Skip to main content

Role of Heat Shock Factor 1 in Neural Development and Disorders

  • Chapter
  • First Online:
Heat Shock Proteins in Inflammatory Diseases

Part of the book series: Heat Shock Proteins ((HESP,volume 22))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADHD:

attention deficit hyperactivity disorder

AMP:

adenosine monophosphate

AMPK:

adenosine monophosphate-activated protein kinase

ATP:

adenosine triphosphate

BAG1:

BCL2 associated athanogene 1

CK2:

casein kinase 2

CNS:

central nervous system

DCC:

deleted in colorectal cancer

DISC1:

disrupted in schizophrenia 1

DNA:

deoxyribonucleic acid

FASD:

fetal alcohol spectrum disorders

FRT:

flippase recognition target

GEF:

guanine nucleotide exchange factor

GTP:

guanosine-5′-triphosphate

HOP:

HSP70/90 heat shock organizing protein

HSC:

heat shock cognate

HSE:

heat shock element

HSF:

heat shock factor

HSP:

heat shock proteins

HSR:

heat shock response

iPS:

induced pluripotent stem

JNK:

c-Jun N-terminal kinase

kDa:

kilo Dalton

KO:

knockout

PDZ:

post synaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), Zonula occludens-1 protein (zo-1)

PSA-NCAM:

polysialic acid neural cell adhesion molecule

RFP:

red fluorescent protein

RNA:

ribonucleic acid

siRNA:

small interfering RNA

SIRT1:

silent mating type information regulation 2 homolog 1

SVZ:

subventricular zone

References

  1. Stiles J, Jernigan TL (2010 Dec) The basics of brain development. Neuropsychol Rev 20(4):327–348

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sakai T, Hirata S, Fuwa K, Sugama K, Kusunoki K, Makishima H et al (2012 Sep) Fetal brain development in chimpanzees versus humans. Curr Biol 22(18):R791–R792

    Article  CAS  PubMed  Google Scholar 

  3. Jernigan TL, Baaré WFC, Stiles J, Madsen KS (2011) Postnatal brain development: structural imaging of dynamic neurodevelopmental processes. Prog Brain Res 189:77–92

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nelson CA, Zeanah CH, Fox NA (2019 Jan 14) How early experience shapes human development: the case of psychosocial deprivation. Neural Plast 2019:1676285

    Article  PubMed  PubMed Central  Google Scholar 

  5. Raznahan A, Greenstein D, Lee NR, Clasen LS, Giedd JN (2012 Jul 10) Prenatal growth in humans and postnatal brain maturation into late adolescence. Proc Natl Acad Sci U S A 109(28):11366–11371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartzokis G, Lu PH, Tingus K, Mendez MF, Richard A, Peters DG et al (2010 Sep) Lifespan trajectory of myelin integrity and maximum motor speed. Neurobiol Aging 31(9):1554–1562

    Article  CAS  PubMed  Google Scholar 

  7. WHO | Life expectancy [Internet]. [cited 2019 Dec 3]. Available from: https://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends_text/en/

  8. Bonner JJ, Pardue ML (1977 Sep) Polytene chromosome puffing and in situ hybridization measure different aspects of RNA metabolism. Cell 12(1):227–234

    Article  CAS  PubMed  Google Scholar 

  9. De Maio A, Santoro MG, Tanguay RM, Hightower LE (2012 Mar) Ferruccio Ritossa’s scientific legacy 50 years after his discovery of the heat shock response: a new view of biology, a new society, and a new journal. Cell Stress Chaperones 17(2):139–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ritossa F (1962 Dec) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18(12):571–573

    Article  CAS  Google Scholar 

  11. Tissières A, Mitchell HK, Tracy UM (1974 Apr 15) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84(3):389–398

    Article  PubMed  Google Scholar 

  12. Richter K, Haslbeck M, Buchner J (2010 Oct 22) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266

    Article  CAS  PubMed  Google Scholar 

  13. Luu BE, Wijenayake S, Malik AI, Storey KB (2018) The regulation of heat shock proteins in response to dehydration in Xenopus laevis. Cell Stress Chaperones 23(1):45–53

    Article  CAS  PubMed  Google Scholar 

  14. Pignataro L, Miller AN, Ma L, Midha S, Protiva P, Herrera DG et al (2007 Nov 21) Alcohol regulates gene expression in neurons via activation of heat shock factor 1. J Neurosci 27(47):12957–12966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Omar R, Pappolla M (1993) Oxygen free radicals as inducers of heat shock protein synthesis in cultured human neuroblastoma cells: relevance to neurodegenerative disease. Eur Arch Psychiatry Clin Neurosci 242(5):262–267

    Article  CAS  PubMed  Google Scholar 

  16. Wagner M, Hermanns I, Bittinger F, Kirkpatrick CJ (1999) Induction of stress proteins in human endothelial cells by heavy metal ions and heat shock. Am J Phys 277(5):L1026–L1033

    CAS  Google Scholar 

  17. Knowlton AA, Brecher P, Apstein CS (1991 Jan) Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J Clin Invest 87(1):139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zügel U, Kaufmann SH (1999 Jan) Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 12(1):19–39

    Article  PubMed  PubMed Central  Google Scholar 

  19. Webster JM, Darling AL, Uversky VN, Blair LJ (2019 Sep 18) Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Front Pharmacol 10:1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu C (1984 Sep 11) Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature 311(5981):81–84

    Article  CAS  PubMed  Google Scholar 

  21. Parker CS, Topol J (1984 May) A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene. Cell 37(1):273–283

    Article  CAS  PubMed  Google Scholar 

  22. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  23. Verghese J, Abrams J, Wang Y, Morano KA (2012 Jun) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76(2):115–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zwanzig R, Szabo A, Bagchi B (1992 Jan 1) Levinthal’s paradox. Proc Natl Acad Sci U S A 89(1):20–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eaton WA, Muñoz V, Hagen SJ, Jas GS, Lapidus LJ, Henry ER et al (2000) Fast kinetics and mechanisms in protein folding. Annu Rev Biophys Biomol Struct 29:327–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levinthal C (1968) Are there pathways for protein folding? J Chim Phys 65:44–45

    Article  Google Scholar 

  27. Koldewey P, Stull F, Horowitz S, Martin R, Bardwell JCA (2016 Jul 14) Forces driving chaperone action. Cell 166(2):369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rothman JE, Schekman R (2011 Sep 16) Molecular mechanism of protein folding in the cell. Cell 146(6):851–854

    Article  CAS  PubMed  Google Scholar 

  29. chaperon | Origin and meaning of chaperon by Online Etymology Dictionary [Internet]. [cited 2019 Nov 24]. Available from: https://www.etymonline.com/word/chaperon

  30. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  31. Jee H (2016 Aug 31) Size dependent classification of heat shock proteins: a mini-review. J Exerc Rehabil 12(4):255–259

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pelham HR (1982 Sep) A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell 30(2):517–528

    Article  CAS  PubMed  Google Scholar 

  33. Amin J, Ananthan J, Voellmy R (1988 Sep) Key features of heat shock regulatory elements. Mol Cell Biol 8(9):3761–3769

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gomez-Pastor R, Burchfiel ET, Thiele DJ (2018 Jan) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 19(1):4–19

    Article  CAS  PubMed  Google Scholar 

  35. McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998 Mar 27) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273(13):7523–7528

    Article  CAS  PubMed  Google Scholar 

  36. Pirkkala L, Alastalo TP, Zuo X, Benjamin IJ, Sistonen L (2000 Apr) Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol Cell Biol 20(8):2670–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA et al (1999 Nov 1) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18(21):5943–5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ostling P, Björk JK, Roos-Mattjus P, Mezger V, Sistonen L (2007 Mar 9) Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282(10):7077–7086

    Article  PubMed  CAS  Google Scholar 

  39. He H, Soncin F, Grammatikakis N, Li Y, Siganou A, Gong J et al (2003 Sep 12) Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 278(37):35465–35475

    Article  CAS  PubMed  Google Scholar 

  40. Chang Y, Ostling P, Akerfelt M, Trouillet D, Rallu M, Gitton Y et al (2006 Apr 1) Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev 20(7):836–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Yamada S-I et al (2004 Oct 27) HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23(21):4297–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Min J-N, Zhang Y, Moskophidis D, Mivechi NF (2004 Dec) Unique contribution of heat shock transcription factor 4 in ocular lens development and fiber cell differentiation. Genesis 40(4):205–217

    Article  CAS  PubMed  Google Scholar 

  43. Takaki E, Fujimoto M, Sugahara K, Nakahari T, Yonemura S, Tanaka Y et al (2006 Feb 24) Maintenance of olfactory neurogenesis requires HSF1, a major heat shock transcription factor in mice. J Biol Chem 281(8):4931–4937

    Article  CAS  PubMed  Google Scholar 

  44. Shi X, Cui B, Wang Z, Weng L, Xu Z, Ma J et al (2009 Feb 19) Removal of Hsf4 leads to cataract development in mice through down-regulation of gamma S-crystallin and Bfsp expression. BMC Mol Biol 10:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bu L, Jin Y, Shi Y, Chu R, Ban A, Eiberg H et al (2002 Jul) Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 31(3):276–278

    Article  CAS  PubMed  Google Scholar 

  46. Saju JM, Hossain MS, Liew WC, Pradhan A, Thevasagayam NM, Tan LSE et al (2018 Dec 18) Heat shock factor 5 is essential for spermatogenesis in zebrafish. Cell Rep 25(12):3252–3261.e4

    Article  PubMed  CAS  Google Scholar 

  47. Bhowmick BK, Takahata N, Watanabe M, Satta Y (2006 Nov 30) Comparative analysis of human masculinity. Genet Mol Res 5(4):696–712

    PubMed  Google Scholar 

  48. Shinka T, Sato Y, Chen G, Naroda T, Kinoshita K, Unemi Y et al (2004 Jul) Molecular characterization of heat shock-like factor encoded on the human Y chromosome, and implications for male infertility. Biol Reprod 71(1):297–306

    Article  CAS  PubMed  Google Scholar 

  49. Fujimoto M, Hayashida N, Katoh T, Oshima K, Shinkawa T, Prakasam R et al (2010 Jan 1) A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol Biol Cell 21(1):106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fiorenza MT, Farkas T, Dissing M, Kolding D, Zimarino V (1995 Feb 11) Complex expression of murine heat shock transcription factors. Nucleic Acids Res 23(3):467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shamovsky I, Gershon D (2004 Nov) Novel regulatory factors of HSF-1 activation: facts and perspectives regarding their involvement in the age-associated attenuation of the heat shock response. Mech Ageing Dev 125(10–11):767–775

    Article  CAS  PubMed  Google Scholar 

  52. Kim Guisbert KS, Guisbert E (2017 Apr 26) SF3B1 is a stress-sensitive splicing factor that regulates both HSF1 concentration and activity. PLoS One 12(4):e0176382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fujikake N, Nagai Y, Popiel HA, Kano H, Yamaguchi M, Toda T (2005 Jul 4) Alternative splicing regulates the transcriptional activity of Drosophila heat shock transcription factor in response to heat/cold stress. FEBS Lett 579(17):3842–3848

    Article  CAS  PubMed  Google Scholar 

  54. Mathew A, Mathur SK, Morimoto RI (1998 Sep) Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol Cell Biol 18(9):5091–5098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brown IR, Rush SJ (1999 Mar 13) Cellular localization of the heat shock transcription factors HSF1 and HSF2 in the rat brain during postnatal development and following hyperthermia. Brain Res 821(2):333–340

    Article  CAS  PubMed  Google Scholar 

  56. Mercier PA, Winegarden NA, Westwood JT (1999 Aug) Human heat shock factor 1 is predominantly a nuclear protein before and after heat stress. J Cell Sci 112(Pt 16):2765–2774

    Article  CAS  PubMed  Google Scholar 

  57. Stacchiotti A, Rezzani R, Rodella L, Tiberio L, Schiaffonati L, Bianchi R (1999 Jun 18) Cell-specific expression of heat shock transcription factors 1 and 2 in unstressed rat spinal cord. Neurosci Lett 268(2):73–76

    Article  CAS  PubMed  Google Scholar 

  58. Batulan Z, Shinder GA, Minotti S, He BP, Doroudchi MM, Nalbantoglu J et al (2003 Jul 2) High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci 23(13):5789–5798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang J, Oza J, Bridges K, Chen KY, Liu AY-C (2008 Apr 8) Neural differentiation and the attenuated heat shock response. Brain Res 1203:39–50

    Article  CAS  PubMed  Google Scholar 

  60. Oza J, Yang J, Chen KY, Liu AY-C (2008 Feb 7) Changes in the regulation of heat shock gene expression in neuronal cell differentiation. Cell Stress Chaperones 13(1):73–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gomez-Pastor R, Burchfiel ET, Neef DW, Jaeger AM, Cabiscol E, McKinstry SU et al (2017 Feb 13) Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nat Commun 8:14405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shemesh N, Ben-Zvi A (2016) HSF1 regulation in aging and its role in longevity. In: Nakai A (ed) Heat shock factor. Springer Japan, Tokyo, pp 93–113

    Chapter  Google Scholar 

  63. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998 Aug 21) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94(4):471–480

    Article  CAS  PubMed  Google Scholar 

  64. Baler R, Dahl G, Voellmy R (1993 Apr) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 13(4):2486–2496

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992 Jul) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6(7):1153–1164

    Article  CAS  PubMed  Google Scholar 

  66. Shi Y, Mosser DD, Morimoto RI (1998 Mar 1) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12(5):654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    Article  CAS  PubMed  Google Scholar 

  68. Budzyński MA, Puustinen MC, Joutsen J, Sistonen L (2015 Jul) Uncoupling stress-inducible phosphorylation of heat shock factor 1 from its activation. Mol Cell Biol 35(14):2530–2540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Raychaudhuri S, Loew C, Körner R, Pinkert S, Theis M, Hayer-Hartl M et al (2014 Feb 27) Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell 156(5):975–985

    Article  CAS  PubMed  Google Scholar 

  70. Dai S, Tang Z, Cao J, Zhou W, Li H, Sampson S et al (2015 Feb 3) Suppression of the HSF1-mediated proteotoxic stress response by the metabolic stress sensor AMPK. EMBO J 34(3):275–293

    Article  CAS  PubMed  Google Scholar 

  71. Morimoto RI (1998 Dec 15) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12(24):3788–3796

    Article  CAS  PubMed  Google Scholar 

  72. Hentze N, Le Breton L, Wiesner J, Kempf G, Mayer MP (2016 Jan) Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. elife 19:5

    Google Scholar 

  73. Zhong M, Orosz A, Wu C (1998 Jul) Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol Cell 2(1):101–108

    Article  CAS  PubMed  Google Scholar 

  74. Mahat DB, Salamanca HH, Duarte FM, Danko CG, Lis JT (2016 Apr 7) Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation. Mol Cell 62(1):63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Homma S, Jin X, Wang G, Tu N, Min J, Yanasak N et al (2007 Jul 25) Demyelination, astrogliosis, and accumulation of ubiquitinated proteins, hallmarks of CNS disease in hsf1-deficient mice. J Neurosci 27(30):7974–7986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fairfield DA, Lomax MI, Dootz GA, Chen S, Galecki AT, Benjamin IJ et al (2005 Aug 15) Heat shock factor 1-deficient mice exhibit decreased recovery of hearing following noise overstimulation. J Neurosci Res 81(4):589–596

    Article  CAS  PubMed  Google Scholar 

  77. Santos SD, Saraiva MJ (2004) Enlarged ventricles, astrogliosis and neurodegeneration in heat shock factor 1 null mouse brain. Neuroscience 126(3):657–663

    Article  CAS  PubMed  Google Scholar 

  78. Wang G, Zhang J, Moskophidis D, Mivechi NF (2003 May) Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36(1):48–61

    Article  CAS  PubMed  Google Scholar 

  79. Kallio M, Chang Y, Manuel M, Alastalo T-P, Rallu M, Gitton Y et al (2002 Jun 3) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 21(11):2591–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sandqvist A, Björk JK, Akerfelt M, Chitikova Z, Grichine A, Vourc’h C et al (2009 Mar) Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Mol Biol Cell 20(5):1340–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. San Gil R, Ooi L, Yerbury JJ, Ecroyd H (2017 Sep 18) The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Mol Neurodegener 12(1):65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ishii S, Hashimoto-Torii K (2015 May 27) Impact of prenatal environmental stress on cortical development. Front Cell Neurosci 9:207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hashimoto-Torii K, Torii M, Fujimoto M, Nakai A, El Fatimy R, Mezger V et al (2014 May 7) Roles of heat shock factor 1 in neuronal response to fetal environmental risks and its relevance to brain disorders. Neuron 82(3):560–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H (2003 Jun 15) Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci 23(12):5187–5196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nishi S, Taki W, Uemura Y, Higashi T, Kikuchi H, Kudoh H et al (1993 Jul 2) Ischemic tolerance due to the induction of HSP70 in a rat ischemic recirculation model. Brain Res 615(2):281–288

    Article  CAS  PubMed  Google Scholar 

  86. Kim JY, Han Y, Lee JE, Yenari MA (2018 Feb 15) The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert Opin Ther Targets 22(3):191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yamaguchi Y, Miura M (2015 Feb 23) Programmed cell death in neurodevelopment. Dev Cell 32(4):478–490

    Article  CAS  PubMed  Google Scholar 

  88. Innocenti GM, Price DJ (2005 Dec) Exuberance in the development of cortical networks. Nat Rev Neurosci 6(12):955–965

    Article  CAS  PubMed  Google Scholar 

  89. Xie Y, Chen C, Stevenson MA, Auron PE, Calderwood SK (2002 Apr 5) Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem 277(14):11802–11810

    Article  CAS  PubMed  Google Scholar 

  90. Seki T, Rutishauser U (1998 May 15) Removal of polysialic acid-neural cell adhesion molecule induces aberrant mossy fiber innervation and ectopic synaptogenesis in the hippocampus. J Neurosci 18(10):3757–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Uchida S, Hara K, Kobayashi A, Fujimoto M, Otsuki K, Yamagata H et al (2011 Jan 25) Impaired hippocampal spinogenesis and neurogenesis and altered affective behavior in mice lacking heat shock factor 1. Proc Natl Acad Sci U S A 108(4):1681–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hooper PL, Durham HD, Török Z, Hooper PL, Crul T, Vígh L (2016 Jun 9) The central role of heat shock factor 1 in synaptic fidelity and memory consolidation. Cell Stress Chaperones 21(5):745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJG, Nyengaard JR et al (2003 Feb) Aging and the human neocortex. Exp Gerontol 38(1–2):95–99

    Article  PubMed  Google Scholar 

  94. Drachman DA (2005 Jun 28) Do we have brain to spare? Neurology 64(12):2004–2005

    Article  PubMed  Google Scholar 

  95. Conselice CJ, Wilkinson A, Duncan K, Mortlock A (2016 Oct 13) The evolution of galaxy number density at z < 8 and its implications. Astrophys J 830(2):83

    Article  Google Scholar 

  96. Trinklein ND, Chen WC, Kingston RE, Myers RM (2004 Mar) Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation. Cell Stress Chaperones 9(1):21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cheng Y-C, Huang C-J, Lee Y-J, Tien L-T, Ku W-C, Chien R et al (2016 Jul 22) Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep 6:30314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Williams KL, Rahimtula M, Mearow KM (2005 Apr 8) Hsp27 and axonal growth in adult sensory neurons in vitro. BMC Neurosci 6:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Lavoie JN, Hickey E, Weber LA, Landry J (1993 Nov 15) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 268(32):24210–24214

    Article  CAS  PubMed  Google Scholar 

  100. Evgrafov OV, Mersiyanova I, Irobi J, Van Den Bosch L, Dierick I, Leung CL et al (2004 Jun) Mutant small heat-shock protein 27 causes axonal Charcot-Marie-tooth disease and distal hereditary motor neuropathy. Nat Genet 36(6):602–606

    Article  CAS  PubMed  Google Scholar 

  101. Williams KL, Rahimtula M, Mearow KM (2006 Sep) Heat shock protein 27 is involved in neurite extension and branching of dorsal root ganglion neurons in vitro. J Neurosci Res 84(4):716–723

    Article  CAS  PubMed  Google Scholar 

  102. Ma CHE, Omura T, Cobos EJ, Latrémolière A, Ghasemlou N, Brenner GJ et al (2011 Nov) Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. J Clin Invest 121(11):4332–4347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bito H, Furuyashiki T, Ishihara H, Shibasaki Y, Ohashi K, Mizuno K et al (2000 May) A critical role for a rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 26(2):431–441

    Article  CAS  PubMed  Google Scholar 

  104. Sun X, Zhou Z, Fink DJ, Mata M (2013 Nov) HspB1 silences translation of PDZ-RhoGEF by enhancing miR-20a and miR-128 expression to promote neurite extension. Mol Cell Neurosci 57:111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. de Thonel A, Le Mouël A, Mezger V (2012 Oct) Transcriptional regulation of small HSP-HSF1 and beyond. Int J Biochem Cell Biol 44(10):1593–1612

    Article  PubMed  CAS  Google Scholar 

  106. Bartelt-Kirbach B, Moron M, Glomb M, Beck C-M, Weller M-P, Golenhofen N (2016 Apr 16) HspB5/αB-crystallin increases dendritic complexity and protects the dendritic arbor during heat shock in cultured rat hippocampal neurons. Cell Mol Life Sci 73(19):3761–3775

    Article  CAS  PubMed  Google Scholar 

  107. Frebel K, Wiese S, Funk N, Pühringer D, Sendtner M (2007) Differential modulation of neurite growth by the S- and the L-forms of bag1, a co-chaperone of Hsp70. Neurodegener Dis 4(2–3):261–269

    Article  CAS  PubMed  Google Scholar 

  108. Ishimoto T, Kamei A, Koyanagi S, Nishide N, Uyeda A, Kasai M et al (1998 Dec 18) HSP90 has neurite-promoting activity in vitro for telencephalic and spinal neurons of chick embryos. Biochem Biophys Res Commun 253(2):283–287

    Article  CAS  PubMed  Google Scholar 

  109. Benitez MJ, Sanchez-Ponce D, Garrido JJ, Wandosell F (2014 Feb) Hsp90 activity is necessary to acquire a proper neuronal polarization. Biochim Biophys Acta 1843(2):245–252

    Article  CAS  PubMed  Google Scholar 

  110. Perge JA, Niven JE, Mugnaini E, Balasubramanian V, Sterling P (2012 Jan 11) Why do axons differ in caliber? J Neurosci 32(2):626–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP et al (2009 Apr 10) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541

    Article  PubMed  Google Scholar 

  112. Holland D, Chang L, Ernst TM, Curran M, Buchthal SD, Alicata D et al (2014 Oct) Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurol 71(10):1266–1274

    Article  PubMed  PubMed Central  Google Scholar 

  113. Seiradake E, Jones EY, Klein R (2016 Oct 6) Structural perspectives on axon guidance. Annu Rev Cell Dev Biol 32:577–608

    Article  CAS  PubMed  Google Scholar 

  114. Engle EC (2010 Mar) Human genetic disorders of axon guidance. Cold Spring Harb Perspect Biol 2(3):a001784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Stoeckli ET (2018 May) Understanding axon guidance: are we nearly there yet? Development 14:145(10)

    Google Scholar 

  116. Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M (1994 Aug 12) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78(3):425–435

    Article  CAS  PubMed  Google Scholar 

  117. Richards LJ, Koester SE, Tuttle R, O’Leary DD (1997 Apr 1) Directed growth of early cortical axons is influenced by a chemoattractant released from an intermediate target. J Neurosci 17(7):2445–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Boyer NP, Gupton SL (2018 Jul 31) Revisiting Netrin-1: one who guides (axons). Front Cell Neurosci 12:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Grant A, Fathalli F, Rouleau G, Joober R, Flores C (2012 May) Association between schizophrenia and genetic variation in DCC: a case-control study. Schizophr Res 137(1–3):26–31

    Article  PubMed  Google Scholar 

  120. Lesnick TG, Sorenson EJ, Ahlskog JE, Henley JR, Shehadeh L, Papapetropoulos S et al (2008 Jan 16) Beyond Parkinson disease: amyotrophic lateral sclerosis and the axon guidance pathway. PLoS One 3(1):e1449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Loones MT, Chang Y, Morange M (2000 Oct) The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and non-neuronal differentiation. Cell Stress Chaperones 5(4):291–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. D’Souza SM, Brown IR (1998 Sep) Constitutive expression of heat shock proteins Hsp90, Hsc70, Hsp70 and Hsp60 in neural and non-neural tissues of the rat during postnatal development. Cell Stress Chaperones 3(3):188–199

    Article  PubMed  PubMed Central  Google Scholar 

  123. DeGeer J, Kaplan A, Mattar P, Morabito M, Stochaj U, Kennedy TE et al (2015 Aug 31) Hsc70 chaperone activity underlies trio GEF function in axon growth and guidance induced by netrin-1. J Cell Biol 210(5):817–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Buchsbaum IY, Cappello S (2019 Jan) Neuronal migration in the CNS during development and disease: insights from in vivo and in vitro models. Development 9:146(1)

    Google Scholar 

  125. Curtis MA, Monzo HJ, RLM F (2009) The rostral migratory stream and olfactory system: smell, disease and slippery cells. Neurotherapy: progress in restorative neuroscience and neurology. Elsevier:33–42

    Google Scholar 

  126. Valiente M, Marín O (2010 Feb) Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol 20(1):68–78

    Article  CAS  PubMed  Google Scholar 

  127. Marín O, Valiente M, Ge X, Tsai L-H (2010 Feb) Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol 2(2):a001834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Sidera K, Samiotaki M, Yfanti E, Panayotou G, Patsavoudi E (2004 Oct 29) Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J Biol Chem 279(44):45379–45388

    Article  CAS  PubMed  Google Scholar 

  129. Miyakoshi LM, Marques-Coelho D, De Souza LER, Lima FRS, Martins VR, Zanata SM et al (2017 May 17) Evidence of a cell surface role for hsp90 complex proteins mediating neuroblast migration in the subventricular zone. Front Cell Neurosci 11:138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Thuringer D, Hammann A, Benikhlef N, Fourmaux E, Bouchot A, Wettstein G et al (2011 Feb 4) Transactivation of the epidermal growth factor receptor by heat shock protein 90 via toll-like receptor 4 contributes to the migration of glioblastoma cells. J Biol Chem 286(5):3418–3428

    Article  CAS  PubMed  Google Scholar 

  131. Hashimoto-Torii K, Kawasawa YI, Kuhn A, Rakic P (2011 Mar 8) Combined transcriptome analysis of fetal human and mouse cerebral cortex exposed to alcohol. Proc Natl Acad Sci U S A 108(10):4212–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kakita A, Wakabayashi K, Su M, Piao YS, Takahashi H (2001 Aug) Experimentally induced leptomeningeal glioneuronal heterotopia and underlying cortical dysplasia of the lateral limbic area in rats treated transplacentally with methylmercury. J Neuropathol Exp Neurol 60(8):768–777

    Article  CAS  PubMed  Google Scholar 

  133. Khandaker GM, Zimbron J, Lewis G, Jones PB (2013 Feb) Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med 43(2):239–257

    Article  CAS  PubMed  Google Scholar 

  134. Lee J, Croen LA, Backstrand KH, Yoshida CK, Henning LH, Lindan C et al (2005 Feb 9) Maternal and infant characteristics associated with perinatal arterial stroke in the infant. JAMA 293(6):723–729

    Article  CAS  PubMed  Google Scholar 

  135. Sveberg L, Svalheim S, Taubøll E (2015 May) The impact of seizures on pregnancy and delivery. Seizure 28:35–38

    Article  PubMed  Google Scholar 

  136. Mooney SM, Siegenthaler JA, Miller MW (2004 Oct) Ethanol induces heterotopias in organotypic cultures of rat cerebral cortex. Cereb Cortex 14(10):1071–1080

    Article  PubMed  Google Scholar 

  137. Lidow MS (2003 Dec 30) Consequences of prenatal cocaine exposure in nonhuman primates. Brain Res Dev Brain Res 147(1–2):23–36

    Article  CAS  PubMed  Google Scholar 

  138. Cannon TD, van Erp TGM, Rosso IM, Huttunen M, Lönnqvist J, Pirkola T et al (2002 Jan) Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 59(1):35–41

    Article  PubMed  Google Scholar 

  139. Johnston MV, Coyle JT (1979 Jul 6) Histological and neurochemical effects of fetal treatment with methylazoxymethanol on rat neocortex in adulthood. Brain Res 170(1):135–155

    Article  CAS  PubMed  Google Scholar 

  140. Algan O, Rakic P (1997 May 12) Radiation-induced, lamina-specific deletion of neurons in the primate visual cortex. J Comp Neurol 381(3):335–352

    Article  CAS  PubMed  Google Scholar 

  141. de Feo MR, Del Priore D, Mecarelli O (1995 Feb) Prenatal cocaine: seizure susceptibility in rat offspring. Pharmacol Res 31(2):137–141

    Article  CAS  PubMed  Google Scholar 

  142. Russo E, Citraro R, De Fazio S, Torcasio G, De Sarro G, Di Paola ED (2008 Nov) Effects of ethanol on the development of genetically determined epilepsies in rats. Int J Dev Neurosci 26(7):739–744

    Article  CAS  PubMed  Google Scholar 

  143. Szász A, Barna B, Szupera Z, De Visscher G, Galbács Z, Kirsch-Volders M et al (1999 Nov) Chronic low-dose maternal exposure to methylmercury enhances epileptogenicity in developing rats. Int J Dev Neurosci 17(7):733–742

    Article  PubMed  Google Scholar 

  144. Oghlakian RO, Tilelli CQ, Hiremath GK, Alexopoulos AV, Najm IM (2009 Apr) Single injection of a low dose of pentylenetetrazole leads to epileptogenesis in an animal model of cortical dysplasia. Epilepsia 50(4):801–810

    Article  CAS  PubMed  Google Scholar 

  145. De Riu PL, Mameli P, Becciu A, Simula ME, Mameli O (1995 Feb) Effect of fetal hypoxia on seizure susceptibility in rats. Physiol Behav 57(2):315–318

    Article  PubMed  Google Scholar 

  146. Ishii K, Kubo K, Endo T, Yoshida K, Benner S, Ito Y et al (2015 Sep 9) Neuronal heterotopias affect the activities of distant brain areas and lead to behavioral deficits. J Neurosci 35(36):12432–12445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Guerri C, Bazinet A, Riley EP (2009 Apr) Foetal alcohol Spectrum disorders and alterations in brain and behaviour. Alcohol Alcohol 44(2):108–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Peadon E, Elliott EJ (2010 Sep 7) Distinguishing between attention-deficit hyperactivity and fetal alcohol spectrum disorders in children: clinical guidelines. Neuropsychiatr Dis Treat 6:509–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bell SH, Stade B, Reynolds JN, Rasmussen C, Andrew G, Hwang PA et al (2010 Jun) The remarkably high prevalence of epilepsy and seizure history in fetal alcohol spectrum disorders. Alcohol Clin Exp Res 34(6):1084–1089

    Article  PubMed  Google Scholar 

  150. Hahn J-S, Hu Z, Thiele DJ, Iyer VR (2004 Jun) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24(12):5249–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kawasawa YI, Mohammad S, Son AI, Morizono H, Basha A, Salzberg AC et al (2017 May 4) Genome-wide profiling of differentially spliced mRNAs in human fetal cortical tissue exposed to alcohol. Alcohol 62:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Maier SE, West JR (2001) Drinking patterns and alcohol-related birth defects. Alcohol Res Health 25(3):168–174

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Thomas JD, Wasserman EA, West JR, Goodlett CR (1996 Jul) Behavioral deficits induced by bingelike exposure to alcohol in neonatal rats: importance of developmental timing and number of episodes. Dev Psychobiol 29(5):433–452

    Article  CAS  PubMed  Google Scholar 

  154. Stratton K, Howe C, Battaglia FC (eds) (1996) Institute of Medicine CSFAS. Fetal alcohol syndrome: diagnosis, epidemiology, prevention, and treatment. National Academies Press, Washington, DC

    Google Scholar 

  155. Hwang HM, Ku RY, Hashimoto-Torii K (2019 Jul 17) Prenatal environment that affects neuronal migration. Front Cell Dev Biol 7:138

    Article  PubMed  PubMed Central  Google Scholar 

  156. Herman LE, Acosta MC, Chang P-N (2008 Oct 24) Gender and attention deficits in children diagnosed with a Fetal alcohol Spectrum disorder. Can J Clin Pharmacol 15(3):e411–e419

    PubMed  Google Scholar 

  157. Tagawa K, Marubuchi S, Qi M-L, Enokido Y, Tamura T, Inagaki R et al (2007 Jan 24) The induction levels of heat shock protein 70 differentiate the vulnerabilities to mutant huntingtin among neuronal subtypes. J Neurosci 27(4):868–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kneeland RE, Fatemi SH (2013 Apr 5) Viral infection, inflammation and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 42:35–48

    Article  CAS  Google Scholar 

  159. Selemon LD, Wang L, Nebel MB, Csernansky JG, Goldman-Rakic PS, Rakic P (2005 Jan 1) Direct and indirect effects of fetal irradiation on cortical gray and white matter volume in the macaque. Biol Psychiatry 57(1):83–90

    Article  PubMed  PubMed Central  Google Scholar 

  160. Lin M, Zhao D, Hrabovsky A, Pedrosa E, Zheng D, Lachman HM (2014 Apr 15) Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon. PLoS One 9(4):e94968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Zhou X, Tron VA, Li G, Trotter MJ (1998 Aug) Heat shock transcription factor-1 regulates heat shock protein-72 expression in human keratinocytes exposed to ultraviolet B light. J Invest Dermatol 111(2):194–198

    Article  CAS  PubMed  Google Scholar 

  162. Li Q, Martinez JD (2011 Jul) Loss of HSF1 results in defective radiation-induced G(2) arrest and DNA repair. Radiat Res 176(1):17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ianaro A, Ialenti A, Maffia P, Pisano B, Di Rosa M (2001 Jun 22) HSF1/ hsp72 pathway as an endogenous anti-inflammatory system. FEBS Lett 499(3):239–244

    Article  CAS  PubMed  Google Scholar 

  164. Filone CM, Caballero IS, Dower K, Mendillo ML, Cowley GS, Santagata S et al (2014 Feb 6) The master regulator of the cellular stress response (HSF1) is critical for orthopoxvirus infection. PLoS Pathog 10(2):e1003904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Pae C-U, Kim T-S, Kwon O-J, Artioli P, Serretti A, Lee C-U et al (2005 Sep) Polymorphisms of heat shock protein 70 gene (HSPA1A, HSPA1B and HSPA1L) and schizophrenia. Neurosci Res 53(1):8–13

    Article  CAS  PubMed  Google Scholar 

  166. Kim JJ, Lee SJ, Toh KY, Lee CU, Lee C, Paik IH (2001 Oct 1) Identification of antibodies to heat shock proteins 90 kDa and 70 kDa in patients with schizophrenia. Schizophr Res 52(1–2):127–135

    Article  CAS  PubMed  Google Scholar 

  167. Schwarz MJ, Riedel M, Gruber R, Ackenheil M, Müller N (1999 Jul) Antibodies to heat shock proteins in schizophrenic patients: implications for the mechanism of the disease. Am J Psychiatry 156(7):1103–1104

    CAS  PubMed  Google Scholar 

  168. Jaaro-Peled H, Hayashi-Takagi A, Seshadri S, Kamiya A, Brandon NJ, Sawa A (2009 Sep) Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends Neurosci 32(9):485–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F et al (2003 Sep) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60(9):878–888

    Article  PubMed  Google Scholar 

  170. Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dollé MET et al (2006 Jun 22) Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441(7096):1011–1014

    Article  CAS  PubMed  Google Scholar 

  171. Clay HB, Sillivan S, Konradi C (2011 May) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29(3):311–324

    Article  CAS  PubMed  Google Scholar 

  172. Bierkamp C, Luxey M, Metchat A, Audouard C, Dumollard R, Christians E (2010 Mar 15) Lack of maternal heat shock factor 1 results in multiple cellular and developmental defects, including mitochondrial damage and altered redox homeostasis, and leads to reduced survival of mammalian oocytes and embryos. Dev Biol 339(2):338–353

    Article  CAS  PubMed  Google Scholar 

  173. Yan L-J, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002 Oct 1) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21(19):5164–5172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ishii S, Torii M, Son AI, Rajendraprasad M, Morozov YM, Kawasawa YI et al (2017 May 2) Variations in brain defects result from cellular mosaicism in the activation of heat shock signalling. Nat Commun 8:15157

    Article  PubMed  PubMed Central  Google Scholar 

  175. Fraser D, Kaern M (2009 Mar) A chance at survival: gene expression noise and phenotypic diversification strategies. Mol Microbiol 71(6):1333–1340

    Article  CAS  PubMed  Google Scholar 

  176. Bishop AL, Rab FA, Sumner ER, Avery SV (2007 Jan) Phenotypic heterogeneity can enhance rare-cell survival in “stress-sensitive” yeast populations. Mol Microbiol 63(2):507–520

    Article  CAS  PubMed  Google Scholar 

  177. Torii M, Sasaki M, Chang Y-W, Ishii S, Waxman SG, Kocsis JD et al (2017 Feb 28) Detection of vulnerable neurons damaged by environmental insults in utero. Proc Natl Acad Sci U S A 114(9):2367–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Mehler MF (2017 Feb 28) Shining a light on early stress responses and late-onset disease vulnerability. Proc Natl Acad Sci U S A 114(9):2109–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Turan S, Kuehle J, Schambach A, Baum C, Bode J (2010 Sep 10) Multiplexing RMCE: versatile extensions of the Flp-recombinase-mediated cassette-exchange technology. J Mol Biol 402(1):52–69

    Article  CAS  PubMed  Google Scholar 

  180. Hashimoto-Torii K, Sasaki M, Chang Y-W, Hwang H, Waxman SG, Kocsis JD et al (2018 Dec) Detection of local and remote cellular damage caused by spinal cord and peripheral nerve injury using a heat shock signaling reporter system. IBRO Rep 5:91–98

    Article  PubMed  PubMed Central  Google Scholar 

  181. Morimoto RI (2008 Jun 1) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22(11):1427–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li Q, Xiao H, Isobe K (2002 Mar) Histone acetyltransferase activities of cAMP-regulated enhancer-binding protein and p300 in tissues of fetal, young, and old mice. J Gerontol A Biol Sci Med Sci 57(3):B93–B98

    Article  PubMed  Google Scholar 

  183. Liu DJ, Hammer D, Komlos D, Chen KY, Firestein BL, Liu AY-C (2014 Sep) SIRT1 knockdown promotes neural differentiation and attenuates the heat shock response. J Cell Physiol 229(9):1224–1235

    Article  CAS  PubMed  Google Scholar 

  184. Verma P, Pfister JA, Mallick S, D’Mello SR (2014 Jan 29) HSF1 protects neurons through a novel trimerization- and HSP-independent mechanism. J Neurosci 34(5):1599–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Neef DW, Jaeger AM, Thiele DJ (2011 Dec 1) Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 10(12):930–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Herbert KR, Samali A, Gorman A (2009) The role of hsps in neuronal differentiation and development. Heat shock proteins in neural cells. Springer, New York, pp 25–37

    Book  Google Scholar 

  187. Jin X, Qiao A, Moskophidis D, Mivechi NF (2018 Sep) Modulation of heat shock factor 1 activity through silencing of Ser303/Ser307 phosphorylation supports a metabolic program leading to age-related obesity and insulin resistance. Mol Cell Biol 15:38(18)

    Google Scholar 

  188. Horváth I, Multhoff G, Sonnleitner A, Vígh L (2008 Aug) Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Acta 1778(7–8):1653–1664

    Article  PubMed  CAS  Google Scholar 

  189. Tytell M, Greenberg SG, Lasek RJ (1986 Jan 15) Heat shock-like protein is transferred from glia to axon. Brain Res 363(1):161–164

    Article  CAS  PubMed  Google Scholar 

  190. Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M et al (2001 Sep 28) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914(1–2):66–73

    Article  CAS  PubMed  Google Scholar 

  191. Calderwood SK, Gong J, Murshid A (2016 Apr 25) Extracellular hsps: the complicated roles of extracellular hsps in immunity. Front Immunol 7:159

    PubMed  PubMed Central  Google Scholar 

  192. Robinson MB, Tidwell JL, Gould T, Taylor AR, Newbern JM, Graves J et al (2005 Oct 19) Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci 25(42):9735–9745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lyon MS, Milligan C (2019 Oct 15) Extracellular heat shock proteins in neurodegenerative diseases: new perspectives. Neurosci Lett 711:134462

    Article  CAS  PubMed  Google Scholar 

  194. Tytell M, Lasek RJ, Gainer H. Axonal maintenance, glia, exosomes, and heat shock proteins. [version 1; peer review: 3 approved]. F1000Res. 2016 Feb 22;5

    Google Scholar 

  195. Nafar F, Williams JB, Mearow KM (2016) Astrocytes release HspB1 in response to amyloid-β exposure in vitro. J Alzheimers Dis 49(1):251–263

    Article  PubMed  CAS  Google Scholar 

  196. Sreekumar PG, Kannan R, Kitamura M, Spee C, Barron E, Ryan SJ et al (2010 Oct 8) αB crystallin is apically secreted within exosomes by polarized human retinal pigment epithelium and provides neuroprotection to adjacent cells. PLoS One 5(10):e12578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stephen J. Page for his valuable feedback on the manuscript. This work was supported in part by NIH/NIMH (R01MH111674, to M.T.), NIH/NIAAA (R01AA026272, to K.H.-T. and M.T.), and Scott-Gentle Foundation (to K.H.-T. and M.T.).

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval for Studies Involving Humans

This article does not contain any studies with human participants, performed by any of the authors.

Ethical Approval for Studies Involving Animals

This article does not contain any studies with animals, performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Torii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, D.J., Hashimoto-Torii, K., Torii, M. (2020). Role of Heat Shock Factor 1 in Neural Development and Disorders. In: Asea, A.A.A., Kaur, P. (eds) Heat Shock Proteins in Inflammatory Diseases. Heat Shock Proteins, vol 22. Springer, Cham. https://doi.org/10.1007/7515_2020_10

Download citation

Publish with us

Policies and ethics