS, Gunning FM, Alexopoulos GS, Fox MD, Pascual-Leone A, Voss HU, Casey BJ, Dubin MJ, Liston C (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23:28–38

    Article  CAS  PubMed  Google Scholar 

  • Dulawa SC, Geyer MA (2000) Effects of strain and serotonergic agents on prepulse inhibition and habituation in mice. Neuropharmacology 39:2170–2179

    Article  CAS  PubMed  Google Scholar 

  • Dvorkin A, Perreault ML, Szechtman H (2006) Development and temporal organization of compulsive checking induced by repeated injections of the dopamine agonist quinpirole in an animal model of obsessive-compulsive disorder. Behav Brain Res 169:303–311

    Article  CAS  PubMed  Google Scholar 

  • Dvorkin A, Silva C, McMurran T, Bisnaire L, Foster J, Szechtman H (2010) Features of compulsive checking behavior mediated by nucleus accumbens and orbital frontal cortex. Eur J Neurosci 32:1552–1563

    Article  PubMed  Google Scholar 

  • Eagle DM, Noschang C, d'Angelo LS, Noble CA, Day JO, Dongelmans ML, Theobald DE, Mar AC, Urcelay GP, Morein-Zamir S, Robbins TW (2014) The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: a novel possible model of OCD. Behav Brain Res 264:207–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehmer I, Crown L, van Leeuwen W, Feenstra M, Willuhn I, Denys D (2020) Evidence for distinct forms of compulsivity in the SAPAP3 mutant-mouse model for obsessive-compulsive disorder. eNeuro 7

    Google Scholar 

  • Ercan-Sencicek AG, Stillman AA, Ghosh AK, Bilguvar K, O'Roak BJ, Mason CE, Abbott T, Gupta A, King RA, Pauls DL, Tischfield JA, Heiman GA, Singer HS, Gilbert DL, Hoekstra PJ, Morgan TM, Loring E, Yasuno K, Fernandez T, Sanders S, Louvi A, Cho JH, Mane S, Colangelo CM, Biederer T, Lifton RP, Gunel M, State MW (2010) L-histidine decarboxylase and Tourette’s syndrome. N Engl J Med 362:1901–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fellows LK, Farah MJ (2003) Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126:1830–1837

    Article  PubMed  Google Scholar 

  • Fernandez TV, Sanders SJ, Yurkiewicz IR, Ercan-Sencicek AG, Kim YS, Fishman DO, Raubeson MJ, Song Y, Yasuno K, Ho WS, Bilguvar K, Glessner J, Chu SH, Leckman JF, King RA, Gilbert DL, Heiman GA, Tischfield JA, Hoekstra PJ, Devlin B, Hakonarson H, Mane SM, Gunel M, State MW (2012) Rare copy number variants in tourette syndrome disrupt genes in histaminergic pathways and overlap with autism. Biol Psychiatry 71:392–402

    Article  CAS  PubMed  Google Scholar 

  • Fullana MA, Zhu X, Alonso P, Cardoner N, Real E, Lopez-Sola C, Segalas C, Subira M, Galfalvy H, Menchon JM, Simpson HB, Marsh R, Soriano-Mas C (2017) Basolateral amygdala-ventromedial prefrontal cortex connectivity predicts cognitive behavioural therapy outcome in adults with obsessive-compulsive disorder. J Psychiatry Neurosci 42:378–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Geller DA (2006) Obsessive-compulsive and spectrum disorders in children and adolescents. Psychiatr Clin North Am 29:353–370

    Article  PubMed  Google Scholar 

  • Geramita MA, Yttri EA, Ahmari SE (2020) The two-step task, avoidance, and OCD. J Neurosci Res 98:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Dulawa SC (2003) Assessment of murine startle reactivity, prepulse inhibition, and habituation. Curr Protoc Neurosci 8:17

    PubMed  Google Scholar 

  • Ghahremani DG, Monterosso J, Jentsch JD, Bilder RM, Poldrack RA (2010) Neural components underlying behavioral flexibility in human reversal learning. Cereb Cortex 20:1843–1852

    Article  PubMed  Google Scholar 

  • Ghods-Sharifi S, Haluk DM, Floresco SB (2008) Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Neurobiol Learn Mem 89:567–573

    Article  PubMed  Google Scholar 

  • Gilbert AR, Mataix-Cols D, Almeida JR, Lawrence N, Nutche J, Diwadkar V, Keshavan MS, Phillips ML (2008) Brain structure and symptom dimension relationships in obsessive-compulsive disorder: a voxel-based morphometry study. J Affect Disord 109:117–126

    Article  PubMed  Google Scholar 

  • Gillan CM, Robbins TW (2014) Goal-directed learning and obsessive-compulsive disorder. Philos Trans R Soc Lond B Biol Sci 369

    Google Scholar 

  • Gillan CM, Papmeyer M, Morein-Zamir S, Sahakian BJ, Fineberg NA, Robbins TW, de Wit S (2011) Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. Am J Psychiatry 168:718–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillan CM, Morein-Zamir S, Urcelay GP, Sule A, Voon V, Apergis-Schoute AM, Fineberg NA, Sahakian BJ, Robbins TW (2014) Enhanced avoidance habits in obsessive-compulsive disorder. Biol Psychiatry 75:631–638

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillan CM, Apergis-Schoute AM, Morein-Zamir S, Urcelay GP, Sule A, Fineberg NA, Sahakian BJ, Robbins TW (2015) Functional neuroimaging of avoidance habits in obsessive-compulsive disorder. Am J Psychiatry 172:284–293

    Article  PubMed  Google Scholar 

  • Gillan CM, Robbins TW, Sahakian BJ, van den Heuvel OA, van Wingen G (2016) The role of habit in compulsivity. Eur Neuropsychopharmacol 26:828–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez LF, Henriquez-Belmar F, Delgado-Acevedo C, Cisternas-Olmedo M, Arriagada G, Sotomayor-Zarate R, Murphy DL, Moya PR (2017) Neurochemical and behavioral characterization of neuronal glutamate transporter EAAT3 heterozygous mice. Biol Res 50:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gottlich M, Kramer UM, Kordon A, Hohagen F, Zurowski B (2014) Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder. Hum Brain Mapp 35:5617–5632

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottlich M, Kramer UM, Kordon A, Hohagen F, Zurowski B (2015) Resting-state connectivity of the amygdala predicts response to cognitive behavioral therapy in obsessive compulsive disorder. Biol Psychol 111:100–109

    Article  PubMed  Google Scholar 

  • Gottwald J, de Wit S, Apergis-Schoute AM, Morein-Zamir S, Kaser M, Cormack F, Sule A, Limmer W, Morris AC, Robbins TW, Sahakian BJ (2018) Impaired cognitive plasticity and goal-directed control in adolescent obsessive-compulsive disorder. Psychol Med 48:1900–1908

    Article  PubMed  PubMed Central  Google Scholar 

  • Grados MA, Mathews CA (2009) Clinical phenomenology and phenotype variability in Tourette syndrome. J Psychosom Res 67:491–496

    Article  PubMed  Google Scholar 

  • Graybiel AM, Rauch SL (2000) Toward a neurobiology of obsessive-compulsive disorder. Neuron 28:343–347

    Article  CAS  PubMed  Google Scholar 

  • Greer JM, Capecchi MR (2002) Hoxb8 is required for normal grooming behavior in mice. Neuron 33:23–34

    Article  CAS  PubMed  Google Scholar 

  • Gremel CM, Costa RM (2013) Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun 4:2264

    Article  PubMed  CAS  Google Scholar 

  • Grimmond S, Larder R, Van Hateren N, Siggers P, Hulsebos TJ, Arkell R, Greenfield A (2000) Cloning, mapping, and expression analysis of a gene encoding a novel mammalian EGF-related protein (SCUBE1). Genomics 70:74–81

    Article  CAS  PubMed  Google Scholar 

  • Groman SM, Keistler C, Keip AJ, Hammarlund E, DiLeone RJ, Pittenger C, Lee D, Taylor JR (2019) Orbitofrontal circuits control multiple reinforcement-learning processes. Neuron 103:734–746.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grutzmann R, Endrass T, Kaufmann C, Allen E, Eichele T, Kathmann N (2016) Presupplementary motor area contributes to altered error monitoring in obsessive-compulsive disorder. Biol Psychiatry 80:562–571

    Article  PubMed  Google Scholar 

  • Gu BM, Park JY, Kang DH, Lee SJ, Yoo SY, Jo HJ, Choi CH, Lee JM, Kwon JS (2008) Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain 131:155–164

    Article  PubMed  Google Scholar 

  • Gudasheva TA, Tarasiuk AV, Sazonova NM, Povarnina PY, Antipova TA, Seredenin SB (2017) A novel dimeric dipeptide mimetic of the BDNF selectively activates the MAPK-Erk signaling pathway. Dokl Biochem Biophys 476:291–295

    Article  CAS  PubMed  Google Scholar 

  • Hadjas LC, Luscher C, Simmler LD (2019) Aberrant habit formation in the Sapap3-knockout mouse model of obsessive-compulsive disorder. Sci Rep 9:12061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hall D, Dhilla A, Charalambous A, Gogos JA, Karayiorgou M (2003) Sequence variants of the brain-derived neurotrophic factor (BDNF) gene are strongly associated with obsessive-compulsive disorder. Am J Hum Genet 73:370–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampson M, Tokoglu F, King RA, Constable RT, Leckman JF (2009) Brain areas coactivating with motor cortex during chronic motor tics and intentional movements. Biol Psychiatry 65:594–599

    Article  PubMed  Google Scholar 

  • Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, Lopez-Sola M, Hernandez-Ribas R, Deus J, Alonso P, Yucel M, Pantelis C, Menchon JM, Cardoner N (2009) Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch Gen Psychiatry 66:1189–1200

    Article  PubMed  Google Scholar 

  • Hemmings SM, Kinnear CJ, Van der Merwe L, Lochner C, Corfield VA, Moolman-Smook JC, Stein DJ (2008) Investigating the role of the brain-derived neurotrophic factor (BDNF) val66met variant in obsessive-compulsive disorder (OCD). World J Biol Psychiatry 9:126–134

    Article  PubMed  Google Scholar 

  • Hervig ME, Fiddian L, Piilgaard L, Bozic T, Blanco-Pozo M, Knudsen C, Olesen SF, Alsio J, Robbins TW (2020) Dissociable and paradoxical roles of rat medial and lateral orbitofrontal cortex in visual serial reversal learning. Cereb Cortex 30:1016–1029

    Article  CAS  PubMed  Google Scholar 

  • Hesse S, Muller U, Lincke T, Barthel H, Villmann T, Angermeyer MC, Sabri O, Stengler-Wenzke K (2005) Serotonin and dopamine transporter imaging in patients with obsessive-compulsive disorder. Psychiatry Res 140:63–72

    Article  CAS  PubMed  Google Scholar 

  • Hirschtritt ME, Bloch MH, Mathews CA (2017) Obsessive-compulsive disorder: advances in diagnosis and treatment. JAMA 317:1358–1367

    Article  PubMed  Google Scholar 

  • Hoenig K, Hochrein A, Quednow BB, Maier W, Wagner M (2005) Impaired prepulse inhibition of acoustic startle in obsessive-compulsive disorder. Biol Psychiatry 57:1153–1158

    Article  PubMed  Google Scholar 

  • Hollander E, DeCaria CM, Nitescu A, Gully R, Suckow RF, Cooper TB, Gorman JM, Klein DF, Liebowitz MR (1992) Serotonergic function in obsessive-compulsive disorder. Behavioral and neuroendocrine responses to oral m-chlorophenylpiperazine and fenfluramine in patients and healthy volunteers. Arch Gen Psychiatry 49:21–28

    Article  CAS  PubMed  Google Scholar 

  • Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32:6000–6013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holstege JC, de Graaff W, Hossaini M, Cardona Cano S, Jaarsma D, van den Akker E, Deschamps J (2008) Loss of Hoxb8 alters spinal dorsal laminae and sensory responses in mice. Proc Natl Acad Sci U S A 105:6338–6343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornak J, O'Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR, Polkey CE (2004) Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 16:463–478

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Wu W, Lin Y, Wang J, Zhou D, Guo J, Gu S, He M, Ahmed S, Hu J, Qu W, Li H (2012) Localization of cerebral functional deficits in patients with obsessive-compulsive disorder: a resting-state fMRI study. J Affect Disord 138:313–321

    Article  PubMed  Google Scholar 

  • Husted DS, Shapira NA, Goodman WK (2006) The neurocircuitry of obsessive-compulsive disorder and disgust. Prog Neuro-Psychopharmacol Biol Psychiatry 30:389–399

    Article  Google Scholar 

  • International Obsessive Compulsive Disorder Foundation Genetics Collaborative and O. C. D. Collaborative Genetics Association Studies (2018) Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol Psychiatry 23:1181–1188

    Google Scholar 

  • Jimenez-Gomez C, Osentoski A, Woods JH (2011) Pharmacological evaluation of the adequacy of marble burying as an animal model of compulsion and/or anxiety. Behav Pharmacol 22:711–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones B, Mishkin M (1972) Limbic lesions and the problem of stimulus--reinforcement associations. Exp Neurol 36:362–377

    Article  CAS  PubMed  Google Scholar 

  • Kalanithi PS, Zheng W, Kataoka Y, DiFiglia M, Grantz H, Saper CB, Schwartz ML, Leckman JF, Vaccarino FM (2005) Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci U S A 102:13307–13312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalueff AV, Stewart AM, Song C, Berridge KC, Graybiel AM, Fentress JC (2016) Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 17:45–59

    Article  CAS  PubMed  Google Scholar 

  • Kataoka Y, Kalanithi PS, Grantz H, Schwartz ML, Saper C, Leckman JF, Vaccarino FM (2010) Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol 518:277–291

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JJ, Lee MC, Kim J, Kim IY, Kim SI, Han MH, Chang KH, Kwon JS (2001) Grey matter abnormalities in obsessive-compulsive disorder: statistical parametric mapping of segmented magnetic resonance images. Br J Psychiatry 179:330–334

    Article  CAS  PubMed  Google Scholar 

  • Kim CK, Adhikari A, Deisseroth K (2017) Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 18:222–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimchi EY, Torregrossa MM, Taylor JR, Laubach M (2009) Neuronal correlates of instrumental learning in the dorsal striatum. J Neurophysiol 102:475–489

    Article  PubMed  PubMed Central  Google Scholar 

  • Koizumi T, Puccetti A, Migliorini P, Barrett KJ, Schwartz RS (1991) Molecular heterogeneity of auto-anti-idiotypic antibodies in MLR-lpr/lpr mice. Eur J Immunol 21:2185–2193

    Article  CAS  PubMed  Google Scholar 

  • Kringelbach ML, Rolls ET (2003) Neural correlates of rapid reversal learning in a simple model of human social interaction. NeuroImage 20:1371–1383

    Article  PubMed  Google Scholar 

  • Kwon JS, Kim JJ, Lee DW, Lee JS, Lee DS, Kim MS, Lyoo IK, Cho MJ, Lee MC (2003) Neural correlates of clinical symptoms and cognitive dysfunctions in obsessive-compulsive disorder. Psychiatry Res 122:37–47

    Article  PubMed  Google Scholar 

  • Lagemann T, Rentzsch J, Montag C, Gallinat J, Jockers-Scherubl M, Winter C, Reischies FM (2012) Early orbitofrontal hyperactivation in obsessive-compulsive disorder. Psychiatry Res 202:257–263

    Article  PubMed  Google Scholar 

  • Leckman JF, Bloch MH, King RA (2009) Symptom dimensions and subtypes of obsessive-compulsive disorder: a developmental perspective. Dialogues Clin Neurosci 11:21–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Leckman JF, Denys D, Simpson HB, Mataix-Cols D, Hollander E, Saxena S, Miguel EC, Rauch SL, Goodman WK, Phillips KA, Stein DJ (2010) Obsessive-compulsive disorder: a review of the diagnostic criteria and possible subtypes and dimensional specifiers for DSM-V. Depress Anxiety 27:507–527

    Article  PubMed  PubMed Central  Google Scholar 

  • LeDoux J, Daw ND (2018) Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat Rev Neurosci 19:269–282

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE, Moscarello J, Sears R, Campese V (2017) The birth, death and resurrection of avoidance: a reconceptualization of a troubled paradigm. Mol Psychiatry 22:24–36

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Koo BH, Seo WS, Kim HG, Kim JY, Cheon EJ (2017) Repetitive transcranial magnetic stimulation of the supplementary motor area in treatment-resistant obsessive-compulsive disorder: an open-label pilot study. J Clin Neurosci 44:264–268

    Article  PubMed  Google Scholar 

  • Lennington JB, Coppola G, Kataoka-Sasaki Y, Fernandez TV, Palejev D, Li Y, Huttner A, Pletikos M, Sestan N, Leckman JF, Vaccarino FM (2016) Transcriptome analysis of the human striatum in Tourette syndrome. Biol Psychiatry 79:372–382

    Article  CAS  PubMed  Google Scholar 

  • Lerner TN, Ye L, Deisseroth K (2016) Communication in neural circuits: tools, opportunities, and challenges. Cell 164:1136–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch CJ, Gunning FM, Liston C (2020) Causes and consequences of diagnostic heterogeneity in depression: paths to discovering novel biological depression subtypes. Biol Psychiatry

    Google Scholar 

  • Maia TV, Cooney RE, Peterson BS (2008) The neural bases of obsessive-compulsive disorder in children and adults. Dev Psychopathol 20:1251–1283

    Article  PubMed  PubMed Central  Google Scholar 

  • Manning EE, Ahmari SE (2018) How can preclinical mouse models be used to gain insight into prefrontal cortex dysfunction in obsessive-compulsive disorder? Brain Neurosci Adv 2:2398212818783896

    Article  PubMed  PubMed Central  Google Scholar 

  • Manning EE, Dombrovski AY, Torregrossa MM, Ahmari SE (2019) Impaired instrumental reversal learning is associated with increased medial prefrontal cortex activity in Sapap3 knockout mouse model of compulsive behavior. Neuropsychopharmacology 44:1494–1504

    Article  PubMed  Google Scholar 

  • Manning EE, Wang AY, Saikali LM, Winner A, Ahmari SE (2020). Disruption of prepulse inhibition is associated with severity of compulsive behavior and NAc dopamine system changes in SAPAP3-KO mice. bioRxiv: 694935

    Google Scholar 

  • Mantovani A, Simpson HB, Fallon BA, Rossi S, Lisanby SH (2010) Randomized sham-controlled trial of repetitive transcranial magnetic stimulation in treatment-resistant obsessive-compulsive disorder. Int J Neuropsychopharmacol 13:217–227

    Article  PubMed  Google Scholar 

  • Mantovani A, Rossi S, Bassi BD, Simpson HB, Fallon BA, Lisanby SH (2013) Modulation of motor cortex excitability in obsessive-compulsive disorder: an exploratory study on the relations of neurophysiology measures with clinical outcome. Psychiatry Res 210:1026–1032

    Article  PubMed  PubMed Central  Google Scholar 

  • Marras A, Fineberg N, Pallanti S (2016) Obsessive compulsive and related disorders: comparing DSM-5 and ICD-11. CNS Spectr 21:324–333

    Article  PubMed  Google Scholar 

  • Martin JR, Bos M, Jenck F, Moreau J, Mutel V, Sleight AJ, Wichmann J, Andrews JS, Berendsen HH, Broekkamp CL, Ruigt GS, Kohler C, Delft AM (1998) 5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential. J Pharmacol Exp Ther 286:913–924

    CAS  PubMed  Google Scholar 

  • MartĂ­nez-Rivera FJ, Bravo-Rivera C, Velázquez-DĂ­az CD, Montesinos-Cartagena M, Quirk GJ (2018) Prefrontal circuits signaling active avoidance retrieval and extinction. Psychopharmacology (Berl). https://doi.org/10.1007/s00213-018-5012-7

  • Mataix-Cols D, Wooderson S, Lawrence N, Brammer MJ, Speckens A, Phillips ML (2004) Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch Gen Psychiatry 61:564–576

    Article  PubMed  Google Scholar 

  • Mataix-Cols D, Frost RO, Pertusa A, Clark LA, Saxena S, Leckman JF, Stein DJ, Matsunaga H, Wilhelm S (2010) Hoarding disorder: a new diagnosis for DSM-V? Depress Anxiety 27:556–572

    Article  PubMed  Google Scholar 

  • Mattheisen M, Samuels JF, Wang Y, Greenberg BD, Fyer AJ, McCracken JT, Geller DA, Murphy DL, Knowles JA, Grados MA, Riddle MA, Rasmussen SA, McLaughlin NC, Nurmi EL, Askland KD, Qin HD, Cullen BA, Piacentini J, Pauls DL, Bienvenu OJ, Stewart SE, Liang KY, Goes FS, Maher B, Pulver AE, Shugart YY, Valle D, Lange C, Nestadt G (2015) Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS. Mol Psychiatry 20:337–344

    Article  CAS  PubMed  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    Article  PubMed  Google Scholar 

  • McDougle CJ, Goodman WK, Price LH (1994) Dopamine antagonists in tic-related and psychotic spectrum obsessive compulsive disorder. J Clin Psychiatry 55(Suppl):24–31

    PubMed  Google Scholar 

  • Meder D, Kolling N, Verhagen L, Wittmann MK, Scholl J, Madsen KH, Hulme OJ, Behrens TEJ, Rushworth MFS (2017) Simultaneous representation of a spectrum of dynamically changing value estimates during decision making. Nat Commun 8:1942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mei Y, Monteiro P, Zhou Y, Kim JA, Gao X, Fu Z, Feng G (2016) Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature 530:481–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET (2008a) Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 32:525–549

    Article  PubMed  Google Scholar 

  • Menzies L, Williams GB, Chamberlain SR, Ooi C, Fineberg N, Suckling J, Sahakian BJ, Robbins TW, Bullmore ET (2008b) White matter abnormalities in patients with obsessive-compulsive disorder and their first-degree relatives. Am J Psychiatry 165:1308–1315

    Article  PubMed  Google Scholar 

  • Miller KJ, Botvinick MM, Brody CD (2018) Value representations in the orbitofrontal cortex drive learning, not choice. biorxiv. https://doi.org/10.1101/245720

  • Mundo E, Richter MA, Sam F, Macciardi F, Kennedy JL (2000) Is the 5-HT(1Dbeta) receptor gene implicated in the pathogenesis of obsessive-compulsive disorder? Am J Psychiatry 157:1160–1161

    Article  CAS  PubMed  Google Scholar 

  • Nagahama Y, Okada T, Katsumi Y, Hayashi T, Yamauchi H, Oyanagi C, Konishi J, Fukuyama H, Shibasaki H (2001) Dissociable mechanisms of attentional control within the human prefrontal cortex. Cereb Cortex 11:85–92

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan N, Jones BW, West PJ, Marc RE, Capecchi MR (2018) Corticostriatal circuit defects in Hoxb8 mutant mice. Mol Psychiatry 23:1868–1877

    Article  CAS  PubMed  Google Scholar 

  • Nahum L, Simon SR, Sander D, Lazeyras F, Schnider A (2011) Neural response to the behaviorally relevant absence of anticipated outcomes and the presentation of potentially harmful stimuli: a human fMRI study. Cortex 47:191–201

    Article  PubMed  Google Scholar 

  • Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, Lin CF, Stevens C, Wang LS, Makarov V, Polak P, Yoon S, Maguire J, Crawford EL, Campbell NG, Geller ET, Valladares O, Schafer C, Liu H, Zhao T, Cai G, Lihm J, Dannenfelser R, Jabado O, Peralta Z, Nagaswamy U, Muzny D, Reid JG, Newsham I, Wu Y, Lewis L, Han Y, Voight BF, Lim E, Rossin E, Kirby A, Flannick J, Fromer M, Shakir K, Fennell T, Garimella K, Banks E, Poplin R, Gabriel S, DePristo M, Wimbish JR, Boone BE, Levy SE, Betancur C, Sunyaev S, Boerwinkle E, Buxbaum JD, Cook EH Jr, Devlin B, Gibbs RA, Roeder K, Schellenberg GD, Sutcliffe JS, Daly MJ (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonogaki K, Strack AM, Dallman MF, Tecott LH (1998) Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat Med 4:1152–1156

    Article  CAS  PubMed  Google Scholar 

  • Noonan MP, Mars RB, Rushworth MF (2011) Distinct roles of three frontal cortical areas in reward-guided behavior. J Neurosci 31:14399–14412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001) Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 4:95–102

    Article  PubMed  Google Scholar 

  • O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, Carvill G, Kumar A, Lee C, Ankenman K, Munson J, Hiatt JB, Turner EH, Levy R, O'Day DR, Krumm N, Coe BP, Martin BK, Borenstein E, Nickerson DA, Mefford HC, Doherty D, Akey JM, Bernier R, Eichler EE, Shendure J (2012) Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338:1619–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overmier JB, Brackbill RM (1977) On the independence of stimulus evocation of fear and fear evocation of responses. Behav Res Ther 15:51–56

    Article  CAS  PubMed  Google Scholar 

  • Owen SF, Berke JD, Kreitzer AC (2018) Fast-spiking interneurons supply feedforward control of bursting, calcium, and plasticity for efficient learning. Cell 172:683–695.e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallanti S, Marras A, Salerno L, Makris N, Hollander E (2016) Better than treated as usual: transcranial magnetic stimulation augmentation in selective serotonin reuptake inhibitor-refractory obsessive-compulsive disorder, mini-review and pilot open-label trial. J Psychopharmacol 30:568–578

    Article  CAS  PubMed  Google Scholar 

  • Papakosta VM, Kalogerakou S, Kontis D, Anyfandi E, Theochari E, Boulougouris V, Papadopoulos S, Panagis G, Tsaltas E (2013) 5-HT2C receptor involvement in the control of persistence in the reinforced spatial alternation animal model of obsessive-compulsive disorder. Behav Brain Res 243:176–183

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Beucke JC, Kaufmann C, Mersov A, Heinzel S, Kathmann N, Simon D (2019) Amygdala-prefrontal connectivity during appraisal of symptom-related stimuli in obsessive-compulsive disorder. Psychol Med 49:278–286

    Article  PubMed  Google Scholar 

  • Pauls DL (2008) The genetics of obsessive compulsive disorder: a review of the evidence. Am J Med Genet C Semin Med Genet 148C:133–139

    Article  PubMed  Google Scholar 

  • Pauls DL, Abramovitch A, Rauch SL, Geller DA (2014) Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci 15:410–424

    Article  CAS  PubMed  Google Scholar 

  • Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472:437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peghini P, Janzen J, Stoffel W (1997) Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J 16:3822–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perani D, Garibotto V, Gorini A, Moresco RM, Henin M, Panzacchi A, Matarrese M, Carpinelli A, Bellodi L, Fazio F (2008) In vivo PET study of 5HT(2A) serotonin and D(2) dopamine dysfunction in drug-naive obsessive-compulsive disorder. NeuroImage 42:306–314

    Article  PubMed  Google Scholar 

  • Piantadosi SC, Ahmari SE (2015) Using optogenetics to dissect the neural circuits underlying OCD and related disorders. Curr Treat Options Psychiatry 2:297–311

    Article  PubMed  PubMed Central  Google Scholar 

  • Piantadosi SC, Chamberlain BL, Glausier JR, Lewis DA, Ahmari SE (2019) Lower excitatory synaptic gene expression in orbitofrontal cortex and striatum in an initial study of subjects with obsessive compulsive disorder. Mol Psychiatry

    Google Scholar 

  • Pico-Perez M, Ipser J, Taylor P, Alonso P, Lopez-Sola C, Real E, Segalas C, Roos A, Menchon JM, Stein DJ, Soriano-Mas C (2019) Intrinsic functional and structural connectivity of emotion regulation networks in obsessive-compulsive disorder. Depress Anxiety 36:110–120

    Article  PubMed  Google Scholar 

  • Pinto A, Greenberg BD, Murphy DL, Nestadt G, Rasmussen SA (2009) Using individual items to clarify OCD symptom structure: the case for five factors. Am J Psychiatry 166:728–729; author reply 29-31

    Article  PubMed  Google Scholar 

  • Piras F, Piras F, Chiapponi C, Girardi P, Caltagirone C, Spalletta G (2015) Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies. Cortex 62:89–108

    Article  PubMed  Google Scholar 

  • Pogarell O, Hamann C, Popperl G, Juckel G, Chouker M, Zaudig M, Riedel M, Moller HJ, Hegerl U, Tatsch K (2003) Elevated brain serotonin transporter availability in patients with obsessive-compulsive disorder. Biol Psychiatry 54:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Posner J, Marsh R, Maia TV, Peterson BS, Gruber A, Simpson HB (2014) Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder. Hum Brain Mapp 35:2852–2860

    Article  PubMed  Google Scholar 

  • Pujol J, Soriano-Mas C, Alonso P, Cardoner N, Menchon JM, Deus J, Vallejo J (2004) Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry 61:720–730

    Article  PubMed  Google Scholar 

  • Rajasethupathy P, Ferenczi E, Deisseroth K (2016) Targeting neural circuits. Cell 165:524–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapanelli M, Frick LR, Pogorelov V, Ota KT, Abbasi E, Ohtsu H, Pittenger C (2014) Dysregulated intracellular signaling in the striatum in a pathophysiologically grounded model of Tourette syndrome. Eur Neuropsychopharmacol 24:1896–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapanelli M, Frick L, Pogorelov V, Ohtsu H, Bito H, Pittenger C (2017) Histamine H3R receptor activation in the dorsal striatum triggers stereotypies in a mouse model of tic disorders. Transl Psychiatry 7:e1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauch SL, Jenike MA, Alpert NM, Baer L, Breiter HC, Savage CR, Fischman AJ (1994) Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch Gen Psychiatry 51:62–70

    Article  CAS  PubMed  Google Scholar 

  • Rauch SL, Savage CR, Alpert NM, Fischman AJ, Jenike MA (1997) The functional neuroanatomy of anxiety: a study of three disorders using positron emission tomography and symptom provocation. Biol Psychiatry 42:446–452

    Article  CAS  PubMed  Google Scholar 

  • Reess TJ, Rus OG, Schmidt R, de Reus MA, Zaudig M, Wagner G, Zimmer C, van den Heuvel MP, Koch K (2016) Connectomics-based structural network alterations in obsessive-compulsive disorder. Transl Psychiatry 6:e882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remijnse PL, Nielen MM, Uylings HB, Veltman DJ (2005) Neural correlates of a reversal learning task with an affectively neutral baseline: an event-related fMRI study. NeuroImage 26:609–618

    Article  PubMed  Google Scholar 

  • Remijnse PL, Nielen MM, van Balkom AJ, Cath DC, van Oppen P, Uylings HB, Veltman DJ (2006) Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch Gen Psychiatry 63:1225–1236

    Article  PubMed  Google Scholar 

  • Remijnse PL, Nielen MM, van Balkom AJ, Hendriks GJ, Hoogendijk WJ, Uylings HB, Veltman DJ (2009) Differential frontal-striatal and paralimbic activity during reversal learning in major depressive disorder and obsessive-compulsive disorder. Psychol Med 39:1503–1518

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MM, Overshiner C, Leander JD, Li X, Morrow D, Conway RG, Nelson DL, Briner K, Witkin JM (2017) Behavioral effects of a novel Benzofuranyl-Piperazine serotonin-2C receptor agonist suggest a potential therapeutic application in the treatment of obsessive-compulsive disorder. Front Psych 8:89

    Article  Google Scholar 

  • Rodriguez-Romaguera J, Greenberg BD, Rasmussen SA, Quirk GJ (2016) An avoidance-based rodent model of exposure with response prevention therapy for obsessive-compulsive disorder. Biol Psychiatry 80:534–540

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolls ET, Hornak J, Wade D, McGrath J (1994) Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry 57:1518–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanelli RJ, Wu FM, Gamba R, Mojtabai R, Segal JB (2014) Behavioral therapy and serotonin reuptake inhibitor pharmacotherapy in the treatment of obsessive-compulsive disorder: a systematic review and meta-analysis of head-to-head randomized controlled trials. Depress Anxiety 31:641–652

    Article  PubMed  Google Scholar 

  • Rotge JY, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M, Burbaud P, Aouizerate B (2009) Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biol Psychiatry 65:75–83

    Article  PubMed  Google Scholar 

  • Rotge JY, Langbour N, Guehl D, Bioulac B, Jaafari N, Allard M, Aouizerate B, Burbaud P (2010) Gray matter alterations in obsessive-compulsive disorder: an anatomic likelihood estimation meta-analysis. Neuropsychopharmacology 35:686–691

    Article  CAS  PubMed  Google Scholar 

  • Roth BL (2016) DREADDs for neuroscientists. Neuron 89:683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudebeck PH, Murray EA (2008) Amygdala and orbitofrontal cortex lesions differentially influence choices during object reversal learning. J Neurosci 28:8338–8343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rus OG, Reess TJ, Wagner G, Zimmer C, Zaudig M, Koch K (2017) Functional and structural connectivity of the amygdala in obsessive-compulsive disorder. Neuroimage Clin 13:246–255

    Article  PubMed  Google Scholar 

  • Rygula R, Walker SC, Clarke HF, Robbins TW, Roberts AC (2010) Differential contributions of the primate ventrolateral prefrontal and orbitofrontal cortex to serial reversal learning. J Neurosci 30:14552–14559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders AR, Duan J, Gejman PV (2002) DNA variation and psychopharmacology of the human serotonin receptor 1B (HTR1B) gene. Pharmacogenomics 3:745–762

    Article  CAS  PubMed  Google Scholar 

  • Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG, DiLullo NM, Parikshak NN, Stein JL, Walker MF, Ober GT, Teran NA, Song Y, El-Fishawy P, Murtha RC, Choi M, Overton JD, Bjornson RD, Carriero NJ, Meyer KA, Bilguvar K, Mane SM, Sestan N, Lifton RP, Gunel M, Roeder K, Geschwind DH, Devlin B, State MW (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena S (2008) Recent advances in compulsive hoarding. Curr Psychiatry Rep 10:297–303

    Article  PubMed  Google Scholar 

  • Saxena S, Brody AL, Schwartz JM, Baxter LR (1998) Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry Suppl:26–37

    Google Scholar 

  • Saxena S, Brody AL, Maidment KM, Dunkin JJ, Colgan M, Alborzian S, Phelps ME, Baxter LR Jr (1999) Localized orbitofrontal and subcortical metabolic changes and predictors of response to paroxetine treatment in obsessive-compulsive disorder. Neuropsychopharmacology 21:683–693

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Bota RG, Brody AL (2001) Brain-behavior relationships in obsessive-compulsive disorder. Semin Clin Neuropsychiatry 6:82–101

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G, Nugent SL, Saddoris MP, Setlow B (2002) Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport 13:885–890

    Article  PubMed  Google Scholar 

  • Scimemi A, Tian H, Diamond JS (2009) Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus. J Neurosci 29:14581–14595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanahan NA, Holick Pierz KA, Masten VL, Waeber C, Ansorge M, Gingrich JA, Geyer MA, Hen R, Dulawa SC (2009) Chronic reductions in serotonin transporter function prevent 5-HT1B-induced behavioral effects in mice. Biol Psychiatry 65:401–408

    Article  CAS  PubMed  Google Scholar 

  • Shanahan NA, Velez LP, Masten VL, Dulawa SC (2011) Essential role for orbitofrontal serotonin 1B receptors in obsessive-compulsive disorder-like behavior and serotonin reuptake inhibitor response in mice. Biol Psychiatry 70:1039–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapira NA, Liu Y, He AG, Bradley MM, Lessig MC, James GA, Stein DJ, Lang PJ, Goodman WK (2003) Brain activation by disgust-inducing pictures in obsessive-compulsive disorder. Biol Psychiatry 54:751–756

    Article  PubMed  Google Scholar 

  • Shmelkov SV, Hormigo A, Jing D, Proenca CC, Bath KG, Milde T, Shmelkov E, Kushner JS, Baljevic M, Dincheva I, Murphy AJ, Valenzuela DM, Gale NW, Yancopoulos GD, Ninan I, Lee FS, Rafii S (2010) Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med 16:598–602, 1p following 02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shugart YY, Wang Y, Samuels JF, Grados MA, Greenberg BD, Knowles JA, McCracken JT, Rauch SL, Murphy DL, Rasmussen SA, Cullen B, Hoehn-Saric R, Pinto A, Fyer AJ, Piacentini J, Pauls DL, Bienvenu OJ, Riddle MA, Liang KY, Nestadt G (2009) A family-based association study of the glutamate transporter gene SLC1A1 in obsessive-compulsive disorder in 378 families. Am J Med Genet B Neuropsychiatr Genet 150B:886–892

    Article  CAS  PubMed  Google Scholar 

  • Silverman JL, Nithianantharajah J, Der-Avakian A, Young JW, Sukoff Rizzo SJ (2020) Lost in translation: at the crossroads of face validity and translational utility of behavioral assays in animal models for the development of therapeutics. Neurosci Biobehav Rev 116:452–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon D, Adler N, Kaufmann C, Kathmann N (2014) Amygdala hyperactivation during symptom provocation in obsessive-compulsive disorder and its modulation by distraction. Neuroimage Clin 4:549–557

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson HB (2010) Pharmacological treatment of obsessive-compulsive disorder. Curr Top Behav Neurosci 2:527–543

    Article  PubMed  Google Scholar 

  • Sipes TA, Geyer MA (1994) Multiple serotonin receptor subtypes modulate prepulse inhibition of the startle response in rats. Neuropharmacology 33:441–448

    Article  CAS  PubMed  Google Scholar 

  • Smith KS, Graybiel AM (2013) A dual operator view of habitual behavior reflecting cortical and striatal dynamics. Neuron 79:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KS, Virkud A, Deisseroth K, Graybiel AM (2012) Reversible online control of habitual behavior by optogenetic perturbation of medial prefrontal cortex. Proc Natl Acad Sci U S A 109:18932–18937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song M, Giza J, Proenca CC, Jing D, Elliott M, Dincheva I, Shmelkov SV, Kim J, Schreiner R, Huang SH, Castren E, Prekeris R, Hempstead BL, Chao MV, Dictenberg JB, Rafii S, Chen ZY, Rodriguez-Boulan E, Lee FS (2015) Slitrk5 mediates BDNF-dependent TrkB receptor trafficking and signaling. Dev Cell 33:690–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song M, Mathews CA, Stewart SE, Shmelkov SV, Mezey JG, Rodriguez-Flores JL, Rasmussen SA, Britton JC, Oh YS, Walkup JT, Lee FS, Glatt CE (2017) Rare synaptogenesis-impairing mutations in SLITRK5 are associated with obsessive compulsive disorder. PLoS One 12:e0169994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stein DJ, Arya M, Pietrini P, Rapoport JL, Swedo SE (2006) Neurocircuitry of disgust and anxiety in obsessive-compulsive disorder: a positron emission tomography study. Metab Brain Dis 21:267–277

    Article  PubMed  Google Scholar 

  • Stein DJ, Fineberg NA, Bienvenu OJ, Denys D, Lochner C, Nestadt G, Leckman JF, Rauch SL, Phillips KA (2010) Should OCD be classified as an anxiety disorder in DSM-V? Depress Anxiety 27:495–506

    Article  PubMed  Google Scholar 

  • Steinman SA, Ahmari SE, Choo T, Kimeldorf MB, Feit R, Loh S, Risbrough V, Geyer MA, Steinglass JE, Wall M, Schneier FR, Fyer AJ, Simpson HB (2016) Prepulse inhibition deficits only in females with obsessive-compulsive disorder. Depress Anxiety 33:238–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern E, Silbersweig DA, Chee KY, Holmes A, Robertson MM, Trimble M, Frith CD, Frackowiak RS, Dolan RJ (2000) A functional neuroanatomy of tics in Tourette syndrome. Arch Gen Psychiatry 57:741–748

    Article  CAS  PubMed  Google Scholar 

  • Stern ER, Welsh RC, Gonzalez R, Fitzgerald KD, Abelson JL, Taylor SF (2013) Subjective uncertainty and limbic hyperactivation in obsessive-compulsive disorder. Hum Brain Mapp 34:1956–1970

    Article  PubMed  Google Scholar 

  • Sternson SM, Roth BL (2014) Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 37:387–407

    Article  CAS  PubMed  Google Scholar 

  • Stewart SE, Geller DA, Jenike M, Pauls D, Shaw D, Mullin B, Faraone SV (2004) Long-term outcome of pediatric obsessive-compulsive disorder: a meta-analysis and qualitative review of the literature. Acta Psychiatr Scand 110:4–13

    Article  CAS  PubMed  Google Scholar 

  • Stewart SE, Mayerfeld C, Arnold PD, Crane JR, O'Dushlaine C, Fagerness JA, Yu D, Scharf JM, Chan E, Kassam F, Moya PR, Wendland JR, Delorme R, Richter MA, Kennedy JL, Veenstra-VanderWeele J, Samuels J, Greenberg BD, McCracken JT, Knowles JA, Fyer AJ, Rauch SL, Riddle MA, Grados MA, Bienvenu OJ, Cullen B, Wang Y, Shugart YY, Piacentini J, Rasmussen S, Nestadt G, Murphy DL, Jenike MA, Cook EH, Pauls DL, Hanna GL, Mathews CA (2013) Meta-analysis of association between obsessive-compulsive disorder and the 3′ region of neuronal glutamate transporter gene SLC1A1. Am J Med Genet B Neuropsychiatr Genet 162B:367–379

    Article  CAS  PubMed  Google Scholar 

  • Subira M, Cano M, de Wit SJ, Alonso P, Cardoner N, Hoexter MQ, Kwon JS, Nakamae T, Lochner C, Sato JR, Jung WH, Narumoto J, Stein DJ, Pujol J, Mataix-Cols D, Veltman DJ, Menchon JM, van den Heuvel OA, Soriano-Mas C, O. C. D. Brain Imaging Consortium (2016) Structural covariance of neostriatal and limbic regions in patients with obsessive-compulsive disorder. J Psychiatry Neurosci 41:115–123

    Article  PubMed  Google Scholar 

  • Sun T, Song Z, Tian Y, Tian W, Zhu C, Ji G, Luo Y, Chen S, Wang L, Mao Y, Xie W, Zhong H, Zhao F, Luo MH, Tao W, Wang H, Li J, Li J, Zhou J, Wang K, Zhang Z (2019) Basolateral amygdala input to the medial prefrontal cortex controls obsessive-compulsive disorder-like checking behavior. Proc Natl Acad Sci U S A 116:3799–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swedo SE, Leonard HL, Garvey M, Mittleman B, Allen AJ, Perlmutter S, Lougee L, Dow S, Zamkoff J, Dubbert BK (1998) Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. Am J Psychiatry 155:264–271

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Benbow CH, Zisook S, Geyer MA, Braff DL (1993) A preliminary assessment of sensorimotor gating in patients with obsessive compulsive disorder. Biol Psychiatry 33:298–301

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156:194–215

    Article  CAS  PubMed  Google Scholar 

  • Szechtman H, Sulis W, Eilam D (1998) Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav Neurosci 112:1475–1485

    Article  CAS  PubMed  Google Scholar 

  • Tanaka KF, Ahmari SE, Leonardo ED, Richardson-Jones JW, Budreck EC, Scheiffele P, Sugio S, Inamura N, Ikenaka K, Hen R (2010) Flexible accelerated STOP tetracycline operator-knockin (FAST): a versatile and efficient new gene modulating system. Biol Psychiatry 67:770–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang C, Pawlak AP, Prokopenko V, West MO (2007) Changes in activity of the striatum during formation of a motor habit. Eur J Neurosci 25:1212–1227

    Article  PubMed  Google Scholar 

  • Taylor S (2011) Etiology of obsessions and compulsions: a meta-analysis and narrative review of twin studies. Clin Psychol Rev 31:1361–1372

    Article  PubMed  Google Scholar 

  • Taylor S (2013) Molecular genetics of obsessive-compulsive disorder: a comprehensive meta-analysis of genetic association studies. Mol Psychiatry 18:799–805

    Article  CAS  PubMed  Google Scholar 

  • Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374:542–546

    Article  CAS  PubMed  Google Scholar 

  • Tezcan D, Tumkaya S, Bora E (2017) Reversal learning in patients with obsessive-compulsive disorder (OCD) and their unaffected relatives: is orbitofrontal dysfunction an endophenotype of OCD? Psychiatry Res 252:231–233

    Article  PubMed  Google Scholar 

  • Thorsen AL, Hagland P, Radua J, Mataix-Cols D, Kvale G, Hansen B, van den Heuvel OA (2018a) Emotional processing in obsessive-compulsive disorder: a systematic review and meta-analysis of 25 functional neuroimaging studies. Biol Psychiatry Cogn Neurosci Neuroimaging 3:563–571

    PubMed  PubMed Central  Google Scholar 

  • Thorsen AL, Kvale G, Hansen B, van den Heuvel OA (2018b) Symptom dimensions in obsessive-compulsive disorder as predictors of neurobiology and treatment response. Curr Treat Options Psychiatry 5:182–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorsen AL, de Wit SJ, de Vries FE, Cath DC, Veltman DJ, van der Werf YD, Mataix-Cols D, Hansen B, Kvale G, van den Heuvel OA (2019) Emotion regulation in obsessive-compulsive disorder, unaffected siblings, and unrelated healthy control participants. Biol Psychiatry Cogn Neurosci Neuroimaging 4:352–360

    PubMed  Google Scholar 

  • Trainor PA, Krumlauf R (2000) Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci 1:116–124

    Article  CAS  PubMed  Google Scholar 

  • Trankner D, Boulet A, Peden E, Focht R, Van Deren D, Capecchi M (2019) A microglia sublineage protects from sex-linked anxiety symptoms and obsessive compulsion. Cell Rep 29:791–799.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsaltas E, Kontis D, Chrysikakou S, Giannou H, Biba A, Pallidi S, Christodoulou A, Maillis A, Rabavilas A (2005) Reinforced spatial alternation as an animal model of obsessive-compulsive disorder (OCD): investigation of 5-HT2C and 5-HT1D receptor involvement in OCD pathophysiology. Biol Psychiatry 57:1176–1185

    Article  CAS  PubMed  Google Scholar 

  • Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13:251–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullrich M, Bundschu K, Benz PM, Abesser M, Freudinger R, Fischer T, Ullrich J, Renne T, Walter U, Schuh K (2011) Identification of SPRED2 (sprouty-related protein with EVH1 domain 2) as a negative regulator of the hypothalamic-pituitary-adrenal axis. J Biol Chem 286:9477–9488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullrich M, Weber M, Post AM, Popp S, Grein J, Zechner M, Guerrero Gonzalez H, Kreis A, Schmitt AG, Uceyler N, Lesch KP, Schuh K (2018) OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency. Mol Psychiatry 23:444–458

    Article  CAS  PubMed  Google Scholar 

  • Vaghi MM, Hampshire A, Fineberg NA, Kaser M, Bruhl AB, Sahakian BJ, Chamberlain SR, Robbins TW (2017) Hypoactivation and dysconnectivity of a Frontostriatal circuit during goal-directed planning as an endophenotype for obsessive-compulsive disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 2:655–663

    PubMed  PubMed Central  Google Scholar 

  • Valerius G, Lumpp A, Kuelz AK, Freyer T, Voderholzer U (2008) Reversal learning as a neuropsychological indicator for the neuropathology of obsessive compulsive disorder? A behavioral study. J Neuropsychiatry Clin Neurosci 20:210–218

    Article  PubMed  Google Scholar 

  • van den Boom BJG, Mooij AH, Miseviciute I, Denys D, Willuhn I (2019) Behavioral flexibility in a mouse model for obsessive-compulsive disorder: impaired Pavlovian reversal learning in SAPAP3 mutants. Genes Brain Behav 18:e12557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Heuvel OA, Veltman DJ, Groenewegen HJ, Dolan RJ, Cath DC, Boellaard R, Mesina CT, van Balkom AJ, van Oppen P, Witter MP, Lammertsma AA, van Dyck R (2004) Amygdala activity in obsessive-compulsive disorder with contamination fear: a study with oxygen-15 water positron emission tomography. Psychiatry Res 132:225–237

    Article  PubMed  Google Scholar 

  • van den Heuvel OA, Remijnse PL, Mataix-Cols D, Vrenken H, Groenewegen HJ, Uylings HB, van Balkom AJ, Veltman DJ (2009) The major symptom dimensions of obsessive-compulsive disorder are mediated by partially distinct neural systems. Brain 132:853–868

    Article  PubMed  Google Scholar 

  • van der Wee NJ, Stevens H, Hardeman JA, Mandl RC, Denys DA, van Megen HJ, Kahn RS, Westenberg HM (2004) Enhanced dopamine transporter density in psychotropic-naive patients with obsessive-compulsive disorder shown by [123I]{beta}-CIT SPECT. Am J Psychiatry 161:2201–2206

    Article  PubMed  Google Scholar 

  • Veenstra-VanderWeele J, Kim SJ, Gonen D, Hanna GL, Leventhal BL, Cook EH Jr (2001) Genomic organization of the SLC1A1/EAAC1 gene and mutation screening in early-onset obsessive-compulsive disorder. Mol Psychiatry 6:160–167

    Article  CAS  PubMed  Google Scholar 

  • Vickers SP, Clifton PG, Dourish CT, Tecott LH (1999) Reduced satiating effect of d-fenfluramine in serotonin 5-HT(2C) receptor mutant mice. Psychopharmacology 143:309–314

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Ade KK, Caffall Z, Ilcim Ozlu M, Eroglu C, Feng G, Calakos N (2014) Circuit-selective striatal synaptic dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder. Biol Psychiatry 75:623–630

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Li C, Chen Q, van der Goes MS, Hawrot J, Yao AY, Gao X, Lu C, Zang Y, Zhang Q, Lyman K, Wang D, Guo B, Wu S, Gerfen CR, Fu Z, Feng G (2017) Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism. J Clin Invest 127:1978–1990

    Article  PubMed  PubMed Central  Google Scholar 

  • Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding JD, Feliciano C, Chen M, Adams JP, Luo J, Dudek SM, Weinberg RJ, Calakos N, Wetsel WC, Feng G (2007) Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448:894–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendland JR, Moya PR, Timpano KR, Anavitarte AP, Kruse MR, Wheaton MG, Ren-Patterson RF, Murphy DL (2009) A haplotype containing quantitative trait loci for SLC1A1 gene expression and its association with obsessive-compulsive disorder. Arch Gen Psychiatry 66:408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood J, Ahmari SE (2015) A framework for understanding the emerging role of Corticolimbic-ventral striatal networks in OCD-associated repetitive behaviors. Front Syst Neurosci 9:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu M, Kobets A, Du JC, Lennington J, Li L, Banasr M, Duman RS, Vaccarino FM, DiLeone RJ, Pittenger C (2015) Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome. Proc Natl Acad Sci U S A 112:893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Li L, Pittenger C (2016) Ablation of fast-spiking interneurons in the dorsal striatum, recapitulating abnormalities seen post-mortem in Tourette syndrome, produces anxiety and elevated grooming. Neuroscience 324:321–329

    Article  CAS  PubMed  Google Scholar 

  • Yadin E, Friedman E, Bridger WH (1991) Spontaneous alternation behavior: an animal model for obsessive-compulsive disorder? Pharmacol Biochem Behav 40:311–315

    Article  CAS  PubMed  Google Scholar 

  • Yang RB, Ng CK, Wasserman SM, Colman SD, Shenoy S, Mehraban F, Komuves LG, Tomlinson JE, Topper JN (2002) Identification of a novel family of cell-surface proteins expressed in human vascular endothelium. J Biol Chem 277:46364–46373

    Article  CAS  PubMed  Google Scholar 

  • Yim YS, Kwon Y, Nam J, Yoon HI, Lee K, Kim DG, Kim E, Kim CH, Ko J (2013) Slitrks control excitatory and inhibitory synapse formation with LAR receptor protein tyrosine phosphatases. Proc Natl Acad Sci U S A 110:4057–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19:181–189

    Article  PubMed  Google Scholar 

  • Yin HH, Ostlund SB, Knowlton BJ, Balleine BW (2005) The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci 22:513–523

    Article  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2006) Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behav Brain Res 166:189–196

    Article  PubMed  Google Scholar 

  • Yucel M, Harrison BJ, Wood SJ, Fornito A, Wellard RM, Pujol J, Clarke K, Phillips ML, Kyrios M, Velakoulis D, Pantelis C (2007) Functional and biochemical alterations of the medial frontal cortex in obsessive-compulsive disorder. Arch Gen Psychiatry 64:946–955

    Article  CAS  PubMed  Google Scholar 

  • Yun JY, Boedhoe PSW, Vriend C, Jahanshad N, Abe Y, Ameis SH, Anticevic A, Arnold PD, Batistuzzo MC, Benedetti F, Beucke JC, Bollettini I, Bose A, Brem S, Calvo A, Cheng Y, Cho KIK, Ciullo V, Dallaspezia S, Denys D, Feusner JD, Fouche JP, Gimenez M, Gruner P, Hibar DP, Hoexter MQ, Hu H, Huyser C, Ikari K, Kathmann N, Kaufmann C, Koch K, Lazaro L, Lochner C, Marques P, Marsh R, Martinez-Zalacain I, Mataix-Cols D, Menchon JM, Minuzzi L, Morgado P, Moreira P, Nakamae T, Nakao T, Narayanaswamy JC, Nurmi EL, O'Neill J, Piacentini J, Piras F, Piras F, Reddy YCJ, Sato JR, Simpson HB, Soreni N, Soriano-Mas C, Spalletta G, Stevens MC, Szeszko PR, Tolin DF, Venkatasubramanian G, Walitza S, Wang Z, van Wingen GA, Xu J, Xu X, Zhao Q, Thompson PM, Stein DJ, van den Heuvel OA, Kwon JS, Enigma-Ocd Working Group (2020) Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA consortium. Brain 143:684–700

    PubMed  PubMed Central  Google Scholar 

  • Zike ID, Chohan MO, Kopelman JM, Krasnow EN, Flicker D, Nautiyal KM, Bubser M, Kellendonk C, Jones CK, Stanwood G, Tanaka KF, Moore H, Ahmari SE, Veenstra-VanderWeele J (2017) OCD candidate gene SLC1A1/EAAT3 impacts basal ganglia-mediated activity and stereotypic behavior. Proc Natl Acad Sci U S A 114:5719–5724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitterl W, Aigner M, Stompe T, Zitterl-Eglseer K, Gutierrez-Lobos K, Schmidl-Mohl B, Wenzel T, Demal U, Zettinig G, Hornik K, Thau K (2007) [123I]-beta-CIT SPECT imaging shows reduced thalamus-hypothalamus serotonin transporter availability in 24 drug-free obsessive-compulsive checkers. Neuropsychopharmacology 32:1661–1668

    Article  CAS  PubMed  Google Scholar 

  • Zohar J, Insel TR (1987) Obsessive-compulsive disorder: psychobiological approaches to diagnosis, treatment, and pathophysiology. Biol Psychiatry 22:667–687

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIMH R01MH104255, NIMH R01MH119837, NIMH R21 MH116330, Burroughs Wellcome Career Award for Medical Scientists, Klingenstein-Simons Fellowship Award in the Neurosciences, One Mind Rising Star Award, and the FFOR Consortium (SEA); and NIGMS T32GM008208 (BLC). Figures created with BioRender.com.

Disclosure/Conflicts of Interest

No conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne E. Ahmari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chamberlain, B.L., Ahmari, S.E. (2021). Animal Models for OCD Research. In: Fineberg, N.A., Robbins, T.W. (eds) The Neurobiology and Treatment of OCD: Accelerating Progress. Current Topics in Behavioral Neurosciences, vol 49. Springer, Cham. https://doi.org/10.1007/7854_2020_196

Download citation

Publish with us

Policies and ethics