Skip to main content

Protein Production in Eukaryotic Cells

  • Chapter
  • First Online:
Protein Therapeutics

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 21))

  • 1184 Accesses

Abstract

The scientific and engineering aspects of design, development, scale-up, and manufacture of monoclonal antibodies are summarized in this chapter by outlining the key elements in the development of the expression cell line, cell culture, cell harvest, and protein purification process and exploring the effect of process technologies on production economics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7(1):9–14

    Article  CAS  Google Scholar 

  2. Konstantinov KB, Cooney CL (2015) White paper on continuous bioprocessing. May 20–21, 2014 continuous manufacturing symposium. J Pharm Sci 104(3):813–820

    Google Scholar 

  3. Razinkov VI, Treuheit MJ, Becker GW (2015) Accelerated formulation development of monoclonal antibodies (mAbs) and mAb-based modalities: review of methods and tools. J Biomol Screen 20(4):468–483

    Article  CAS  Google Scholar 

  4. Huang CJ, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39(3):383–399

    Article  CAS  Google Scholar 

  5. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252

    Article  CAS  Google Scholar 

  6. Felberbaum RS (2015) The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 10(5):702–714

    Article  CAS  Google Scholar 

  7. Moustafa K, Makhzoum A, Tremouillaux-Guiller J (2015) Molecular farming on rescue of pharma industry for next generations. Crit Rev Biotechnol 8:1–11

    Article  CAS  Google Scholar 

  8. Decker EL, Reski R (2012) Glycoprotein production in moss bioreactors. Plant Cell Rep 31(3):453–460

    Article  CAS  Google Scholar 

  9. Huang TK, McDonald KA (2012) Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 30(2):398–409

    Article  CAS  Google Scholar 

  10. Webster DE, Thomas MC (2012) Post-translational modification of plant-made foreign proteins; glycosylation and beyond. Biotechnol Adv 30(2):410–418

    Article  CAS  Google Scholar 

  11. Anyaogu DC, Mortensen UH (2015) Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins. Curr Opin Biotechnol 36:122–128

    Article  CAS  Google Scholar 

  12. Contreras-Gomez A, Sanchez-Miron A, Garcia-Camacho F, Molina-Grima E, Chisti Y (2014) Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 30(1):1–18

    Article  CAS  Google Scholar 

  13. Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8(5):564–587

    Article  CAS  Google Scholar 

  14. Butler M, Spearman M (2014) The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol 30:107–112

    Article  CAS  Google Scholar 

  15. Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A (2010) Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28(8):863–867

    Article  CAS  Google Scholar 

  16. Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 28(1):147–175

    Article  CAS  Google Scholar 

  17. Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R (2015) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 18:1–13

    Google Scholar 

  18. Swiech K, Picanco-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84(1):147–153

    Article  CAS  Google Scholar 

  19. McCue J, Kshirsagar R, Selvitelli K, Lu Q, Zhang M, Mei B, Peters R, Pierce GF, Dumont J, Raso S, Reichert H (2015) Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein. Biologicals 43(4):213–219

    Article  CAS  Google Scholar 

  20. Havenga MJ, Holterman L, Melis I, Smits S, Kaspers J, Heemskerk E, van der Vlugt R, Koldijk M, Schouten GJ, Hateboer G, Brouwer K, Vogels R, Goudsmit J (2008) Serum-free transient protein production system based on adenoviral vector and PER.C6 technology: high yield and preserved bioactivity. Biotechnol Bioeng 100(2):273–283

    Article  CAS  Google Scholar 

  21. Schiedner G, Hertel S, Bialek C, Kewes H, Waschutza G, Volpers C (2008) Efficient and reproducible generation of high-expressing, stable human cell lines without need for antibiotic selection. BMC Biotechnol 8:13

    Article  CAS  Google Scholar 

  22. Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32(10):992–1000

    Article  CAS  Google Scholar 

  23. Berting A, Farcet MR, Kreil TR (2010) Virus susceptibility of Chinese hamster ovary (CHO) cells and detection of viral contaminations by adventitious agent testing. Biotechnol Bioeng 106(4):598–607

    Article  CAS  Google Scholar 

  24. Fischer S, Handrick R, Otte K (2015) The art of CHO cell engineering: a comprehensive retrospect and future perspectives. Biotechnol Adv 33(8):1878–1896

    Article  CAS  Google Scholar 

  25. Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ (2013) The emerging CHO systems biology era: harnessing the omics revolution for biotechnology. Curr Opin Biotechnol 24(6):1102–1107

    Article  CAS  Google Scholar 

  26. Lee JS, Grav LM, Lewis NE, Faustrup Kildegaard H (2015) CRISPR/Cas9-mediated genome engineering of CHO cell factories: application and perspectives. Biotechnol J 10(7):979–994

    Article  CAS  Google Scholar 

  27. Malphettes L, Freyvert Y, Chang J, Liu PQ, Chan E, Miller JC, Zhou Z, Nguyen T, Tsai C, Snowden AW, Collingwood TN, Gregory PD, Cost GJ (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106(5):774–783

    Article  CAS  Google Scholar 

  28. Lin N, Mascarenhas J, Sealover NR, George HJ, Brooks J, Kayser KJ, Gau B, Yasa I, Azadi P, Archer-Hartmann S (2015) Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Biotechnol Prog 31(2):334–346

    Article  CAS  Google Scholar 

  29. Yin B, Gao Y, Chung CY, Yang S, Blake E, Stuczynski MC, Tang J, Kildegaard HF, Andersen MR, Zhang H, Betenbaugh MJ (2015) Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation. Biotechnol Bioeng 112(11):2343–2351

    Article  CAS  Google Scholar 

  30. Wurm FM (2013) CHO quasispecies—implications for manufacturing processes. Processes 1(3):296–311

    Article  CAS  Google Scholar 

  31. Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31(8):759–765

    Article  CAS  Google Scholar 

  32. Puck TT (1957) The genetics of somatic mammalian cells. Adv Biol Med Phys 5:75–101

    Article  CAS  Google Scholar 

  33. Hu Z, Guo D, Yip SS, Zhan D, Misaghi S, Joly JC, Snedecor BR, Shen AY (2013) Chinese hamster ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11-derived dihydrofolate reductase deficient host cell. Biotechnol Prog 29(4):980–985

    Article  CAS  Google Scholar 

  34. Davies SL, Lovelady CS, Grainger RK, Racher AJ, Young RJ, James DC (2013) Functional heterogeneity and heritability in CHO cell populations. Biotechnol Bioeng 110(1):260–274

    Article  CAS  Google Scholar 

  35. O’Callaghan PM, Berthelot ME, Young RJ, Graham JW, Racher AJ, Aldana D (2015) Diversity in host clone performance within a Chinese hamster ovary cell line. Biotechnol Prog 31(5):1187–1200

    Article  CAS  Google Scholar 

  36. Derouazi M, Martinet D, Besuchet Schmutz N, Flaction R, Wicht M, Bertschinger M, Hacker DL, Beckmann JS, Wurm FM (2006) Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem Biophys Res Commun 340(4):1069–1077

    Article  CAS  Google Scholar 

  37. Jostock T, Knopf HP (2012) Mammalian stable expression of biotherapeutics. Methods Mol Biol 899:227–238

    Article  CAS  Google Scholar 

  38. Ho SC, Mariati, Yeo JH, Fang SG Yang YS (2015) Impact of using different promoters and matrix attachment regions on recombinant protein expression level and stability in stably transfected CHO cells. Mol Biotechnol 57(2):138–144

    Google Scholar 

  39. Lai T, Yang Y Ng SK (2013) Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel) 6(5):579–603

    Google Scholar 

  40. Fan L, Kadura I, Krebs LE, Hatfield CC, Shaw MM, Frye CC (2012) Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Biotechnol Bioeng 109(4):1007–1015

    Article  CAS  Google Scholar 

  41. Chin CL, Chin HK, Chin CS, Lai ET, Ng SK (2015) Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese Hamster ovary cells. BMC Biotechnol 15:44

    Article  CAS  Google Scholar 

  42. Saunders F, Sweeney B, Antoniou MN, Stephens P, Cain K (2015) Chromatin function modifying elements in an industrial antibody production platform–comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One 10(4), e0120096

    Article  CAS  Google Scholar 

  43. Matasci M, Baldi L, Hacker DL, Wurm FM (2011) The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Biotechnol Bioeng 108(9):2141–2150

    Article  CAS  Google Scholar 

  44. Mayrhofer P, Kratzer B, Sommeregger W, Steinfellner W, Reinhart D, Mader A, Turan S, Qiao J, Bode J, Kunert R (2014) Accurate comparison of antibody expression levels by reproducible transgene targeting in engineered recombination-competent CHO cells. Appl Microbiol Biotechnol 98(23):9723–9733

    Article  CAS  Google Scholar 

  45. Kennard ML, Goosney DL, Monteith D, Zhang L, Moffat M, Fischer D, Mott J (2009) The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnol Bioeng 104(3):540–553

    Article  CAS  Google Scholar 

  46. Geisse S, Fux C (2009) Recombinant protein production by transient gene transfer into Mammalian cells. Methods Enzymol 463:223–238

    Article  CAS  Google Scholar 

  47. Diepenbruck C, Klinger M, Urbig T, Baeuerle P, Neef R (2013) Productivity and quality of recombinant proteins produced by stable CHO cell clones can be predicted by transient expression in HEK cells. Mol Biotechnol 54(2):497–503

    Article  CAS  Google Scholar 

  48. Bohm E, Seyfried BK, Dockal M, Graninger M, Hasslacher M, Neurath M, Konetschny C, Matthiessen P, Mitterer A, Scheiflinger F (2015) Differences in N-glycosylation of recombinant human coagulation factor VII derived from BHK, CHO, and HEK293 cells. BMC Biotechnol 15:87

    Article  CAS  Google Scholar 

  49. Croset A, Delafosse L, Gaudry JP, Arod C, Glez L, Losberger C, Begue D, Krstanovic A, Robert F, Vilbois F, Chevalet L, Antonsson B (2012) Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J Biotechnol 161(3):336–348

    Article  CAS  Google Scholar 

  50. Cain K, Peters S, Hailu H, Sweeney B, Stephens P, Heads J, Sarkar K, Ventom A, Page C, Dickson A (2013) A CHO cell line engineered to express XBP1 and ERO1-Lalpha has increased levels of transient protein expression. Biotechnol Prog 29(3):697–706

    Article  CAS  Google Scholar 

  51. Daramola O, Stevenson J, Dean G, Hatton D, Pettman G, Holmes W, Field R (2014) A high-yielding CHO transient system: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression. Biotechnol Prog 30(1):132–141

    Article  CAS  Google Scholar 

  52. Kunaparaju R, Liao M, Sunstrom NA (2005) Epi-CHO, an episomal expression system for recombinant protein production in CHO cells. Biotechnol Bioeng 91(6):670–677

    Article  CAS  Google Scholar 

  53. Rajendra Y, Hougland MD, Alam R, Morehead TA, Barnard GC (2015) A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment. Biotechnol Bioeng 112(5):977–986

    Article  CAS  Google Scholar 

  54. Jager V, Bussow K, Schirrmann T (2015) Transient recombinant protein expression in mammalian cells. In: Al-Rubeai M (ed) Animal cell culture. Springer, Dordrecht

    Google Scholar 

  55. Steger K, Brady J, Wang W, Duskin M, Donato K, Peshwa M (2015) CHO-S antibody titers >1 gram/liter using flow electroporation-mediated transient gene expression followed by rapid migration to high-yield stable cell lines. J Biomol Screen 20(4):545–551

    Article  CAS  Google Scholar 

  56. Geisse S, Voedisch B (2012) Transient expression technologies: past, present, and future. Methods Mol Biol 899:203–219

    Article  CAS  Google Scholar 

  57. Sou SN, Polizzi KM, Kontoravdi C (2013) Evaluation of transfection methods for transient gene expression in Chinese hamster ovary cells. Adv Biosci Biotechnol 04(12):1013–1019

    Article  CAS  Google Scholar 

  58. Browne SM, Al-Rubeai M (2007) Selection methods for high-producing mammalian cell lines. Trends Biotechnol 25(9):425–432

    Article  CAS  Google Scholar 

  59. Coller HA, Coller BS (1986) Poisson statistical analysis of repetitive subcloning by the limiting dilution technique as a way of assessing hybridoma monoclonality. Methods Enzymol 121:412–417

    Article  CAS  Google Scholar 

  60. Onadipe AO, Metcalfe HK Freeman PR, James C (2001) Capillary-aided cell cloning: a technique for one step cloning with high probability of monoclonality. In: Lindner-Olsson EC, Lüllau N (eds) Animal cell technology: from target to market. Springer, Netherlands

    Google Scholar 

  61. Nakamura T, Omasa T (2015) Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system. J Biosci Bioeng 120(3):323–329

    Article  CAS  Google Scholar 

  62. Evans K, Albanetti T, Venkat R, Schoner R, Savery J, Miro-Quesada G, Rajan B, Groves C (2015) Assurance of monoclonality in one round of cloning through cell sorting for single cell deposition coupled with high resolution cell imaging. Biotechnol Prog 31(5):1172–1178

    Article  CAS  Google Scholar 

  63. DeMaria CT, Cairns V, Schwarz C, Zhang J, Guerin M, Zuena E, Estes S, Karey KP (2007) Accelerated clone selection for recombinant CHO CELLS using a FACS-based high-throughput screen. Biotechnol Prog 23(2):465–472

    Article  CAS  Google Scholar 

  64. Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8(5):870–891

    Article  CAS  Google Scholar 

  65. Joensson HN, Zhang C, Uhlen M, Andersson-Svahn H (2012) A homogeneous assay for protein analysis in droplets by fluorescence polarization. Electrophoresis 33(3):436–439

    Article  CAS  Google Scholar 

  66. Silk NJ, Denby S, Lewis G, Kuiper M, Hatton D, Field R, Baganz F, Lye GJ (2010) Fed-batch operation of an industrial cell culture process in shaken microwells. Biotechnol Lett 32(1):73–78

    Article  CAS  Google Scholar 

  67. Rameez S, Mostafa SS, Miller C, Shukla AA (2014) High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Biotechnol Prog 30(3):718–727

    Article  CAS  Google Scholar 

  68. Paul AJ, Schwab K, Hesse F (2014) Direct analysis of mAb aggregates in mammalian cell culture supernatant. BMC Biotechnol 14:99

    Article  CAS  Google Scholar 

  69. Yang Y, Strahan A, Li C, Shen A, Liu H, Ouyang J, Katta V, Francissen K, Zhang B (2010) Detecting low level sequence variants in recombinant monoclonal antibodies. MAbs 2(3):285–298

    Article  Google Scholar 

  70. Ambrogelly A, Liu YH, Li H, Mengisen S, Yao B, Xu W, Cannon-Carlson S (2012) Characterization of antibody variants during process development: the tale of incomplete processing of N-terminal secretion peptide. MAbs 4(6):701–709

    Article  Google Scholar 

  71. Harris RP, Kilby PM (2014) Amino acid misincorporation in recombinant biopharmaceutical products. Curr Opin Biotechnol 30:45–50

    Article  CAS  Google Scholar 

  72. Khetan A, Huang YM, Dolnikova J, Pederson NE, Wen D, Yusuf-Makagiansar H, Chen P, Ryll T (2010) Control of misincorporation of serine for asparagine during antibody production using CHO cells. Biotechnol Bioeng 107(1):116–123

    Article  CAS  Google Scholar 

  73. Kim M, O'Callaghan PM, Droms KA, James DC (2011) A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol Bioeng 108(10):2434–2446

    Article  CAS  Google Scholar 

  74. Zhang S, Bartkowiak L, Nabiswa B, Mishra P, Fann J, Ouellette D, Correia I, Regier D, Liu J (2015) Identifying low-level sequence variants via next generation sequencing to aid stable CHO cell line screening. Biotechnol Prog 31(4):1077–1085

    Article  CAS  Google Scholar 

  75. Seth G (2012) Freezing mammalian cells for production of biopharmaceuticals. Methods 56(3):424–431

    Article  CAS  Google Scholar 

  76. Capes-Davis A, Theodosopoulos G, Atkin I, Drexler HG, Kohara A, MacLeod RA, Masters JR, Nakamura Y, Reid YA, Reddel RR, Freshney RI (2010) Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer 127(1):1–8

    Article  CAS  Google Scholar 

  77. Mclean C, Harbour C (2013) Contamination detection in animal cell culture. In: Flickinger MC (ed) Upstream industrial biotechnology. Wiley, New Jersey

    Google Scholar 

  78. Moody M, Alves W, Varghese J, Khan F (2011) Mouse Minute Virus (MMV) contamination–a case study: detection, root cause determination, and corrective actions. PDA J Pharm Sci Technol 65(6):580–588

    Article  Google Scholar 

  79. Cabannes E, Hebert C, Eloit M (2014) Whole genome: next-generation sequencing as a virus safety test for biotechnological products. PDA J Pharm Sci Technol 68(6):631–638

    Article  CAS  Google Scholar 

  80. Shepherd AJ, Wilson NJ, Smith KT (2003) Characterisation of endogenous retrovirus in rodent cell lines used for production of biologicals. Biologicals 31(4):251–260

    Article  CAS  Google Scholar 

  81. Dinowitz M, Lie YS, Low MA, Lazar R, Fautz C, Potts B, Sernatinger J, Anderson K (1992) Recent studies on retrovirus-like particles in Chinese hamster ovary cells. Dev Biol Stand 76:201–207

    CAS  Google Scholar 

  82. Gramer MJ, Goochee CF (1993) Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol Prog 9(4):366–373

    Article  CAS  Google Scholar 

  83. Ozturk SS (2014) Equipment for large-scale mammalian cell culture. Adv Biochem Eng Biotechnol 139:69–92

    CAS  Google Scholar 

  84. Arnaud CH (2015) Disposable plastic bioreactors lead to savings—and challenges—for biopharma firms. Chem Eng News 93(46):10–13

    Article  Google Scholar 

  85. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398

    Article  CAS  Google Scholar 

  86. Milian E, Kamen AA (2015) Current and emerging cell culture manufacturing technologies for influenza vaccines. Biomed Res Int 2015:504831

    Article  CAS  Google Scholar 

  87. Woodside SM, Bowen BD, Piret JM (1998) Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology 28(1–3):163–175

    Article  CAS  Google Scholar 

  88. Robin J (2013) Case study: challenges and learning in implementing ATF perfusion process. Integrated continuous biomanufacturing ECI conference, Castelldefels, 20–24 October 2013. http://www.engconf.org/staging/wp-content/uploads/2013/12/jarno_ICB-13AQ-Monday.pdf

  89. Wu J (1995) Mechanisms of animal cell damage associated with gas bubbles and cell protection by medium additives. J Biotechnol 43(2):81–94

    Article  CAS  Google Scholar 

  90. Hsu WT, Aulakh RP, Traul DL, Yuk IH (2012) Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology 64(6):667–678

    Article  CAS  Google Scholar 

  91. Ahuja S, Bui T, Chen J, Chen J, Dorotheo R, Jain S, Lee A, Russell B, Singh S, Qu L (2011) Development and scale-up of a high titer cell culture process. Abstracts of papers of the American Chemical Society, American Chemical Society, Washington, DC

    Google Scholar 

  92. Datta P, Linhardt RJ, Sharfstein ST (2013) An omics approach towards CHO cell engineering. Biotechnol Bioeng 110(5):1255–1271

    Article  CAS  Google Scholar 

  93. Gupta P, Lee KH (2007) Genomics and proteomics in process development: opportunities and challenges. Trends Biotechnol 25(7):324–330

    Article  CAS  Google Scholar 

  94. Antoniewicz MR (2015) Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 42(3):317–325

    Article  CAS  Google Scholar 

  95. Hines M, Holmes C, Schad R (2010) Simple strategies to improve bioprocess pure culture processing. Pharm Eng 30(3):1–11

    Google Scholar 

  96. Tsui V, Wiederhold W (2007) A practical approach to steam autoclave cycle development. J Validation Technol 13(2):124

    Google Scholar 

  97. Schleh M, Lawrence B, Park T, Rosenthal S, Hart R, Dehghani H (2010) Effectiveness of upstream barrier technologies for inactivation of adventitious contaminants of cell culture. Am Pharm Rev 13(7):72

    Google Scholar 

  98. Goetschalckx S, Fabre V, Wynants M, Bertaux L, Plavsic M, Boussif O, Laenen L (2014) A holistic biosafety risk mitigation approach. Am Pharm Rev 17(4):48–56

    Google Scholar 

  99. Yen S, Sokolenko S, Manocha B, Blondeel EJ, Aucoin MG, Patras A, Daynouri-Pancino F, Sasges M (2014) Treating cell culture media with UV irradiation against adventitious agents: minimal impact on CHO performance. Biotechnol Prog 30(5):1190–1195

    Article  CAS  Google Scholar 

  100. Weber A, Husemann U, Chaussin S, Adams T, De Wilde D, Gerighausen S, Greller G, Fenge C (2014) Development and qualification of a scalable, disposable bioreactor for GMP-compliant cell culture. Bioprocess Int 12(S5):47

    CAS  Google Scholar 

  101. Keijzer T, Kakes E, Van Halsema E (2011) Advances in the design of bioreactor systems. Innov Pharm Technol 60–64. http://www.iptonline.com/articles/public/advancesinthedesignofbioreactorsystems.pdf

  102. Benz GT (2011) Bioreactor design for chemical engineers. Chem Eng Prog 107:21–26

    CAS  Google Scholar 

  103. Mirro R, Voll K (2009) Which impeller is right for your cell line. BioProcess Int 7(1):52–58

    Google Scholar 

  104. Nienow AW (2006) Reactor engineering in large scale animal cell culture. Cytotechnology 50(1-3):9–33

    Article  CAS  Google Scholar 

  105. Nienow AW (1996) Gas-liquid mixing studies: a comparison of Rushton turbines with some modern impellers. Chem Eng Res Design 74(A4):417–423

    CAS  Google Scholar 

  106. Langheinrich C, Nienow AW (1999) Control of pH in large-scale, free suspension animal cell bioreactors: alkali addition and pH excursions. Biotechnol Bioeng 66(3):171–179

    Article  CAS  Google Scholar 

  107. Hu W, Berdugo C, Chalmers JJ (2011) The potential of hydrodynamic damage to animal cells of industrial relevance: current understanding. Cytotechnology 63(5):445–460

    Article  Google Scholar 

  108. Hu W, Wiltberger K (2014) Industrial cell culture process scale-up strategies and considerations. In: Hauser H, Wagner R (eds) Animal cell biotechnology: in biologics production. Walter de Gruyter GmbH & Co. KG, Berlin, pp 455–488

    Google Scholar 

  109. Perez JAS, Porcel EMR, Lopez JLC, Sevilla JMF, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124(1–3):1–5

    Article  CAS  Google Scholar 

  110. Villiger TK (2015) Bioprocess engineering framework to control protein N-linked glycosylation, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 22727

    Google Scholar 

  111. Mollet M, Ma N, Zhao Y, Brodkey R, Taticek R, Chalmers JJ (2004) Bioprocess equipment: characterization of energy dissipation rate and its potential to damage cells. Biotechnol Prog 20(5):1437–1448

    Article  CAS  Google Scholar 

  112. Meghrous J, Khramtsov N, Buckland BC, Cox MM, Palomares LA, Srivastava IK (2015) Dissolved carbon dioxide determines the productivity of a recombinant hemagglutinin component of an influenza vaccine produced by insect cells. Biotechnol Bioeng 112(11):2267–2275

    Article  CAS  Google Scholar 

  113. Sieblist C, Hageholz O, Aehle M, Jenzsch M, Pohlscheidt M, Lubbert A (2011) Insights into large-scale cell-culture reactors: II. Gas-phase mixing and CO2 stripping. Biotechnol J 6(12):1547–1556

    Article  CAS  Google Scholar 

  114. Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82(7):751–765

    Article  CAS  Google Scholar 

  115. Ambler CM (1959) The theory of scaling up laboratory data for the sedimentation type centrifuge. J Biochem Microbiol Technol Eng 1(2):185–205

    Article  CAS  Google Scholar 

  116. Boychyn M, Yim SSS, Shamlou PA, Bulmer M, More J, Hoare A (2001) Characterization of flow intensity in continuous centrifuges for the development of laboratory mimics. Chem Eng Sci 56(16):4759–4770

    Article  CAS  Google Scholar 

  117. Hutchinson N, Bingham N, Murrell N, Farid S, Hoare M (2006) Shear stress analysis of mammalian cell suspensions for prediction of industrial centrifugation and its verification. Biotechnol Bioeng 95(3):483–491

    Article  CAS  Google Scholar 

  118. Tait AS, Aucamp JP, Bugeon A, Hoare M (2009) Ultra scale-down prediction using microwell technology of the industrial scale clarification characteristics by centrifugation of mammalian cell broths. Biotechnol Bioeng 104(2):321–331

    Article  CAS  Google Scholar 

  119. Carman P (1937) Cyclic permeability of granular material. Transl Inst Chem Eng 15:150–167

    CAS  Google Scholar 

  120. Badmington F, Wilkins R, Payne M, Honig ES (1995) Vmax testing for practical microfiltration train scale-up in biopharmaceutical processing. Pharm Technol 19(9):64–76

    CAS  Google Scholar 

  121. Lutz H (2009) Rationally defined safety factors for filter sizing. J Membr Sci 341(1–2):268–278

    Article  CAS  Google Scholar 

  122. de Zafra CLZ, Quarmby V, Francissen K, Vanderlaan M, Zhu-Shimoni J (2015) Host cell proteins in biotechnology-derived products: a risk assessment framework. Biotechnol Bioeng 112(11):2284–2291

    Article  CAS  Google Scholar 

  123. CMC-Biotech-Working-Group (2009) A-Mab: a case study in bioprocess development. CASSS, Emeryville

    Google Scholar 

  124. Yang H (2013) Establishing acceptable limits of residual DNA. PDA J Pharm Sci Technol 67(2):155–163

    Article  CAS  Google Scholar 

  125. Gottschalk U (2008) Bioseparation in antibody manufacturing: the good, the bad and the ugly. Biotechnol Prog 24(3):496–503

    Article  CAS  Google Scholar 

  126. Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. MAbs 1(5):443–452

    Article  Google Scholar 

  127. Liu HF, Ma J, Winter C, Bayer R (2010) Recovery and purification process development for monoclonal antibody production. MAbs 2(5):480–499

    Article  Google Scholar 

  128. Kelley B (2007) Very large scale monoclonal antibody purification: the case for conventional unit operations. Biotechnol Prog 23(5):995–1008

    CAS  Google Scholar 

  129. Trexler-Schmidt M, Sze-Khoo S, Cothran AR, Thai BQ, Sargis S, Lebreton B, Kelley B, Blank GS (2009) Purification strategies to process 5 g/L titers of monoclonal antibodies. Biopharm Int 22:8–15

    Google Scholar 

  130. Gouda H, Shiraishi M, Takahashi H, Kato K, Torigoe H, Arata Y, Shimada I (1998) NMR study of the interaction between the B domain of staphylococcal protein A and the Fc portion of immunoglobulin G. Biochemistry 37(1):129–136

    Article  CAS  Google Scholar 

  131. Kim HK, Thammavongsa V, Schneewind O, Missiakas D (2012) Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr Opin Microbiol 15(1):92–99

    Article  CAS  Google Scholar 

  132. Silverman GJ (1998) B cell superantigens: possible roles in immunodeficiency and autoimmunity. Semin Immunol 10(1):43–55

    Article  CAS  Google Scholar 

  133. Surolia A, Pain D, Khan MI (1982) Protein A: nature’s universal anti-antibody. Trends Biochem Sci 7(2):74–76

    Article  Google Scholar 

  134. Graille M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charbonnier JB, Silverman GJ (2000) Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A 97(10):5399–5404

    Article  CAS  Google Scholar 

  135. Hober S, Nord K, Linhult M (2007) Protein A chromatography for antibody purification. J Chromatogr B Anal Technol Biomed Life Sci 848(1):40–47

    Article  CAS  Google Scholar 

  136. Starovasnik MA, O'Connell MP, Fairbrother WJ, Kelley RF (1999) Antibody variable region binding by Staphylococcal protein A: thermodynamic analysis and location of the Fv binding site on E-domain. Protein Sci 8(7):1423–1431

    Article  CAS  Google Scholar 

  137. Nilsson B, Moks T, Jansson B, Abrahmsen L, Elmblad A, Holmgren E, Henrichson C, Jones TA, Uhlen M (1987) A synthetic Igg-binding domain based on staphylococcal protein-A. Protein Eng 1(2):107–113

    Article  CAS  Google Scholar 

  138. Tashiro M, Tejero R, Zimmerman DE, Celda B, Nilsson B, Montelione GT (1997) High-resolution solution NMR structure of the Z domain of staphylococcal protein A. J Mol Biol 272(4):573–590

    Article  CAS  Google Scholar 

  139. Boedeker B (2001) Production processes of licensed recombinant factor VIII preparations. Semin Thromb Hemost 27(4):385–394

    Article  CAS  Google Scholar 

  140. Zydney AL, Harinarayan C, van Reis R (2009) Modeling electrostatic exclusion effects during ion exchange chromatography of monoclonal antibodies. Biotechnol Bioeng 102(4):1131–1140

    Article  CAS  Google Scholar 

  141. Carta G, Ubiera AR, Pabst TM (2005) Protein mass transfer kinetics in ion exchange media: measurements and interpretations. Chem Eng Technol 28(11):1252–1264

    Article  CAS  Google Scholar 

  142. Hagel L, Jagschies G, Sofer GK (2007) Handbook of process chromatography: development, manufacturing, validation and economics, 2nd edn. Academic/Elsevier, Amsterdam

    Google Scholar 

  143. Stickel JJ, Fotopoulos A (2001) Pressure-flow relationships for packed beds of compressible chromatography media at laboratory and production scale. Biotechnol Prog 17(4):744–751

    Article  CAS  Google Scholar 

  144. Rathore AS, Kennedy RM, O’Donnell JK, Bemberis I, Kaltenbrunner O (2003) Qualification of a chromatographic column – why and how to do it. Biopharm Int Appl Technol Biopharm Dev 16(3):30

    Google Scholar 

  145. Suda EJ, Thomas KE, Pabst TM, Mensah P, Ramasubramanyan N, Gustafson ME, Hunter AK (2009) Comparison of agarose and dextran-grafted agarose strong ion exchangers for the separation of protein aggregates. J Chromatogr A 1216(27):5256–5264

    Article  CAS  Google Scholar 

  146. Ishihara T, Yamamoto S (2005) Optimization of monoclonal antibody purification by ion-exchange chromatography – application of simple methods with linear gradient elution experimental data. J Chromatogr A 1069(1):99–106

    Article  CAS  Google Scholar 

  147. Remington KM (2015) Fundamental strategies for viral clearance part 2: technical approaches. Bioprocess Int 13(5)

    Google Scholar 

  148. Connell-Crowley L, Nguyen T, Bach J, Chinniah S, Bashiri H, Gillespie R, Moscariello J, Hinckley P, Dehghani H, Vunnum S, Vedantham G (2012) Cation exchange chromatography provides effective retrovirus clearance for antibody purification processes. Biotechnol Bioeng 109(1):157–165

    Article  CAS  Google Scholar 

  149. Shao J, Zydney AL (2004) Optimization of ultrafiltration/diafiltration processes for partially bound impurities. Biotechnol Bioeng 87(3):286–292

    Article  CAS  Google Scholar 

  150. Shire SJ, Shahrokh Z, Liu J (2004) Challenges in the development of high protein concentration formulations. J Pharm Sci 93(6):1390–1402

    Article  CAS  Google Scholar 

  151. Werner RG (2004) Economic aspects of commercial manufacture of biopharmaceuticals. J Biotechnol 113(1-3):171–182

    Article  CAS  Google Scholar 

  152. Sinclair A, Monge M (2002) Quantitative economic evaluation of single use disposables in bioprocessing. Pharm Eng 22(3):20–34

    Google Scholar 

  153. Sinclair A, Monge M (2005) Concept facility based on single-use systems, part 2. BioProcess Int 3(9)

    Google Scholar 

  154. Hill C, Sinclair A (2007) Maximizing the use of process data from development to manufacturing. Biopharm Int 20(7):38–42

    Google Scholar 

  155. Farid SS, Novais JL, Karri S, Washbrook J, Titchener-Hooker NJ (2000) A tool for modeling strategic decisions in cell culture manufacturing. Biotechnol Prog 16(5):829–836

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kripa Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Ram, K., Hatton, D., Ahuja, S., Bender, J., Hunter, A., Turner, R. (2016). Protein Production in Eukaryotic Cells. In: Sauna, Z., Kimchi-Sarfaty, C. (eds) Protein Therapeutics. Topics in Medicinal Chemistry, vol 21. Springer, Cham. https://doi.org/10.1007/7355_2016_3

Download citation

Publish with us

Policies and ethics