Skip to main content

Chemistry and Structure–Activity Relationships of Psychedelics

  • Chapter
Behavioral Neurobiology of Psychedelic Drugs

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 36))

Abstract

This chapter will summarize structure–activity relationships (SAR) that are known for the classic serotonergic hallucinogens (aka psychedelics), focusing on the three chemical types: tryptamines, ergolines, and phenethylamines. In the brain, the serotonin 5-HT2A receptor plays a key role in regulation of cortical function and cognition, and also appears to be the principal target for hallucinogenic/psychedelic drugs such as LSD. It is one of the most extensively studied of the 14 known types of serotonin receptors. Important structural features will be identified for activity and, where possible, those that the psychedelics have in common will be discussed. Because activation of the 5-HT2A receptor is the principal mechanism of action for psychedelics, compounds with 5-HT2A agonist activity generally are quickly discarded by the pharmaceutical industry. Thus, most of the research on psychedelics can be related to activation of 5-HT2A receptors. Therefore, much of the discussion will include not only clinical or anecdotal studies, but also will consider data from animal models as well as a certain amount of molecular pharmacology where it is known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldous FA, Barrass BC, Brewster K, Buxton DA, Green DM, Pinder RM, Rich P, Skeels M, Tutt KJ (1974) Structure-activity relationships in psychotomimetic phenylalkylamines. J Med Chem 17:1100–1111

    Article  CAS  PubMed  Google Scholar 

  • Bach NJ, Hall DA, Kornfeld EC (1974) Descarboxylysergic acid (9,10-didehydro-6-methylergoline). J Med Chem 17:312–314

    Article  CAS  PubMed  Google Scholar 

  • Barfknecht CF, Nichols DE (1975) Correlation of psychotomimetic activity of phenethylamines and amphetamines with 1-octanol-water partition coefficients. J Med Chem 18:208–210

    Article  CAS  PubMed  Google Scholar 

  • Baxter GS, Murphy OE, Blackburn TP (1994) Further characterization of 5-hydroxytryptamine receptors (putative 5-HT2B) in rat stomach fundus longitudinal muscle. Br J Pharmacol 112:323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JP Jr, Snyder SH (1976) Serotonin and lysergic acid diethylamide binding in rat brain membranes: relationship to postsynaptic serotonin receptors. Mol Pharmacol 12:373–389

    CAS  PubMed  Google Scholar 

  • Blaazer AR, Smid P, Kruse CG (2008) Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT(2A) receptors. ChemMedChem 3:1299–1309

    Article  CAS  PubMed  Google Scholar 

  • Blair JB, Marona-Lewicka D, Kanthasamy A, Lucaites VL, Nelson DL, Nichols DE (1999) Thieno[3,2-b]- and thieno[2,3-b]pyrrole bioisosteric analogues of the hallucinogen and serotonin agonist N, N-dimethyltryptamine. J Med Chem 42:1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Blair JB, Kurrasch-Orbaugh D, Marona-Lewicka D, Cumbay MG, Watts VJ, Barker EL, Nichols DE (2000) Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. J Med Chem 43:4701–4710

    Article  CAS  PubMed  Google Scholar 

  • Braden MR (2007) Towards a biophysical understanding of hallucinogen action. PhD Dissertation

    Google Scholar 

  • Braden MR, Nichols DE (2007) Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol Pharmacol 72:1200–1209

    Article  CAS  PubMed  Google Scholar 

  • Braden MR, Parrish JC, Naylor JC, Nichols DE (2006) Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol Pharmacol 70:1956–1964

    Article  CAS  PubMed  Google Scholar 

  • Brandt SD, Kavanagh PV, Westphal F, Stratford A, Elliott SP, Hoang K, Wallach J, Halberstadt AL (2016) Return of the lysergamides. Part I: Analytical and behavioural characterization of 1-propionyl-d-lysergic acid diethylamide (1P-LSD). Drug Test Anal 8:891–902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brandt SD, Kavanagh PV, Westphal F, Elliott SP, Wallach J, Colestock T, Burrow TE, Chapman SJ, Stratford A, Nichols DE, Halberstadt AL (2017) Return of the lysergamides. Part II: Analytical and behavioural characterization of N6 -allyl-6-norlysergic acid diethylamide (AL-LAD) and (2′S,4′S)-lysergic acid 2,4-dimethylazetidide (LSZ). Drug Test Anal 9:38–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braun U, Shulgin AT, Braun G, Sargent T III (1977) Synthesis and body distribution of several iodine-131 labeled centrally acting drugs. J Med Chem 20:1543–1546

    Article  CAS  PubMed  Google Scholar 

  • Brimblecombe RW, Pinder RM (1975) Hallucinogenic agents. Wright-Scientechnica, Bristol

    Google Scholar 

  • Chambers JJ, Nichols DE (2001) A model of the human 5-HT2A receptor based on constrained homology. Great Lakes/Central Regional American Chemical Society Meeting

    Google Scholar 

  • Chambers JJ, Nichols DE (2002) A homology-based model of the human 5-HT2A receptor derived from an in silico activated G-protein coupled receptor. J Comput Aided Mol Des 16:511–520

    Article  CAS  PubMed  Google Scholar 

  • Chambers JJ, Kurrasch-Orbaugh DM, Parker MA, Nichols DE (2001) Enantiospecific synthesis and pharmacological evaluation of a series of super-potent, conformationally restricted 5-HT(2A/2C) receptor agonists. J Med Chem 44:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Chambers JJ, Kurrasch-Orbaugh DM, Nichols DE (2002) Translocation of the 5-alkoxy substituent of 2,5-dialkoxyarylalkylamines to the 6-position: effects on 5-HT(2A/2C) receptor affinity. Bioorg Med Chem Lett 12:1997–1999

    Article  CAS  PubMed  Google Scholar 

  • Cheng HC, Long JP, Nichols DE, Barfknecht CF (1974) Effects of psychotomimetics on vascular strips: studies of methoxylated amphetamines and optical isomers of 2,5-dimethoxy-4-methylamphetamine and 2,5-dimethoxy-4-bromoamphetamine. J Pharmacol Exp Ther 188:114–123

    CAS  PubMed  Google Scholar 

  • Cooper PD, Walters GC (1972) Stereochemical requirements of the mescaline receptor. Nature 238:96–98

    Article  CAS  PubMed  Google Scholar 

  • Corkery JM, Durkin E, Elliott S, Schifano F, Ghodse AH (2012) The recreational tryptamine 5-MeO-DALT (N, N-diallyl-5-methoxytryptamine): a brief review. Prog Neuropsychopharmacol Biol Psychiatry 39:259–262

    Article  CAS  PubMed  Google Scholar 

  • Costanzi S, Wang K (2014) The GPCR crystallography boom: providing an invaluable source of structural information and expanding the scope of homology modeling. Adv Exp Med Biol 796:3–13

    Article  CAS  PubMed  Google Scholar 

  • Coutts RT, Malicky JL (1974) The synthesis of Analogus of the Hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM). II. Some ring-methoxylated 1-amino-and 2-aminoindanes. Can J Chem 52:381–389

    Article  CAS  Google Scholar 

  • Cozzi NV, Daley PF (2016) Receptor binding profiles and quantitative structure-affinity relationships of some 5-substituted-N, N-diallyltryptamines. Bioorg Med Chem Lett 26:959–964

    Article  CAS  PubMed  Google Scholar 

  • Daldrup T, Heller C, Matthiesen U, Honus S, Bresges A, Haarhoff K (1986) Etryptamine, a new designer drug with a fatal effect. Z Rechtsmed 97:61–68

    Article  CAS  PubMed  Google Scholar 

  • Dowd CS, Herrick-Davis K, Egan C, Dupre A, Smith C, Teitler M, Glennon RA (2000) 1-[4-(3-Phenylalkyl)phenyl]-2-aminopropanes as 5-HT(2A) partial agonists. J Med Chem 43:3074–3084

    Article  CAS  PubMed  Google Scholar 

  • Elz S, Klass T, Heim R, Wamke U, Pertz HH (2002) Development of highly potent partial agonists and chiral antagonists as tools for the study of 5-HT2A-receptor mediated functions. Nauynn-Schmiedeberg’s Arch Pharmacol 365(Suppl 1):R29

    Google Scholar 

  • Ettrup A, Palner M, Gillings N, Santini MA, Hansen M, Kornum BR, Rasmussen LK, Nagren K, Madsen J, Begtrup M, Knudsen GM (2010) Radiosynthesis and evaluation of 11C-CIMBI-5 as a 5-HT2A receptor agonist radioligand for PET. J Nucl Med 51:1763–1770

    Article  CAS  PubMed  Google Scholar 

  • Ettrup A, Hansen M, Santini MA, Paine J, Gillings N, Palner M, Lehel S, Herth MM, Madsen J, Kristensen J, Begtrup M, Knudsen GM (2011) Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT (2A) agonist PET tracers. Eur J Nucl Med Mol Imaging 38:681–693

    Article  CAS  PubMed  Google Scholar 

  • Fantegrossi WE, Gray BW, Bailey JM, Smith DA, Hansen M, Kristensen JL (2015) Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT(2)A receptors, in mice. Psychopharmacology 232:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Mohapatra S, Klimko PG, Hellberg MR, May JA, Kelly C, Williams G, McLaughlin MA, Sharif NA (2007) Novel benzodifuran analogs as potent 5-HT2A receptor agonists with ocular hypotensive activity. Bioorg Med Chem Lett 17:2998–3002

    Article  CAS  PubMed  Google Scholar 

  • Ginzel KH, Mayer-Gross W (1956) Prevention ofpsychological effects of d-lysergic acid diethylamide (LSD 25) by its 2-brom derivative (BOL 148). Nature 178:210

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Rosecrans JA (1982) Indolealkylamine and phenalkylamine hallucinogens: a brief overview. Neurosci Biobehav Rev 6:489–497

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Doot DL, Young R (1981) DOM and related 2,5-dimethoxy-4-alkylphenylisopropylamines: behavioral and serotonin receptor properties. Pharmacol Biochem Behav 14:287–292

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Young R, Rosecrans JA (1982a) A comparison of the behavioral effects of DOM homologs. Pharmacol Biochem Behav 16:557–559

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Young R, Rosecrans JA (1982b) Discriminative stimulus properties of DOM and several molecular modifications. Pharmacol Biochem Behav 16:553–556

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Seggel MR, Soine WH, Herrick-Davis K, Lyon RA, Titeler M (1988) [125I]-1-(2,5-dimethoxy-4-iodophenyl)-2-amino-propane: an iodinated radioligand that specifically labels the agonist high-affinity state of 5-HT2 serotonin receptors. J Med Chem 31:5–7

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Teitler M, Sanders-Bush E (1992) Hallucinogens and serotonergic mechanisms. NIDA Res Monogr 119:131–135

    CAS  PubMed  Google Scholar 

  • Glennon RA, Bondarev ML, Khorana N, Young R, May JA, Hellberg MR, McLaughlin MA, Sharif NA (2004) Beta-oxygenated analogues of the 5-HT2A serotonin receptor agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane. J Med Chem 47:6034–6041

    Article  CAS  PubMed  Google Scholar 

  • Gorodetzky CW, Isbell H (1964) A comparison of 2,3-dihydro-lysergic acid diethylamide with LSD-25. Psychopharmacologia 6:229–233

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Diez E, Heasley LE, Osawa S, Johnson GL (1990) A G protein mutant that inhibits thrombin and purinergic receptor activation of phospholipase A2. Science 249:662–666

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Phonekeo K, Paine JS, Leth-Petersen S, Begtrup M, Brauner-Osborne H, Kristensen JL (2014) Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists. ACS Chem Neurosci 5:243–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartig PR, Kadan MJ, Evans MJ, Krohn AM (1983) 125I-LSD: a high sensitivity ligand for serotonin receptors. Eur J Pharmacol 89:321–322

    Article  CAS  PubMed  Google Scholar 

  • Heffter A (1898) Ueber pellote. Beitrag zur chemischen und pharmakologischen kenntnis der cacteen. Naunyn Schmiedebergs Arch Exp Path Pharmacol 40:385–429

    Article  Google Scholar 

  • Heim R (2003) Synthese und Pharmakologie potenter 5-HT2A-Rezeptoragonisten mit N-2-Methoxybenzyl-Partialstruktur Entwicklung eines neen Struktur-Wirkungskonzepts. vol. Dr. rer. nat. Freien Universität Berlin, Berlin

    Google Scholar 

  • Heim R, Pertz HH, Elz S (1999) Preparation and in vitro pharmacology of novel secondary amine-type 5-HT2A receptor agonists: from submillimolar to subnanomolar activity. Arch Pharm Pharm Med Chem 332:34

    Google Scholar 

  • Hey P (1947) The synthesis of a new homolog of mescaline. Quart J Pharm Pharmacol 20:129–134

    CAS  Google Scholar 

  • Hoffman AJ, Nichols DE (1985) Synthesis and LSD-like discriminative stimulus properties in a series of N(6)-alkyl norlysergic acid N, N-diethylamide derivatives. J Med Chem 28:1252–1255

    Article  CAS  PubMed  Google Scholar 

  • Hofmann A (1968) Psychotomimetic agents. In: Burger A (ed) Drugs affecting the central nervous system. Edward Arnold, London, p 169

    Google Scholar 

  • Hofmann A (1971) Teonanacatl and Ololuiqui, two ancient magic drugs of Mexico. Bull Narcotics XXIII:3–14

    Google Scholar 

  • Hong SS, Young R, Glennon RA (2001) Discriminative stimulus properties of alpha-ethyltryptamine optical isomers. Pharmacol Biochem Behav 70:311–316

    Article  CAS  PubMed  Google Scholar 

  • Huang XM, Johnson MP, Nichols DE (1991) Reduction in brain serotonin markers by alpha-ethyltryptamine (Monase). Eur J Pharmacol 200:187–190

    Article  CAS  PubMed  Google Scholar 

  • Isberg V, Balle T, Sander T, Jorgensen FS, Gloriam DE (2011) G Protein- and agonist-bound serotonin 5-HT(2A) receptor model activated by steered molecular dynamics simulations. J Chem Inf Model 51:315–325

    Article  CAS  PubMed  Google Scholar 

  • Jacob JN, Nichols DE (1982) Isomeric cyclopropyl ring-methylated homologues of trans-2-(2,5- dimethoxy-4-methylphenyl)cyclopropylamine, an hallucinogen analogue. J Med Chem 25:526–530

    Article  CAS  PubMed  Google Scholar 

  • Jacob P III, Shulgin AT (1981) Sulfur analogues of psychotomimetic agents. Monothio analogues of mescaline and isomescaline. J Med Chem 24:1348–1353

    Article  CAS  PubMed  Google Scholar 

  • Jacob P III, Shulgin AT (1983) Sulfur analogues of psychotomimetic agents. 2. Analogues of (2,5-dimethoxy-4-methylphenyl)-and (2,5-dimethoxy-4-ethylphenyl)isopropylamine. J Med Chem 26:746–752

    Article  CAS  PubMed  Google Scholar 

  • Jacob P III, Anderson G III, Meshul CK, Shulgin AT, Castagnoli N Jr (1977) Monomethylthio analogues of 1-(2,4,5-trimethoxyphenyl)-2-aminopropane. J Med Chem 20:1235–1239

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Hoffman AJ, Nichols DE, Mathis CA (1987) Binding to the serotonin 5-HT2 receptor by the enantiomers of 125I-DOI. Neuropharmacology 26:1803–1806

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Mathis CA, Shulgin AT, Hoffman AJ, Nichols DE (1990) [125I]-2-(2,5-dimethoxy-4-iodophenyl)aminoethane ([125I]-2C-I) as a label for the 5-HT2 receptor in rat frontal cortex. Pharmacol Biochem Behav 35:211–217

    Article  CAS  PubMed  Google Scholar 

  • Juncosa JI (2011) Organic synthesis combined with molecular modeling: a powerful approach to map the functional topography of dopamine and serotonin receptors. PhD, Purdue University

    Google Scholar 

  • Juncosa JI Jr, Hansen M, Bonner LA, Cueva JP, Maglathlin R, McCorvy JD, Marona-Lewicka D, Lill MA, Nichols DE (2013) Extensive rigid analogue design maps the binding conformation of potent N-benzylphenethylamine 5-HT2A serotonin receptor agonist ligands. ACS Chem Neurosci 4:96–109

    Article  CAS  PubMed  Google Scholar 

  • Kalir A, Szara S (1963) Synthesis and pharmacological activity of fluorinated tryptamine derivatives. J Med Chem 6:716–719

    Article  CAS  PubMed  Google Scholar 

  • Kantor RE, Dudlettes SD, Shulgin AT (1980) 5-methoxy-alpha-methyltryptamine (alphs, o-dimethylserotonin), a hallucinogenic homolog of serotonin. Biol Psychiatry 15:349–352

    CAS  PubMed  Google Scholar 

  • Karst M, Halpern JH, Bernateck M, Passie T (2010) The non-hallucinogen 2-bromo-lysergic acid diethylamide as preventative treatment for cluster headache: an open, non-randomized case series. Cephalalgia 30:1140–1144

    Article  PubMed  Google Scholar 

  • Krebs KM, Geyer MA (1993) Behavioral characterization of alpha-ethyltryptamine, a tryptamine derivative with MDMA-like properties in rats. Psychopharmacology 113:284–287

    Article  CAS  PubMed  Google Scholar 

  • Laban U, Kurrasch-Orbaugh D, Marona-Lewicka D, Nichols DE (2001) A novel fluorinated tryptamine with highly potent serotonin 5-HT1A receptor agonist properties. Bioorg Med Chem Lett 11:793–795

    Article  CAS  PubMed  Google Scholar 

  • Lemaire D, Jacob P III, Shulgin AT (1985) Ring-substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J Pharm Pharmacol 37:575–577

    Article  CAS  PubMed  Google Scholar 

  • Leth-Petersen S, Bundgaard C, Hansen M, Carnerup MA, Kehler J, Kristensen JL (2014) Correlating the metabolic stability of psychedelic 5-HT(2)A agonists with anecdotal reports of human oral bioavailability. Neurochem Res 39:2018–2023

    Article  CAS  PubMed  Google Scholar 

  • Leth-Petersen S, Gabel-Jensen C, Gillings N, Lehel S, Hansen HD, Knudsen GM, Kristensen JL (2016) metabolic fate of hallucinogenic NBOMes. Chem Res Toxicol 29:96–100

    Article  CAS  PubMed  Google Scholar 

  • Leuner H, Baer G (1965) Two new short-acting hallucinogens of the psilocybin group. Neuropsychopharmacol 4:471–474

    Google Scholar 

  • May JA, Chen HH, Rusinko A, Lynch VM, Sharif NA, McLaughlin MA (2003a) A novel and selective 5-HT2 receptor agonist with ocular hypotensive activity: (S)-(+)-1-(2-aminopropyl)-8,9-dihydropyrano[3,2-e]indole. J Med Chem 46:4188–4195

    Article  CAS  PubMed  Google Scholar 

  • May JA, McLaughlin MA, Sharif NA, Hellberg MR, Dean TR (2003b) Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys. J Pharmacol Exp Ther 306:301–309

    Article  CAS  PubMed  Google Scholar 

  • May JA, Dantanarayana AP, Zinke PW, McLaughlin MA, Sharif NA (2006) 1-((S)-2-aminopropyl)-1H-indazol-6-ol: a potent peripherally acting 5-HT2 receptor agonist with ocular hypotensive activity. J Med Chem 49:318–328

    Article  CAS  PubMed  Google Scholar 

  • May JA, Sharif NA, Chen HH, Liao JC, Kelly CR, Glennon RA, Young R, Li JX, Rice KC, France CP (2009) Pharmacological properties and discriminative stimulus effects of a novel and selective 5-HT2 receptor agonist AL-38022A [(S)-2-(8,9-dihydro-7H-pyrano[2,3-g]indazol-1-yl)-1-methylethylamine]. Pharmacol Biochem Behav 91:307–314

    Article  CAS  PubMed  Google Scholar 

  • McCorvy JD (2012) Mapping the binding site of the 5-HT2A receptor using mutagenesis and ligand libraries: insights into the molecular actions of psychedelics. In: Chemistry Medicinal, Pharmacology Molecular (eds) vol. Purdue, PhD West Lafayette, IN

    Google Scholar 

  • McKenna DJ, Nazarali AJ, Hoffman AJ, Nichols DE, Mathis CA, Saavedra JM (1989) Common receptors for hallucinogens in rat brain: a comparative autoradiographic study using [125I]LSD and [125I]DOI, a new psychotomimetic radioligand. Brain Res 476:45–56

    Article  CAS  PubMed  Google Scholar 

  • McKenna DJ, Repke DB, Lo L, Peroutka SJ (1990) Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology 29:193–198

    Article  CAS  PubMed  Google Scholar 

  • McLean TH, Chambers JJ, Parrish JC, Braden MR, Marona-Lewicka D, Kurrasch-Orbaugh D, Nichols DE (2006a) C-(4,5,6-trimethoxyindan-1-yl)methanamine: a mescaline analogue designed using a homology model of the 5-HT2A receptor. J Med Chem 49:4269–4274

    Article  CAS  PubMed  Google Scholar 

  • McLean TH, Parrish JC, Braden MR, Marona-Lewicka D, Gallardo-Godoy A, Nichols DE (2006b) 1-Aminomethylbenzocycloalkanes: conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists. J Med Chem 49:5794–5803

    Article  CAS  PubMed  Google Scholar 

  • Monte AP, Marona-Lewicka D, Kanthasamy A, Sanders-Bush E, Nichols DE (1995) Stereoselective LSD-like activity in a series of d-lysergic acid amides of (R)- and (S)-2-aminoalkanes. J Med Chem 38:958–966

    Article  CAS  PubMed  Google Scholar 

  • Monte AP, Marona-Lewicka D, Parker MA, Wainscott DB, Nelson DL, Nichols DE (1996) Dihydrobenzofuran analogues of hallucinogens. 3. Models of 4-substituted (2,5-dimethoxyphenyl)alkylamine derivatives with rigidified methoxy groups. J Med Chem 39:2953–2961

    Article  CAS  PubMed  Google Scholar 

  • Monte AP, Waldman SR, Marona-Lewicka D, Wainscott DB, Nelson DL, Sanders-Bush E, Nichols DE (1997) Dihydrobenzofuran analogues of hallucinogens. 4. Mescaline derivatives. J Med Chem 40:2997–3008

    Article  CAS  PubMed  Google Scholar 

  • Monte AP, Marona-Lewicka D, Lewis MM, Mailman RB, Wainscott DB, Nelson DL, Nichols DE (1998) Substituted naphthofurans as hallucinogenic phenethylamine-ergoline hybrid molecules with unexpected muscarinic antagonist activity. J Med Chem 41:2134–2145

    Article  CAS  PubMed  Google Scholar 

  • Murphree HB, Dippy RH, Jenney EH, Pfeiffer CC (1961) Effects in normal man of alpha-methyltryptamine and alpha-ethyltryptamine. Clin Pharmacol Ther 2:722–726

    Article  CAS  PubMed  Google Scholar 

  • Nakada MT, Wieczorek CM, Rainbow TC (1984) Localization and characterization by quantitative autoradiography of [125I]LSD binding sites in rat brain. Neurosci Lett 49:13–18

    Article  CAS  PubMed  Google Scholar 

  • Nakahara Y, Niwaguchi T, Ishii H (1977) Studies on lysergic acid diethylamide and related compounds. V. Syntheses of dihydrolysergic acid diethylamides and related compounds. Chem Pharm Bull (Tokyo) 25:1756–1763

    Article  CAS  Google Scholar 

  • Nash JF, Roth BL, Brodkin JD, Nichols DE, Gudelsky GA (1994) Effect of the R(-) and S(+) isomers of MDA and MDMA on phosphatidyl inositol turnover in cultured cells expressing 5-HT2A or 5-HT2C receptors. Neurosci Lett 177:111–115

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE (1981) Structure-activity relationships of phenethylamine hallucinogens. J Pharm Sci 70:839–849

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE (1986) Hallucinogens. In: Verderame M (ed) Handbook of CNS agents and local anesthetics. CRC Press, Inc, Boca Raton, pp 303–325

    Google Scholar 

  • Nichols DE (2016) Psychedelics. Pharmacol Rev 68:264–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols DE, Dyer DC (1977) Lipophilicity and serotonin agonist activity in a series of 4-substituted mescaline analogues. J Med Chem 20:299–301

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Shulgin AT (1976) Sulfur analogs of psychotomimetic amines. J Pharm Sci 65:1554–1556

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Barfknecht CF, Rusterholz DB, Benington F, Morin RD (1973) Asymmetric synthesis of psychotomimetic phenylisopropylamines. J Med Chem 16:480–483

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Barfknecht CF, Long JP, Standridge RT, Howell HG, Partyka RA, Dyer DC (1974) Potential psychotomimetics. 2. Rigid analogs of 2,5-dimethoxy-4- methylphenylisopropylamine (DOM, STP). J Med Chem 17:161–166

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Shulgin AT, Dyer DC (1977) Directional lipophilic character in a series of psychotomimetic phenethylamine derivatives. Life Sci 21:569–575

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Pfister WR, Yim GK (1978) LSD and phenethylamine hallucinogens: new structural analogy and implications for receptor geometry. Life Sci 22:2165–2170

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Woodard R, Hathaway BA, Lowy MT, Yom KW (1979) Resolution and absolute configuration of trans-2-(2,5-dimethoxy-4- methylphenyl)cyclopropylamine, a potent hallucinogen analogue. J Med Chem 22:458–460

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Jadhav KP, Oberlender RA, Zabik JE, Bossart JF, Hamada A, Miller DD (1984a) Synthesis and evaluation of substituted 2-phenylcyclobutylamines as analogues of hallucinogenic phenethylamines: lack of LSD-like biological activity. J Med Chem 27:1108–1111

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Schooler D, Yeung MC, Oberlender RA, Zabik JE (1984b) Unreliability of the rat stomach fundus as a predictor of hallucinogenic activity in substituted phenethylamines. Life Sci 35:1343–1348

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Hoffman AJ, Oberlender RA, Riggs RM (1986) Synthesis and evaluation of 2,3-dihydrobenzofuran analogues of the hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane: drug discrimination studies in rats. J Med Chem 29:302–304

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Lloyd DH, Johnson MP, Hoffman AJ (1988) Synthesis and serotonin receptor affinities of a series of enantiomers of alpha-methyltryptamines: evidence for the binding conformation of tryptamines at serotonin 5-HT1B receptors. J Med Chem 31:1406–1412

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Snyder SE, Oberlender R, Johnson MP, Huang XM (1991) 2,3-Dihydrobenzofuran analogues of hallucinogenic phenethylamines. J Med Chem 34:276–281

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Frescas S, Marona-Lewicka D, Huang X, Roth BL, Gudelsky GA, Nash JF (1994) 1-(2,5-Dimethoxy-4-(trifluoromethyl)phenyl)-2-aminopropane: a potent serotonin 5-HT2A/2C agonist. J Med Chem 37:4346–4351

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Frescas S, Marona-Lewicka D, Kurrasch-Orbaugh DM (2002) Lysergamides of isomeric 2,4-dimethylazetidines map the binding orientation of the diethylamide moiety in the potent hallucinogenic agent N, N-diethyllysergamide (LSD). J Med Chem 45:4344–4349

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Frescas SP, Chemel BR, Rehder KS, Zhong D, Lewin AH (2008) High specific activity tritium-labeled N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (INBMeO): a high-affinity 5-HT2A receptor-selective agonist radioligand. Bioorg Med Chem 16:6116–6123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols DE, Sassano MF, Halberstadt AL, Klein LM, Brandt SD, Elliott SP, Fiedler WJ (2015) N-Benzyl-5-methoxytryptamines as potent serotonin 5-HT2 receptor family agonists and comparison with a series of phenethylamine analogues. ACS Chem Neurosci 6:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Nikolaou P, Papoutsis I, Stefanidou M, Spiliopoulou C, Athanaselis S (2015) 2C-I-NBOMe, an “N-bomb” that kills with “Smiles”. Toxicological and legislative aspects. Drug Chem Toxicol 38:113–119

    Article  CAS  PubMed  Google Scholar 

  • Oberlender RA, Kothari PJ, Nichols DE, Zabik JE (1984) Substituent branching in phenethylamine-type hallucinogens: a comparison of 1-[2,5-dimethoxy-4-(2-butyl)phenyl]-2-aminopropane and 1- [2,5-dimethoxy-4-(2-methylpropyl)phenyl]-2-aminopropane. J Med Chem 27:788–792

    Article  CAS  PubMed  Google Scholar 

  • Oberlender R, Pfaff RC, Johnson MP, Huang XM, Nichols DE (1992) Stereoselective LSD-like activity in d-lysergic acid amides of (R)- and (S)-2-aminobutane. J Med Chem 35:203–211

    Article  CAS  PubMed  Google Scholar 

  • Oberlender R, Ramachandran PV, Johnson MP, Huang X, Nichols DE (1995) Effect of a chiral 4-alkyl substituent in hallucinogenic amphetamines. J Med Chem 38:3593–3601

    Article  CAS  PubMed  Google Scholar 

  • Parker MA, Marona-Lewicka D, Lucaites VL, Nelson DL, Nichols DE (1998) A novel (benzodifuranyl)aminoalkane with extremely potent activity at the 5-HT2A receptor. J Med Chem 41:5148–5149

    Article  CAS  PubMed  Google Scholar 

  • Parrish JC (2006) Toward a molecular understanding of hallucinogen action. PhD, Purdue University

    Google Scholar 

  • Parrish JC, Braden MR, Gundy E, Nichols DE (2005) Differential phospholipase C activation by phenylalkylamine serotonin 5-HT 2A receptor agonists. J Neurochem 95:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Peretz DI, Smythies JR, Gibson WC (1955) A new hallucinogen: 3,4,5-trimethoxyphenyl-beta-aminopropane (with notes on a stroboscopic phenomenon). J Mental Sci 101:317–329

    Article  CAS  Google Scholar 

  • Pigott A, Frescas S, McCorvy JD, Huang XP, Roth BL, Nichols DE (2012) trans-2-(2,5-Dimethoxy-4-iodophenyl)cyclopropylamine and trans-2-(2,5-dimethoxy-4-bromophenyl)cyclopropylamine as potent agonists for the 5-HT(2) receptor family. Beilstein J Org Chem 8:1705–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poklis JL, Devers KG, Arbefeville EF, Pearson JM, Houston E, Poklis A (2014) Postmortem detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high performance liquid chromatography with tandem mass spectrometry from a traumatic death. Forensic Sci Int 234:e14–e20

    Article  CAS  PubMed  Google Scholar 

  • Rangisetty JB, Dukat M, Dowd CS, Herrick-Davis K, Dupre A, Gadepalli S, Teitler M, Kelley CR, Sharif NA, Glennon RA (2001) 1-[2-methoxy-5-(3-phenylpropyl)]-2-aminopropane unexpectedly shows 5-HT(2A) serotonin receptor affinity and antagonist character. J Med Chem 44:3283–3291

    Article  CAS  PubMed  Google Scholar 

  • Ray TS (2010) Psychedelics and the human receptorome. PLoS ONE 5:e9019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Repke DB, Grotjahn DB, Shulgin AT (1985) Psychotomimetic N-methyl-N-isopropyltryptamines. Effects of variation of aromatic oxygen substituents. J Med Chem 28:892–896

    Article  CAS  PubMed  Google Scholar 

  • Rusterholz DB, Long JP, Nichols DE (1979) Effect of alpha-methyltryptamine on spontaneous activity in mice. Pharmacol Biochem Behav 10:223–227

    Article  CAS  PubMed  Google Scholar 

  • Sargent T III, Kalbhen DA, Shulgin AT, Stauffer H, Kusubov N (1975) A potential new brain-scanning agent: 4-77Br-2,5-dimethoxyphenylisoproplamine (4-Br-DPIA). J Nucl Med 16:243–245

    CAS  PubMed  Google Scholar 

  • Schechter MD (1998) MDMA-like stimulus effects of hallucinogens in male Fawn-Hooded rats. Pharmacol Biochem Behav 59:265–270

    Article  CAS  PubMed  Google Scholar 

  • Schultz DM, Prescher JA, Kidd S, Marona-Lewicka D, Nichols DE, Monte A (2008) ‘Hybrid’ benzofuran-benzopyran congeners as rigid analogs of hallucinogenic phenethylamines. Bioorg Med Chem 16:6242–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seggel MR, Yousif MY, Lyon RA, Titeler M, Roth BL, Suba EA, Glennon RA (1990) A structure-affinity study of the binding of 4-substituted analogues of 1-(2,5-dimethoxyphenyl)-2-aminopropane at 5-HT2 serotonin receptors. J Med Chem 33:1032–1036

    Article  CAS  PubMed  Google Scholar 

  • Shulgin AT (1968) The ethyl homologs of 2,4,5-trimethoxyphenylisopropylamine. J Med Chem 11:186–187

    Article  CAS  PubMed  Google Scholar 

  • Shulgin AT (1978) Psychotomimetic Drugs: Structure-activity relationships. In: Iversen LL et al (eds) Handbook of psychopharmacology, vol 11. Plenum Press, New York, pp 243–333

    Chapter  Google Scholar 

  • Shulgin AT (1982) Chemistry of Psychotomimetics. In: Hoffmeister F, Stille G (eds) Handbook of experimental pharmacology, vol 55/III. Springer, New York, pp 3–29

    Chapter  Google Scholar 

  • Shulgin AT, Carter MF (1980) N, N-Diisopropyltryptamine (DIPT) and 5-methoxy-N, N-diisopropyltryptamine (5-MeO-DIPT). Two orally active tryptamine analogs with CNS activity. Commun Psychopharmacol 4:363–369

    CAS  PubMed  Google Scholar 

  • Shulgin A, Shulgin A (1991) PIHKAL A chemical love story. Berkeley, CA 94701: Transform Press

    Google Scholar 

  • Shulgin AT, Shulgin A (1997) TIHKAL. The continuation. Transform Press, Berkeley

    Google Scholar 

  • Shulgin AT, Sargent T, Naranjo C (1969) Structure–activity relationships of one-ring psychotomimetics. Nature 221:537–541

    Article  CAS  PubMed  Google Scholar 

  • Shulgin AT, Sargent T, Naranjo C (1971) 4-Bromo-2,5-dimethoxyphenylisopropylamine, a new centrally active amphetamine analog. Pharmacology 5:103–107

    Article  CAS  PubMed  Google Scholar 

  • Siva Sankar DV (1975) LSD: a total study. PJD Publications, Westbury

    Google Scholar 

  • Stoll A, Hofmann A (1955) Amide der sterreoisomeren lysergsauren und dihydro-lysergsauren. Helv Chim Acta 38:421–433

    Article  CAS  Google Scholar 

  • Strano Rossi S, Odoardi S, Gregori A, Peluso G, Ripani L, Ortar G, Serpelloni G, Romolo FS (2014) An analytical approach to the forensic identification of different classes of new psychoactive substances (NPSs) in seized materials. Rapid Commun Mass Spectrom 28:1904–1916

    Article  CAS  PubMed  Google Scholar 

  • Szara S (1961) 6-Hydroxylation: an important metabolic route for alpha-methyltryptamine. Experientia 17:76–77

    Article  CAS  PubMed  Google Scholar 

  • Tomaszewski Z, Johnson MP, Huang X, Nichols DE (1992) Benzofuran bioisosteres of hallucinogenic tryptamines. J Med Chem 35:2061–2064

    Article  CAS  PubMed  Google Scholar 

  • Trachsel D, Nichols DE, Kidd S, Hadorn M, Baumberger F (2009) 4-aryl-substituted 2,5-dimethoxyphenethylamines: synthesis and serotonin 5-HT(2A) receptor affinities. Chem Biodivers 6:692–704

    Article  CAS  PubMed  Google Scholar 

  • Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13

    Article  CAS  PubMed  Google Scholar 

  • Vangveravong S, Kanthasamy A, Lucaites VL, Nelson DL, Nichols DE (1998) Synthesis and serotonin receptor affinities of a series of trans-2-(indol-3-yl)cyclopropylamine derivatives. J Med Chem 41:4995–5001

    Article  CAS  PubMed  Google Scholar 

  • Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu M, Siu FY, Liu W, Xu HE, Cherezov V, Roth BL, Stevens RC (2013) Structural features for functional selectivity at serotonin receptors. Science 340:615–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters GC, Cooper PD (1968) Alicyclic analogue of mescaline. Nature 218:298–300

    Article  CAS  PubMed  Google Scholar 

  • Walterscheid JP, Phillips GT, Lopez AE, Gonsoulin ML, Chen HH, Sanchez LA (2014) Pathological findings in 2 cases of fatal 25I-NBOMe toxicity. Am J Forensic Med Pathol 35:20–25

    Article  PubMed  Google Scholar 

  • Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E, McCorvy JD, Gao X, Zhou XE, Melcher K, Zhang C, Bai F, Yang H, Yang L, Jiang H, Roth BL, Cherezov V, Stevens RC, Xu HE (2013) Structural basis for molecular recognition at serotonin receptors. Science 340:610–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts SW, Gackenheimer SL, Gehlert DR, Cohen ML (1994) Autoradiographic comparison of [125I]LSD-labeled 5-HT2A receptor distribution in rat and guinea pig brain. Neurochem Int 24:565–574

    Article  CAS  PubMed  Google Scholar 

  • Whiteside MS, Kurrasch-Orbaugh D, Marona-Lewicka D, Nichols DE, Monte A (2002) Substituted hexahydrobenzodipyrans as 5-HT2A/2C receptor probes. Bioorg Med Chem 10:3301–3306

    Article  CAS  PubMed  Google Scholar 

  • Winter JC, Gessner PK, Godse DD (1967) Synthesis of some 3-indenealkylamines. Comparison of the biological activity of 3-indenealkylamines and 3-benzo[b]thiophenealkylamines with their tryptamine isosteres. J Med Chem 10:856–858

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Xu H, Hanson M, Liu W (2014) GPCR crystallization using lipidic cubic phase technique. Curr Pharm Biotechnol 15:971–979

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Nichols .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nichols, D.E. (2017). Chemistry and Structure–Activity Relationships of Psychedelics. In: Halberstadt, A.L., Vollenweider, F.X., Nichols, D.E. (eds) Behavioral Neurobiology of Psychedelic Drugs. Current Topics in Behavioral Neurosciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2017_475

Download citation

Publish with us

Policies and ethics