Skip to main content

Establishment of Intestinal Epithelial Cell Monolayers and Their Use in Calcium Switch Assay for Assessment of Intestinal Tight Junction Assembly

  • Protocol
  • First Online:
Permeability Barrier

Abstract

Intestinal barrier function relies primarily on the assembly and integrity of tight junctions, which forms a size-selective barrier. This barrier restricts paracellular movement of solutes in various types of epithelia. Of note, extracellular Ca2+ concentration affects tight junction assembly. Therefore, the removal and re-addition of Ca2+ into cell culture medium of cultured intestinal epithelial cells causes destabilization and reassembly of tight junction to membrane periphery near apical surface, respectively. Based on this principle, the Ca2+-switch assay was established to investigate tight junction assembly in fully differentiated intestinal epithelial cells. This chapter provides a stepwise protocol for culture of intestinal epithelial cell monolayers using T84 cell line as an in vitro model and the Ca2+-switch assay for evaluating tight junction assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cong X, Kong W (2020) Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 66:109485. https://doi.org/10.1016/j.cellsig.2019.109485

    Article  CAS  PubMed  Google Scholar 

  2. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412. https://doi.org/10.1083/jcb.17.2.375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Odenwald MA, Turner JR (2017) The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol 14(1):9–21. https://doi.org/10.1038/nrgastro.2016.169

    Article  CAS  PubMed  Google Scholar 

  4. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73:283–309. https://doi.org/10.1146/annurev-physiol-012110-142150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hollander D, Vadheim CM, Brettholz E, Petersen GM, Delahunty T, Rotter JI (1986) Increased intestinal permeability in patients with Crohn’s disease and their relatives. A possible etiologic factor. Ann Intern Med 105(6):883–885. https://doi.org/10.7326/0003-4819-105-6-883

    Article  CAS  PubMed  Google Scholar 

  6. Su L, Nalle SC, Shen L, Turner ES, Singh G, Breskin LA, Khramtsova EA, Khramtsova G, Tsai PY, Fu YX, Abraham C, Turner JR (2013) TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology 145(2):407–415. https://doi.org/10.1053/j.gastro.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  7. Nalle SC, Kwak HA, Edelblum KL, Joseph NE, Singh G, Khramtsova GF, Mortenson ED, Savage PA, Turner JR (2014) Recipient NK cell inactivation and intestinal barrier loss are required for MHC-matched graft-versus-host disease. Sci Transl Med 6(243):243ra287. https://doi.org/10.1126/scitranslmed.3008941

    Article  CAS  Google Scholar 

  8. Nalle SC, Zuo L, Ong M, Singh G, Worthylake AM, Choi W, Manresa MC, Southworth AP, Edelblum KL, Baker GJ, Joseph NE, Savage PA, Turner JR (2019) Graft-versus-host disease propagation depends on increased intestinal epithelial tight junction permeability. J Clin Invest 129(2):902–914. https://doi.org/10.1172/JCI98554

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shen L, Weber CR, Turner JR (2008) The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol 181(4):683–695. https://doi.org/10.1083/jcb.200711165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berglund JJ, Riegler M, Zolotarevsky Y, Wenzl E, Turner JR (2001) Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na(+)-glucose cotransport. Am J Physiol Gastrointest Liver Physiol 281(6):G1487–G1493. https://doi.org/10.1152/ajpgi.2001.281.6.G1487

    Article  CAS  PubMed  Google Scholar 

  11. Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, Mrsny RJ, Madara JL (1997) Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Phys 273(4):C1378–C1385. https://doi.org/10.1152/ajpcell.1997.273.4.C1378

    Article  CAS  Google Scholar 

  12. Marchiando AM, Graham WV, Turner JR (2010) Epithelial barriers in homeostasis and disease. Annu Rev Pathol 5:119–144. https://doi.org/10.1146/annurev.pathol.4.110807.092135

    Article  CAS  PubMed  Google Scholar 

  13. Meddings JB, Westergaard H (1989) Intestinal glucose transport using perfused rat jejunum in vivo: model analysis and derivation of corrected kinetic constants. Clin Sci (Lond) 76(4):403–413. https://doi.org/10.1042/cs0760403

    Article  CAS  Google Scholar 

  14. Odenwald MA, Turner JR (2013) Intestinal permeability defects: is it time to treat? Clin Gastroenterol Hepatol 11(9):1075–1083. https://doi.org/10.1016/j.cgh.2013.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pappenheimer JR, Reiss KZ (1987) Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol 100(2):123–136. https://doi.org/10.1007/BF02209145

    Article  CAS  PubMed  Google Scholar 

  16. Graham WV, He W, Marchiando AM, Zha J, Singh G, Li HS, Biswas A, Ong M, Jiang ZH, Choi W, Zuccola H, Wang Y, Griffith J, Wu J, Rosenberg HJ, Wang Y, Snapper SB, Ostrov D, Meredith SC, Miller LW, Turner JR (2019) Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis. Nat Med 25(4):690–700. https://doi.org/10.1038/s41591-019-0393-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Graham WV, Wang F, Clayburgh DR, Cheng JX, Yoon B, Wang Y, Lin A, Turner JR (2006) Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter. J Biol Chem 281(36):26205–26215. https://doi.org/10.1074/jbc.M602164200

    Article  CAS  PubMed  Google Scholar 

  18. Schwarz BT, Wang F, Shen L, Clayburgh DR, Su L, Wang Y, Fu YX, Turner JR (2007) LIGHT signals directly to intestinal epithelia to cause barrier dysfunction via cytoskeletal and endocytic mechanisms. Gastroenterology 132(7):2383–2394. https://doi.org/10.1053/j.gastro.2007.02.052

    Article  CAS  PubMed  Google Scholar 

  19. Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR (2005) Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 166(2):409–419. https://doi.org/10.1016/s0002-9440(10)62264-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang F, Schwarz BT, Graham WV, Wang Y, Su L, Clayburgh DR, Abraham C, Turner JR (2006) IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology 131(4):1153–1163. https://doi.org/10.1053/j.gastro.2006.08.022

    Article  CAS  PubMed  Google Scholar 

  21. Wongkrasant P, Pongkorpsakol P, Ariyadamrongkwan J, Meesomboon R, Satitsri S, Pichyangkura R, Barrett KE, Muanprasat C (2020) A prebiotic fructo-oligosaccharide promotes tight junction assembly in intestinal epithelial cells via an AMPK-dependent pathway. Biomed Pharmacother 129:110415. https://doi.org/10.1016/j.biopha.2020.110415

    Article  CAS  PubMed  Google Scholar 

  22. Bell CE, Watson AJ (2013) p38 MAPK regulates cavitation and tight junction function in the mouse blastocyst. PLoS One 8(4):e59528. https://doi.org/10.1371/journal.pone.0059528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marchiando AM, Shen L, Graham WV, Edelblum KL, Duckworth CA, Guan Y, Montrose MH, Turner JR, Watson AJ (2011) The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology 140(4):1208–1218. https://doi.org/10.1053/j.gastro.2011.01.004. e1201–1202

    Article  CAS  PubMed  Google Scholar 

  24. Odenwald MA, Choi W, Kuo WT, Singh G, Sailer A, Wang Y, Shen L, Fanning AS, Turner JR (2018) The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo. J Biol Chem 293(45):17317–17335. https://doi.org/10.1074/jbc.RA118.003908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sawyer JM, Harrell JR, Shemer G, Sullivan-Brown J, Roh-Johnson M, Goldstein B (2010) Apical constriction: a cell shape change that can drive morphogenesis. Dev Biol 341(1):5–19. https://doi.org/10.1016/j.ydbio.2009.09.009

    Article  CAS  PubMed  Google Scholar 

  26. Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J (2007) Restoration of barrier function in injured intestinal mucosa. Physiol Rev 87(2):545–564. https://doi.org/10.1152/physrev.00012.2006

    Article  CAS  PubMed  Google Scholar 

  27. Frizzell RA, Schultz SG (1972) Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol 59(3):318–346. https://doi.org/10.1085/jgp.59.3.318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fromm M, Krug SM, Zeissig S, Richter JF, Rosenthal R, Schulzke JD, Gunzel D (2009) High-resolution analysis of barrier function. Ann N Y Acad Sci 1165:74–81. https://doi.org/10.1111/j.1749-6632.2009.04047.x

    Article  CAS  PubMed  Google Scholar 

  29. Madara JL (1989) Loosening tight junctions. Lessons from the intestine. J Clin Invest 83(4):1089–1094. https://doi.org/10.1172/JCI113987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okada Y, Irimajiri A, Inouye A (1977) Electrical properties and active solute transport in rat small intestine. II. Conductive properties of transepithelial routes. J Membr Biol 31(3):221–232. https://doi.org/10.1007/BF01869406

    Article  CAS  PubMed  Google Scholar 

  31. Pongkorpsakol P, Buasakdi C, Chantivas T, Chatsudthipong V, Muanprasat C (2019) An agonist of a zinc-sensing receptor GPR39 enhances tight junction assembly in intestinal epithelial cells via an AMPK-dependent mechanism. Eur J Pharmacol 842:306–313. https://doi.org/10.1016/j.ejphar.2018.10.038

    Article  CAS  PubMed  Google Scholar 

  32. Rose RC, Schultz SG (1971) Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J Gen Physiol 57(6):639–663. https://doi.org/10.1085/jgp.57.6.639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raju P, Shashikanth N, Tsai PY, Pongkorpsakol P, Chanez-Paredes S, Steinhagen PR, Kuo WT, Singh G, Tsukita S, Turner JR (2020) Inactivation of paracellular cation-selective claudin-2 channels attenuates immune-mediated experimental colitis in mice. J Clin Invest 130(10):5197–5208. https://doi.org/10.1172/JCI138697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pongkorpsakol P, Turner JR, Zuo L (2020) Culture of intestinal epithelial cell monolayers and their use in multiplex macromolecular permeability assays for in vitro analysis of tight junction size selectivity. Curr Protoc Immunol 131(1):e112. https://doi.org/10.1002/cpim.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weber CR, Liang GH, Wang Y, Das S, Shen L, Yu AS, Nelson DJ, Turner JR (2015) Claudin-2-dependent paracellular channels are dynamically gated. elife 4:e09906. https://doi.org/10.7554/eLife.09906

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yu AS, Cheng MH, Angelow S, Gunzel D, Kanzawa SA, Schneeberger EE, Fromm M, Coalson RD (2009) Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interaction site. J Gen Physiol 133(1):111–127. https://doi.org/10.1085/jgp.200810154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Balda MS, Gonzalez-Mariscal L, Contreras RG, Macias-Silva M, Torres-Marquez ME, Garcia-Sainz JA, Cereijido M (1991) Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol 122(3):193–202. https://doi.org/10.1007/BF01871420

    Article  CAS  PubMed  Google Scholar 

  38. Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatini DD (1978) Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 77(3):853–880. https://doi.org/10.1083/jcb.77.3.853

    Article  CAS  PubMed  Google Scholar 

  39. Gonzalez-Mariscal L, Chavez de Ramirez B, Cereijido M (1985) Tight junction formation in cultured epithelial cells (MDCK). J Membr Biol 86(2):113–125. https://doi.org/10.1007/BF01870778

    Article  CAS  PubMed  Google Scholar 

  40. Gorodeski GI, Jin W, Hopfer U (1997) Extracellular Ca2+ directly regulates tight junctional permeability in the human cervical cell line CaSki. Am J Phys 272(2 Pt 1):C511–C524. https://doi.org/10.1152/ajpcell.1997.272.2.C511

    Article  CAS  Google Scholar 

  41. Gumbiner B, Simons K (1986) A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of a uvomorulin-like polypeptide. J Cell Biol 102(2):457–468. https://doi.org/10.1083/jcb.102.2.457

    Article  CAS  PubMed  Google Scholar 

  42. Martinez-Palomo A, Meza I, Beaty G, Cereijido M (1980) Experimental modulation of occluding junctions in a cultured transporting epithelium. J Cell Biol 87(3 Pt 1):736–745. https://doi.org/10.1083/jcb.87.3.736

    Article  CAS  PubMed  Google Scholar 

  43. Tobey NA, Argote CM, Hosseini SS, Orlando RC (2004) Calcium-switch technique and junctional permeability in native rabbit esophageal epithelium. Am J Physiol Gastrointest Liver Physiol 286(6):G1042–G1049. https://doi.org/10.1152/ajpgi.00387.2003

    Article  CAS  PubMed  Google Scholar 

  44. Zhang L, Li J, Young LH, Caplan MJ (2006) AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc Natl Acad Sci U S A 103(46):17272–17277. https://doi.org/10.1073/pnas.0608531103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peng L, Li ZR, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139(9):1619–1625. https://doi.org/10.3945/jn.109.104638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1(2):a002584. https://doi.org/10.1101/cshperspect.a002584

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cohen E, Ophir I, Henis YI, Bacher A, Ben Shaul Y (1990) Effect of temperature on the assembly of tight junctions and on the mobility of lipids in membranes of HT29 cells. J Cell Sci 97(Pt 1):119–125

    Article  CAS  PubMed  Google Scholar 

  48. Dokladny K, Moseley PL, Ma TY (2006) Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability. Am J Physiol Gastrointest Liver Physiol 290(2):G204–G212. https://doi.org/10.1152/ajpgi.00401.2005

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez-Mariscal L, Chavez de Ramirez B, Cereijido M (1984) Effect of temperature on the occluding junctions of monolayers of epithelioid cells (MDCK). J Membr Biol 79(2):175–184. https://doi.org/10.1007/BF01872121

    Article  CAS  PubMed  Google Scholar 

  50. Shen L, Turner JR (2005) Actin depolymerization disrupts tight junctions via caveolae-mediated endocytosis. Mol Biol Cell 16(9):3919–3936. https://doi.org/10.1091/mbc.e04-12-1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pongkorpsakol P, Pathomthongtaweechai N, Srimanote P, Soodvilai S, Chatsudthipong V, Muanprasat C (2014) Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera. PLoS Negl Trop Dis 8(9):e3119. https://doi.org/10.1371/journal.pntd.0003119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pongkorpsakol P, Wongkrasant P, Kumpun S, Chatsudthipong V, Muanprasat C (2015) Inhibition of intestinal chloride secretion by piperine as a cellular basis for the anti-secretory effect of black peppers. Pharmacol Res 100:271–280. https://doi.org/10.1016/j.phrs.2015.08.012

    Article  CAS  PubMed  Google Scholar 

  53. Pongkorpsakol P, Yimnual C, Chatsudthipong V, Rukachaisirikul V, Muanprasat C (2017) Cellular mechanisms underlying the inhibitory effect of flufenamic acid on chloride secretion in human intestinal epithelial cells. J Pharmacol Sci 134(2):93–100. https://doi.org/10.1016/j.jphs.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  54. Zheng B, Cantley LC (2007) Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proc Natl Acad Sci U S A 104(3):819–822. https://doi.org/10.1073/pnas.0610157104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research project is funded by Chulabhorn Royal Academy (to PP), by grant DBG6180029 from Thailand Science Research and Innovation and National Research Council of Thailand (to CM), and by German Research Foundation (DFG, STE 2735/2-1) (to PRS).

Author Contributions:

Pawin Pongkorpsakol: Conceptualization; data curation; formal analysis; investigation; methodology; supervision; validation; writing-original draft; Writing-review and editing.

Wilasinee Satianrapapong: Conceptualization; Data curation; formal analysis; investigation; methodology; Writing-original draft.

Preedajit Wongkrasant: Investigation; methodology; formal analysis

Peter R. Steinhagen: Writing-original draft; Writing-review and editing.

Nuttha Tuangkijkul: Investigation; formal analysis

Nutthapoom Pathomthongtaweechai: Writing-review and editing.

Chatchai Muanprasat: Supervision; Providing facilities and all supports for experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawin Pongkorpsakol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pongkorpsakol, P. et al. (2021). Establishment of Intestinal Epithelial Cell Monolayers and Their Use in Calcium Switch Assay for Assessment of Intestinal Tight Junction Assembly. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 2367. Humana, New York, NY. https://doi.org/10.1007/7651_2021_347

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_347

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1672-7

  • Online ISBN: 978-1-0716-1673-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics