Skip to main content

Radiopharmaceutical Chemistry

  • Protocol
  • First Online:
Molecular Imaging in the Clinical Neurosciences

Part of the book series: Neuromethods ((NM,volume 71))

Abstract

Molecular imaging today, both in research and in clinical practice, is an increasingly important tool for diagnosis and therapy control of a variety of diseases. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) possess an exceptional position among these methods. In contrast to computed tomography (CT) and magnetic resonance imaging (MRI), which provide mainly morphological information, SPECT and PET allow the visualization of biochemical parameters, such as receptor availability, enzymatic reaction rates, and metabolic pathways. To measure these functional parameters both modalities make use of radioactive tracers as imaging probes. Because of the high sensitivity of photon detection and the resulting ultralow mass of the probes applied, pharmacological effects normally do not occur. As these radiotracers play an important role in both imaging methods, the production and properties of the radioisotopes and the syntheses of the tracers significantly influence the quality of the information gained; the syntheses of the most relevant ones are discussed in this chapter.

A comprehensive review of the whole radiochemistry of PET and SPECT radiopharmaceuticals, however, is by far beyond the scope of this chapter. A number of excellent reviews have been published recently, e.g., on general aspects of radiopharmaceutical chemistry (Rsch, Handbook of nuclear chemistry, vol. 4, Kluwer Academic Publishers, The Netherlands, 2003, Saha, Fundamentals of nuclear pharmacy, 5th ed., Springer, New York, 2004) and PET (Miller et al., Angew Chem Int Ed 47:8998-9033, 2008, Saha, Basics of PET imaging, Springer, New York, 2005, Ro and Amatamey, PET chemistry: radiopharmaceuticals, Basic Sciences of Nuclear Medicine, Springer, Heidelberg, 2011) for neuroreceptor imaging (Frankle et al., Neuroimaging B 67:385-440, 2005), on the production of PET radiopharmaceuticals (Stcklin and Pike, Radiopharmaceuticals for positron emission tomography. Kluwer Academic publishers, Dordrecht, 1993), on different aspects of radiotracer synthesis (Fowler and Wolf, Acc Chem Res 30:181-188, 1997), to mention only a few of them. Therefore, the radiochemistry presented in this chapter is limited to radionuclides, relevant for the molecular imaging of neurological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rösch F, Knapp FF (2003) Radionuclide generators. In: VĂ©rtes A, Nagy S, KlencsĂ¡r Z, Rösch F (eds) Radiochemistry and radiopharmaceutical chemistry in life sciences, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 81–118

    Google Scholar 

  2. Qaim SM (2003) Cyclotron production of medical radionuclides. In: VĂ©rtes A, Nagy S, KlencsĂ¡r Z, Rösch F (eds) Radiochemistry and radiopharmaceutical chemistry in life sciences, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 47–79

    Google Scholar 

  3. Kearfott KJ, Elmaleh DR, Goodman M et al (1984) Comparison of 2- and 3-18F-fluoro-deoxy-d-glucose for studies of tissue metabolism. Int J Nucl Med Biol 11:15–22

    Article  PubMed  CAS  Google Scholar 

  4. Eisenhut M, Mier W (2003) Radioiodination chemistry and radioiodinated compounds. In: VĂ©rtes A, Nagy S, KlencsĂ¡r Z, Rösch F (eds) Radiochemistry and radiopharmaceutical chemistry in life sciences, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 257–278

    Google Scholar 

  5. Coenen HH, Mertens J, Mazière B (2006) Radioiodination reactions for radiopharmaceuticals. Springer, Dordrecht

    Book  Google Scholar 

  6. TĂ¡rkĂ¡nyi F, Qaim SM, Stöcklin G et al (1991) Excitation functions of (p,2n) and (p, pn) reactions and differential and integral yields of 123I in proton induced nuclear reactions on highly enriched 124Xe. Appl Radiat Isot 42:221–228

    Article  Google Scholar 

  7. Scholten B, KovĂ¡cs Z, TĂ¡rkĂ nyi F et al (1995) Excitation functions of 124Te(p, xn)124,123I reactions from 6 to 31 MeV with special reference to the production of 124I at a small cyclotron. Appl Rad Isot 46:255–259

    Article  CAS  Google Scholar 

  8. Knapp FF, Goodman MM, Callahan AP et al (1986) Radioiodinated 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid: a useful new agent to evaluate myocardial fatty acid uptake. J Nucl Med 27:521–531

    PubMed  CAS  Google Scholar 

  9. Mertens J, Vanryckeghem W, Bossuyt A et al (1984) Fast low temperature ultrasonic synthesis and injection ready preparation of carrier free 17-I-123-heptadecanoic acid. J Label Comp Radiopharm 21:843–856

    Article  CAS  Google Scholar 

  10. Sinn H-J, Schrenk HH, Maier-Borst W (1986) A new radioiodine exchange labeling technique. Appl Rad Isotop 37:17–21

    Article  CAS  Google Scholar 

  11. Beer HF, Bläuenstein PA, Hasler PH et al (1990) In vitro and in vivo evaluation of iodine-123-Ro16–0154: a new imaging agent for SPECT investigations of benzodiazepine receptors. J Nucl Med 31:1007–1014

    PubMed  CAS  Google Scholar 

  12. Baldwin RM, Zea-Ponce Y, Zoghbi SS et al (1993) Evaluation of the monoamine uptake site ligand [123I]methyl 3β-(4-Iodophenyl)-tropane-2β-carboxylate ([123I]β-CIT) in non-human primates: pharmacokinetics, biodistribution and SPECT brain imaging coregistered with MRI. Nucl Med Biol 20:597–606

    Article  PubMed  CAS  Google Scholar 

  13. Neumeyer JL, Wang SY, Milius RA et al (1991) [I-123]-2-Beta-carbomethoxy-3-beta-(4-iodophenyl)tropane: high-affinity SPECT radiotracer of monoamine reuptake sites in brain. J Med Chem 34:3144–3146

    Article  PubMed  CAS  Google Scholar 

  14. Kung HF, Kasliwal R, Pan S et al (1988) Dopamine D-2 receptor imaging radiopharmaceuticals: synthesis, radiolabeling, and in vitro binding of (R)-(+)-and (5')-(-)-3-Iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidiny1)methyl]benzamide. J Med Chem 31:1039–1043

    Article  PubMed  CAS  Google Scholar 

  15. Fraker PJ, Speck JC (1978) Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. Biochem Biophys Res Commun 80:849–857

    Article  PubMed  CAS  Google Scholar 

  16. Markwell MAK (1982) A new solid-state reagent to lodinate proteins. Anal Biochem 125:427–432

    Article  PubMed  CAS  Google Scholar 

  17. Tucker D, Greene MW, Weiss AJ et al (1958) Methods of preparation of some carrier-free radioisotopes involving sorption on alumina. Trans Am Nucl Soc 1:160–166

    Google Scholar 

  18. Schwochau K (2000) Technetium—chemistry and radiopharmaceutical applications. Wiley-VCH, Weinheim

    Google Scholar 

  19. Kung HF (2001) Development of Tc-99m labeled tropanes: TRODAT-1, as a dopamine transporter imaging agent. Nucl Med Biol 28:505–508

    Article  PubMed  CAS  Google Scholar 

  20. Fritzberg AR, Kasina S, Eshima D et al (1986) Synthesis and biological evaluation of Tc-99m Mag3 as a Hippuran replacement. J Nucl Med 27:111–116

    PubMed  CAS  Google Scholar 

  21. Walovitch RC, Hill TC, Garrity ST et al (1989) Characterization of Technetium-99m-L-L-ECD for brain perfusion imaging, Part 1: pharmacology of Technetium-99m ECD in nonhuman primates. J Nucl Med 30:1892–1901

    PubMed  CAS  Google Scholar 

  22. Alberto R, Ortner K, Wheatley N et al (2001) Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J Am Chem Soc 123:3135–3136

    Article  PubMed  CAS  Google Scholar 

  23. Alberto R (1998) A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]− in aqeous solution and its reaction with a bifunctional ligand. J Am Chem Soc 120:7987–7988

    Article  CAS  Google Scholar 

  24. Jaouen G, Top S, Vessières A et al (2001) First anti-oestrogen in the cyclopentadienyl rhenium tricarbonyl series. Synthesis and study of antiproliferative effects. Chem Commun:383–384

    Google Scholar 

  25. Wald J, Alberto R, Ortner K et al (2001) Aqueous one-pot synthesis of derivatized cyclopentadienyl-tricarbonyl complexes of 99mTc with an in situ CO source: application to a serotonergic receptor ligand. Angew Chem Int Ed 40:3062–3066

    Article  CAS  Google Scholar 

  26. Jaouen G, Top S, Vessières A et al (2000) New paradigms for synthetic pathways inspired by bioorganometallic chemistry. J Organomet Chem 600:23–36

    Article  CAS  Google Scholar 

  27. Spies H, Glaser M (1995) Synthesis and reactions of trigonal-bipyramidal rhenium and technetium complexes with a tripodal, tetradentate NS3 ligand. Inorg Chim Acta 240:465–478

    Article  CAS  Google Scholar 

  28. Drews A, Pietzsch H-J, Syhre R et al (2002) Synthesis and biological evaluation of technetium(III) mixed-ligand complexes with high affinity for the cerebral 5-HT1A receptor and the alpha1-adrenergic receptor. Nucl Med Biol 29:389–398

    Article  PubMed  CAS  Google Scholar 

  29. Maecke H (2004) Radiopeptides in imaging and targeted radiotherapy: ligands. Eur J Nucl Mol Imaging 31:296–299

    Google Scholar 

  30. Liu S, Edwards DS (1999) 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev 99:2235–2268

    Article  PubMed  CAS  Google Scholar 

  31. Stöcklin G, Pike WW (1993) Radiopharmaceuticals for positron emission tomography. Kluwer Academic publishers, Dordrecht

    Google Scholar 

  32. Clark JC, Crouzel C, Meyer GJ et al (1987) Current methodology for oxygen-15 production for clinical use. Appl Radiat Isot 38:597–600

    Article  CAS  Google Scholar 

  33. Van Naemen J, Monclus M, Damhaut P et al (1996) Production, automatic delivery and bolus injection of [15O]water for positron emission tomography studies. Nucl Med Biol 23:413–416

    Article  PubMed  Google Scholar 

  34. Beaver JE, Finn RD, Hupf HB (1976) A new method for the production of high concentration oxygen-15 labeled carbon dioxide with protons. Int J Appl Radiat Isot 27:195–197

    Article  CAS  Google Scholar 

  35. Kanno I, Lamertsma AA, Heather JD et al (1984) Measurement of cerebral blood flow using bolus inhalation of C15O2 and positron emission tomography: description of the method and its comparison with the C15O2 continuous inhalation method. J Cerebral Blood Flow Metab 4:224–234

    Article  CAS  Google Scholar 

  36. Moerlein SM, Gaehle GG, Lechner KR et al (1993) Automated production of oxygen-15 labeled butanol for PET measurement of regional cerebral blood flow. Appl Radiat Isot 44:1213–1218

    Article  PubMed  CAS  Google Scholar 

  37. Votaw JR, Henry TR, Shoup TM et al (1999) Butanol is superior to water for performing positron emission tomography activation studies. J Cereb Blood Low Metab 19:982–989

    Article  CAS  Google Scholar 

  38. Ache HJ, Wolf HP (1968) The effect of radiation on the reactions of recoil carbon-11 in the nitrogen–oxygen system. J Phys Chem 72:1988–1993

    Article  CAS  Google Scholar 

  39. Antoni G, Kihlberg T, LĂ¥ngström B (2003) 11C: labeling chemistry and labeled compounds. In: VĂ©rtes A, Nagy S, KlencsĂ¡r Z, Rösch F (eds) Radiochemistry and radiopharmaceutical chemistry in life sciences, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 119–166

    Google Scholar 

  40. Vaalburg W, Beerling-van der Molen HD, Reiffers S (1976) Preparation of carbon-11 labelled phenylalanine and phenylglycine by a new amino acid synthesis. Int J Appl Radiat Isot 27:153–157

    Article  PubMed  CAS  Google Scholar 

  41. Tobias CA, Lawrence JH, Roughton FJW et al (1945) The elimination of carbon monoxide from the human body with reference to the possible conversion of CO to CO2. Am J Physiol 145:253–263

    PubMed  CAS  Google Scholar 

  42. Lidström P, Kihlberg T, LĂ¥ngström B (1997) [11C]Carbon monoxide in the palladium-mediated synthesis of 11C-labelled ketones. J Chem Soc Perkin Trans 1:2701–2706

    Article  Google Scholar 

  43. Hostetler ED, Burns HD (2002) A remote-controlled high pressure reactor for radiotracer synthesis with [11C]carbon monoxide. Nucl Med Biol 29:845–848

    Article  PubMed  CAS  Google Scholar 

  44. Kihlberg T, LĂ¥ngström B (1999) Biologically active 11C-labeled amides using palladium-mediated reactions with aryl halides and [11C]carbon monoxide. J Org Chem 64:9201–9205

    Article  CAS  Google Scholar 

  45. Wagner R, Stöcklin G, Schaak W (1981) Production of carbon-11 labelled methyl iodide by direct recoil synthesis. J Labelled Compd Radiopharm 18:1557–1566

    Article  CAS  Google Scholar 

  46. Crouzel C, Langström B, Pike VW et al (1987) Recommendations for a practical production of [11C]methyl iodide. Appl Radiat Isot 38:601–603

    Article  CAS  Google Scholar 

  47. Larsen P, Ulin J, Dahlström K, Jensen M (1997) Synthesis of [11C]iodomethane by iodination of [11C]methane. Appl Radiat Isot 48:153–157

    Article  CAS  Google Scholar 

  48. Comar D, Cartron J-C, Maziere M et al (1976) Labelling and metabolism of methionine-methyl-11C. Eur J Nucl Med 1:1–14

    Article  Google Scholar 

  49. LĂ¥ngström B, Lundquist H (1976) The preparation of 11C-methyl iodide and its use in the synthesis of 11C-methyl-methionine. Int J Appl Radiat Isot 27:357–363

    Article  PubMed  Google Scholar 

  50. Litton J-E, Neiman J, Pauli S et al (1992) PET analysis of [11C]flumazenil binding to benrodiazepine receptors in chronic alcohol-dependent men and healthy controls. Psychiatry Res: Neuroimaging 50:1–13

    Article  Google Scholar 

  51. Becker HGO, Berger W, Domschke G et al (2004) Organikum, 2. Nukleophile Substitution am gesättigten Kohlenstoffatom, 22nd edn. Wiley-VCH, Weinheim, pp 172–216

    Google Scholar 

  52. Jewett DM (1992) A simple synthesis of [C-11]methyl triflate. Appl Radiat Isot 43:1383–1385

    Article  CAS  Google Scholar 

  53. Holschbach M, SchĂ¼ller M (1993) An on-line method for the preparation of n.c.a. [11CH3]trifluoromethanesulfonic acid methyl ester. Appl Radiat Isot 44:897–898

    Article  CAS  Google Scholar 

  54. Langer O, NĂ¥gren K, Dolle F et al (1999) Precursor synthesis and radiolabelling of the dopamine D2 receptor ligand [11C]Raclopride from [11C]methyl triflate. J Labelled Compd Radiopharm 42:1183–1193

    Article  CAS  Google Scholar 

  55. Wester HJ (2003) 18F: labeling chemistry and labelled compounds. In: VĂ©rtes A, Nagy S, KlencsĂ¡r Z, Rösch F (eds) Radiochemistry and radiopharmaceutical chemistry in life sciences, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 47–79

    Google Scholar 

  56. Moerlein SM, Perlmutter JS (1992) Binding of 5-(2′-[18F]fluoroethyl)flumazenil to central benzodiazepine receptors measured in living baboon by positron emission tomography. Eur J Pharmacol 218:109–115

    Article  PubMed  CAS  Google Scholar 

  57. Wester H-J, Willoch F, Tölle TR et al (2000) 6-O-(2-[18F]Fluoroethyl)-6-O-desmethyldipre norphine ([18F]DPN): synthesis, biologic evaluation, and comparison with [11C]DPN in humans. J Nucl Med 41:1279–1286

    PubMed  CAS  Google Scholar 

  58. Hagmann W (2008) The many roles for fluorine in medicinal chemistry. J Med Chem 51:4359–4369

    Article  PubMed  CAS  Google Scholar 

  59. Stöcklin G, Wester HJ (1998) Positron emission tomography: a critical assessment of recent trends. In: Gulyas B, MĂ¼ller-Gärtner HW (eds) Strategies for radioligand development: peptides for tumor targeting, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 57–90

    Google Scholar 

  60. Ido T, Wan CN, Casella V et al (1978) Labeled 2-deoxy-d-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-d-glucose, 2-deoxy-2-fluoro-d-mannose and 14C-2-deoxy-2-fluoro-d-glucose. J Labelled Compd Radiopharm 14:175–183

    Article  CAS  Google Scholar 

  61. Szajek LP, Channing MA, Eckelmann WC (1998) Automated synthesis of 6-[18F]fluoro-l-DOPA using modified polystyrene supports with bound 6-mercuric DOPA precursors. Appl Radiat Isot 49:795–804

    Article  CAS  Google Scholar 

  62. Namavari M, Bishop A, Satyamurthy N et al (1992) Regioselective radiofluorodestannylation with [18F]F2 and [18F]CH3COOF: a high yield synthesis of 6-[18F]fluoro-l-dopa. Appl Radiat Isot 43:989–996

    Article  CAS  Google Scholar 

  63. Cox DP, Terpinski J, Lawrynowicz W (1984) Anhydrous tetrabutylammonium fluoride - a mild but highly efficient source of nucleophilic fluoride-ion. J Org Chem 49:3216–3219

    Article  CAS  Google Scholar 

  64. Hamacher K, Coenen HH, Stöcklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238

    PubMed  CAS  Google Scholar 

  65. Mukherjee J, Yang ZY, Das MK, Brown T (1995) Fluorinated benzamide neuroleptics: 3. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2,3-dimethoxybenzamide as an improved dopamine D-2receptor tracer. Nucl Med Biol 22:283–296

    Article  PubMed  CAS  Google Scholar 

  66. MĂ¼ller-Platz CM, Kloster G, Legler G et al (1982) [18F]Fluoroacetate: an agent for introduction no-carrier-added fluorine-18 into urokinase without loss of biological activity. J Labelled Compd Radiopharm 19:1645–1646

    Google Scholar 

  67. Block D, Coenen HH, Stöcklin G (1988) N.C.A. 18F-fluoroacylation via fluorocarboxylic acid esters. J Labelled Compd Radiopharm 25:185–200

    Article  CAS  Google Scholar 

  68. Vaidyanathan G, Bigner DD, Zalutsky MR (1992) Fluorine-18 labeled monoclonal antibody fragments: a potential approach for combining radioimmunoscintigraphy and positron emission tomography. J Nucl Med 33:1535–1541

    PubMed  CAS  Google Scholar 

  69. Kilbourn MR, Dence CS, Welch MJ et al (1987) Fluorine-18 labeling of proteins. J Nucl Med 28:462–470

    PubMed  CAS  Google Scholar 

  70. Block D, Coenen HH, Stöcklin G (1987) N.C.A. 18F-fluoroalkylation of H-acidic compounds. J Labelled Compd Radiopharm 25:201–216

    Article  Google Scholar 

  71. Haradahira T, Hasegawa Y, Furuta K et al (1998) Synthesis of a F-18 labeled analog of antitumor prostaglandin delta 7-PGA1 methyl ester using p-[18F]fluorobenzylamine. Appl Radiat Isot 49:1551–1556

    Article  PubMed  CAS  Google Scholar 

  72. Jelinski M, Hamacher K, Coenen HH (2002) C-Terminal 18F-fluoroethylamidation exemplified on [Gly-OH9] oxytocin. J Labelled Compd Radiopharm 45:217–229

    Article  CAS  Google Scholar 

  73. Poethko T, Schottelius M, Thumshirn G et al (2004) Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. J Nucl Med 45:892–902

    PubMed  CAS  Google Scholar 

  74. Lange CW, VanBrocklin HF, Taylor SE (2002) Photoconjugation of 3-azido-5-nitrobenzyl-[18F]fluoride to an oligonucleotide aptamer. J Labelled Compd Radiopharm 45:257–268

    Article  CAS  Google Scholar 

  75. Mulholland GK, Mock BH, Zheng Q-H et al (1999) New [18F]fluoroethylation approaches from ethylene cyclic sulfate. J Labelled Compds Radiopharm 42(suppl 1):318–320

    Google Scholar 

  76. Chi D, Kilbourn M, Katzenellenbogen J et al (1987) A rapid and efficent method for the fluoroalkylation of amines and amides. Development of a method suitable for incorporation of the short-lived positron emitting nuclide fluorine-18. J Org Chem 52:658–664

    Article  CAS  Google Scholar 

  77. Wilson AA, Dasilva JN, Houle S (1995) Synthesis of two radiofluorinated cocaine analogues using distilled 2-[18F]fluoroethyl bromide. Appl Radiat Isot 46:765–770

    Article  PubMed  CAS  Google Scholar 

  78. Comagic S, Piel M, Schirrmacher R et al (2002) Efficient synthesis of 2-bromo-1-[18F]fluoroethane and its application in the automated preparation of 18F-fluoroethylated compounds. Appl Radiat Isot 56:847–851

    Article  PubMed  CAS  Google Scholar 

  79. Bauman A, Piel M, Schirrmacher R (2003) Efficient alkali iodide promoted 18F-fluoroethylations with 2-[18F]fluoroethyl tosylate and 1-bromo-2-[18F]fluoroethane. Tetrahedron Lett 44:9165–9167

    Article  CAS  Google Scholar 

  80. Hara T, Kosaka N, Kishi H (2002) Development of 18F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43:187–199

    PubMed  CAS  Google Scholar 

  81. Wester HJ, Herz M, Weber W et al (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-l-tyrosine for tumor imaging. J Nucl Med 40:205–212

    PubMed  CAS  Google Scholar 

  82. Zhang M-R, Maeda J, Ito T et al (2005) Synthesis and evaluation of N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoromethoxy-d2-5-methoxybenzyl)acetamide: a deuterium substituted radioligand for peripheral benzodiazepine receptor. Bioorg Med Chem 13:1811–1818

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Piel, M., Rösch, F. (2012). Radiopharmaceutical Chemistry. In: GrĂ¼nder, G. (eds) Molecular Imaging in the Clinical Neurosciences. Neuromethods, vol 71. Humana Press, Totowa, NJ. https://doi.org/10.1007/7657_2012_41

Download citation

  • DOI: https://doi.org/10.1007/7657_2012_41

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-988-4

  • Online ISBN: 978-1-61779-989-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics