Skip to main content

Tendon Differentiation on Decellularized Extracellular Matrix Under Cyclic Loading

  • Protocol
  • First Online:
Bioreactors in Stem Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1502))

Abstract

Tendon bioreactors combine cells, scaffold, and mechanical stimulation to drive tissue neogenesis ex vivo. Faithful recapitulation of the native tendon microenvironment is essential for stimulating graft maturation or modeling tendon biology. As the mediator between cells and mechanical stimulation, the properties of a scaffold constitute perhaps the most essential elements in a bioreactor system. One method of achieving native scaffold properties is to process tendon allograft in a manner that removes cells without modifying structure and function: “decellularization.” This chapter describes (1) production of tendon scaffolds derived from native extracellular matrix, (2) preparation of cell-laden scaffolds prior to bioreactor culture, and (3) tissue processing post-harvest for gene expression analysis. These methods may be applied for a variety of applications including graft production, cell priming prior to transplantation and basic investigations of tendon cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magnusson SP, Langberg H, Kjaer M (2010) The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol 6:262–268

    Article  PubMed  Google Scholar 

  2. Silver FH, Freeman JW, Seehra GP (2003) Collagen self-assembly and the development of tendon mechanical properties. J Biomech 36:1529–1553

    Article  PubMed  Google Scholar 

  3. Lavagnino M, Gardner K, Sedlak AM, Arnoczky SP (2013) Tendon cell ciliary length as a biomarker of in situ cytoskeletal tensional homeostasis. Muscles Ligaments Tendons J 3:118–121

    PubMed  PubMed Central  Google Scholar 

  4. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227

    Article  CAS  PubMed  Google Scholar 

  5. Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75–82

    Article  CAS  PubMed  Google Scholar 

  6. Juneja SC, Veillette C (2013) Defects in tendon, ligament, and enthesis in response to genetic alterations in key proteoglycans and glycoproteins: a review. Arthritis 2013:154812

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9:597–611

    Article  CAS  PubMed  Google Scholar 

  8. Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698

    Article  CAS  PubMed  Google Scholar 

  9. Batson EL, Paramour RJ, Smith TJ, Birch HL, Patterson‐Kane JC, Goodship AE (2003) Are the material properties and matrix composition of equine flexor and extensor tendons determined by their functions? Equine Vet J 35:314–318

    Article  CAS  PubMed  Google Scholar 

  10. Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13:377–383

    Article  CAS  PubMed  Google Scholar 

  11. Yang G, Rothrauff BB, Lin H, Gottardi R, Alexander PG, Tuan RS (2013) Enhancement of tenogenic differentiation of human adipose stem cells by tendon-derived extracellular matrix. Biomaterials 34:9295–9306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  13. Egerbacher M, Arnoczky SP, Caballero O, Lavagnino M, Gardner KL (2008) Loss of homeostatic tension induces apoptosis in tendon cells: an in vitro study. Clin Orthop Relat Res 466:1562–1568

    Article  PubMed  PubMed Central  Google Scholar 

  14. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2002) Cell differentiation by mechanical stress. FASEB J 16:270–272

    CAS  PubMed  Google Scholar 

  15. Banes AJ, Gilbert J, Taylor D, Monbureau O (1985) A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J Cell Sci 75:35–42

    CAS  PubMed  Google Scholar 

  16. Stewart AA, Barrett JG, Byron CR, Yates AC, Durgam SS, Evans RB, Stewart MC (2009) Comparison of equine tendon-, muscle-, and bone marrow-derived cells cultured on tendon matrix. Am J Vet Res 70:750–757

    Article  CAS  PubMed  Google Scholar 

  17. Cardwell RD, Dahlgren LA, Goldstein AS (2012) Electrospun fibre diameter, not alignment, affects mesenchymal stem cell differentiation into the tendon/ligament lineage. J Tissue Eng Regen Med 8(12):937–45

    Article  PubMed  Google Scholar 

  18. Kluge JA, Leisk GG, Cardwell RD, Fernandes AP, House M, Ward A, Dorfmann AL, Kaplan DL (2011) Bioreactor system using noninvasive imaging and mechanical stretch for biomaterial screening. Ann Biomed Eng 39:1390–1402

    Article  PubMed  PubMed Central  Google Scholar 

  19. Youngstrom DW, Barrett JG (2015). Engineering tendon: scaffolds, bioreactors and models of regeneration. Stem Cells Int 2016:3919030

    Google Scholar 

  20. Screen HRC (2009) Hierarchical approaches to understanding tendon mechanics. J Biomech Sci Eng 4:481–499

    Article  Google Scholar 

  21. Youngstrom DW, Barrett JG, Jose RR, Kaplan DL (2013) Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications. PLoS One 8:e64151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Youngstrom DW, Rajpar I, Kaplan DL, Barrett JG (2015) A bioreactor system for in vitro tendon differentiation and tendon tissue engineering. J Orthop Res 33:911–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Youngstrom DW, LaDow JE, Barrett JG (2015) Tenogenesis of bone marrow-, adipose- and tendon-derived stem cells in a dynamic bioreactor. Connect Tissue Res 2016 Mar 30:1–12 [Epub ahead of print]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer G. Barrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Youngstrom, D.W., Barrett, J.G. (2016). Tendon Differentiation on Decellularized Extracellular Matrix Under Cyclic Loading. In: Turksen, K. (eds) Bioreactors in Stem Cell Biology. Methods in Molecular Biology, vol 1502. Humana Press, New York, NY. https://doi.org/10.1007/7651_2016_332

Download citation

  • DOI: https://doi.org/10.1007/7651_2016_332

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6476-5

  • Online ISBN: 978-1-4939-6478-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics