Skip to main content

Integration on Ligand and Structure Based Approaches in GPCRs

  • Chapter
  • First Online:
Structure and Function of GPCRs

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 30))

Abstract

The GPCRs are involved in wide range of physiological functions and pathological conditions and hence they are considered drug targets of immense pharmaceutical importance. Modification of the cell-specific signaling and functioning of the GPCRs provides an excellent opportunity for drug design activities. In view of the diverse and complex nature of GPCR signaling, the proper understanding of receptor structure is essential to illustrate their elusive structure–function relationships for rational drug design by the application of efficient and inexpensive molecular modeling techniques. Despite advances in GPCR protein crystallization, the structural information of most GPCRs is still unclear that necessitates the application of homology modeling techniques to derive protein models for structure based drug design. However low sequence similarity in GPCRs coupled with high structural plasticity may hinder the development of appropriate protein models. In order to circumvent the problems, the development of ligand based models integrated with structure based models may converge to an integrated model duly validated on internal and/or external test set models which may be useful in virtual screening for identifying the hits and in generating the focused libraries for prioritizing the molecules for synthesis. The integrated models may also be helpful in increasing our understanding of drug–receptor interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

(S)-6-OH-DPAT:

(S)-6-hydroxy-2-(dipropylamino)tetralin

(S)-7-OH-DPAT:

(S)-7-hydroxy-2-(dipropylamino)tetralin

(S)-DPAT:

(S)-Dipropylamino tetralin

2-AMC:

2-(Aminomethyl)chromans

2D QSAR:

Two-dimensional quantitative structure–activity relationships

2-OHNPA:

2-Hydroxy-N-n-propylnorapomorphine

3D QSAR:

Three-dimensional quantitative structure–activity relationship

3-PPP:

3-(3-Hydroxyphenyl)-N-n-propylpiperidine

5-OH-DPAT:

5-Hydroxy-2-(dipropylamino)tetralin

7-OH-OHBQ:

7-Hydroxy-1,2,3,4,4a,5,6,10b-octahydrobenzo[f]quinoline

9-OH-OHBQ:

9-Hydroxy-1,2,3,4,4a,5,6,10b-octahydrobenzo[f]quinoline

α1a Adr:

α1a adrenergic receptor

α1b Adr:

α1b adrenergic receptor

α1c Adr:

α1c adrenergic receptor

α2 Adr:

α2 adrenergic receptor

β1 Adr:

β1 adrenergic receptor

β2 Adr:

β2 adrenergic receptor

AAA:

Active analog based approaches

ADTN:

6-Amino-5,6,7,8-tetrahydronaphthalene-2,3-diol

APO:

Apomorphine

Ar:

Aromatic

BPH:

Benign prostate hyperplasia

CADD:

Computer aided drug design

CFP:

Common feature pharmacophore

CHARMm:

Chemistry at HARvard Macromolecular mechanics

CNS:

Central nervous system stimulant

CoMFA:

Comparative molecular field analysis

CoMSIA:

Comparative molecular similarity index analysis

DA:

Dopamine

DHX:

Dihydrexidine

ECL2:

Extracellular loop 2

GIP:

GPCR-interacting protein

Glide XP:

Glide extra precision

GRK:

G protein-coupled receptor kinases

HAl:

Hydrophobic aliphatic

HAr:

Hydrophobic aromatic

HASL:

Hypothetical active site lattice

HBA:

Hydrogen bond acceptor

HBD:

Hydrogen bond donor

HOMO:

Highest occupied molecular orbital

HY:

Hydrophobic

LBDD:

Ligand based drug design

LUMO:

Lowest unoccupied molecular orbital

LUTS:

Low urinary tract symptoms

MDDR:

MDL Drug Data Report

MR:

Molar refractivity

NCE:

Novel chemical entity

NMR:

Nuclear magnetic resonance

NPA:

N-n-propylnorapomorphine

PD:

Parkinson’s disease

PI:

Positive ionizable

RA:

Ring aromatic

RMSD:

Root mean square deviation

SBDD:

Structure based drug design

SSS:

Substituent spanned space

TM:

Transmembrane

VS:

Virtual screening

References

  1. Lundstrom K (2006) Latest development in drug discovery on G protein-coupled receptors. Curr Protein Pept Sci 7:465–470

    Article  CAS  PubMed  Google Scholar 

  2. Ma P, Zemmel R (2002) Value of novelty? Nat Rev Drug Discov 1:571–572

    Article  CAS  PubMed  Google Scholar 

  3. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  CAS  PubMed  Google Scholar 

  4. Schioth HB, Fredriksson R (2005) The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol 142:94–101

    Article  PubMed  CAS  Google Scholar 

  5. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    Article  PubMed  CAS  Google Scholar 

  6. Kobilka B (2013) The structural basis of G-protein-coupled receptor signaling (nobel lecture). Angew Chem Int Ed Engl 52:6380–6388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    Article  CAS  PubMed  Google Scholar 

  8. Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465

    Article  CAS  PubMed  Google Scholar 

  9. Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M et al (2003) Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U S A 100:11406–11411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bock A, Kostenis E, Tränkle C, Lohse MJ, Mohr K (2014) Pilot the pulse: controlling the multiplicity of receptor dynamics. Trends Pharmacol Sci 35:630–638

    Article  CAS  PubMed  Google Scholar 

  11. Smith JS, Rajagopal S (2016) The beta-arrestins: multifunctional regulators of G protein-coupled receptors. J Biol Chem 291(17):8969–8977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jacoby E, Bouhelal R, Gerspacher M, Seuwen K (2006) The 7 TM G-protein-coupled receptor target family. ChemMedChem 1:761–782

    Article  PubMed  CAS  Google Scholar 

  13. Klabunde T, Hessler G (2002) Drug design strategies for targeting G-protein-coupled receptors. Chembiochem 3:928–944

    Article  CAS  PubMed  Google Scholar 

  14. Jimonet P, Jager R (2004) Strategies for designing GPCR-focused libraries and screening sets. Curr Opin Drug Discov Devel 7:325–333

    CAS  PubMed  Google Scholar 

  15. Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7:79–94

    Article  CAS  PubMed  Google Scholar 

  16. Lappano R, Maggiolini M (2012) GPCRs and cancer. Acta Pharmacol Sin 33:351–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh A, Nunes JJ, Ateeq B (2015) Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases. Eur J Pharmacol 763(Part B):178–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salazar NC, Chen J, Rockman HA (2007) Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim Biophys Acta 1768:1006–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang CM, Insel PA (2004) GPCR expression in the heart; “new” receptors in myocytes and fibroblasts. Trends Cardiovasc Med 14:94–99

    Article  CAS  PubMed  Google Scholar 

  20. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG et al (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 112:e154–e235

    Article  PubMed  Google Scholar 

  21. Fernandez-Patron C, Filep JG (2012) GPCRs in cardiovascular pathologies. Drug Discov Today Dis Mech 9:e75–e78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Belmonte SL, Blaxall BC (2011) G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circ Res 109:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dalet F-GE, Guadalupe T-FJ, María del Carmen C-H, Humberto G-AC, Antonio S-UM (2013) Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes. Neural Regen Res 8:2290–2302

    PubMed  PubMed Central  Google Scholar 

  24. Nickols HH, Conn PJ (2014) Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 61:55–71

    Article  PubMed  CAS  Google Scholar 

  25. Catapano LA, Manji HK (2007) G protein-coupled receptors in major psychiatric disorders. Biochim Biophys Acta 1768:976–993

    Article  CAS  PubMed  Google Scholar 

  26. Thathiah A, De Strooper B (2011) The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat Rev Neurosci 12:73–87

    Article  CAS  PubMed  Google Scholar 

  27. Ahren B (2009) Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov 8:369–385

    Article  CAS  PubMed  Google Scholar 

  28. Rayasam GV, Tulasi VK, Davis JA, Bansal VS (2007) Fatty acid receptors as new therapeutic targets for diabetes. Expert Opin Ther Targets 11:661–671

    Article  CAS  PubMed  Google Scholar 

  29. Swaminath G (2008) Fatty acid binding receptors and their physiological role in type 2 diabetes. Arch Pharm 341:753–761

    Article  CAS  Google Scholar 

  30. Sun L, Ye RD (2012) Role of G protein-coupled receptors in inflammation. Acta Pharmacol Sin 33:342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cash JL, Norling LV, Perretti M (2014) Resolution of inflammation: targeting GPCRs that interact with lipids and peptides. Drug Discov Today 19:1186–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stone LS, Molliver DC (2009) In search of analgesia: emerging poles of GPCRs in pain. Mol Interv 9:234–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harrison C (2013) G protein-coupled receptors: a double attack on pain. Nat Rev Drug Discov 12:665–665

    Article  CAS  PubMed  Google Scholar 

  34. Geppetti P, Veldhuis NA, Lieu T, Bunnett NW (2015) G protein-coupled receptors: dynamic machines for signaling pain and itch. Neuron 88:635–649

    Article  CAS  PubMed  Google Scholar 

  35. Schoneberg T, Schulz A, Biebermann H, Hermsdorf T, Rompler H, Sangkuhl K (2004) Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 104:173–206

    Article  PubMed  CAS  Google Scholar 

  36. Ghosh E, Kumari P, Jaiman D, Shukla AK (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16:69–81

    Article  CAS  PubMed  Google Scholar 

  37. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556

    Article  CAS  PubMed  Google Scholar 

  38. Huang CY, Olieric V, Ma P, Howe N, Vogeley L, Liu X et al (2016) In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallogr D Struct Biol 72:93–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tikhonova IG, Costanzi S (2009) Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy. Curr Pharm Des 15:4003–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roberts NA, Martin JA, Kinchington D, Broadhurst AV, Craig JC, Duncan IB et al (1990) Rational design of peptide-based HIV proteinase inhibitors. Science 248:358–361

    Article  CAS  PubMed  Google Scholar 

  41. Erickson J, Neidhart DJ, VanDrie J, Kempf DJ, Wang XC, Norbeck DW et al (1990) Design, activity, and 2.8 A crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease. Science 249:527–533

    Article  CAS  PubMed  Google Scholar 

  42. Dorsey BD, Levin RB, McDaniel SL, Vacca JP, Guare JP, Darke PL et al (1994) L-735,524: the design of a potent and orally bioavailable HIV protease inhibitor. J Med Chem 37:3443–3451

    Article  CAS  PubMed  Google Scholar 

  43. Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216

    Article  CAS  PubMed  Google Scholar 

  44. Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053

    Article  CAS  PubMed  Google Scholar 

  45. Helguera AM, Combes RD, Gonzalez MP, Cordeiro MNDS (2008) Applications of 2D descriptors in drug design: a DRAGON tale. Curr Top Med Chem 8:1628–1655

    Article  CAS  PubMed  Google Scholar 

  46. Doweyko AM (1988) The hypothetical active site lattice. An approach to modelling active sites from data on inhibitor molecules. J Med Chem 31:1396–1406

    Article  CAS  PubMed  Google Scholar 

  47. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  48. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  PubMed  Google Scholar 

  49. Bhunia SS, Roy KK, Saxena AK (2011) Profiling the structural determinants for the selectivity of representative factor-Xa and thrombin inhibitors using combined ligand-based and structure-based approaches. J Chem Inf Model 51:1966–1985

    Article  CAS  PubMed  Google Scholar 

  50. Apex-3D (1993) InsightII, version2.3.0. BIOSYM Technologies, San Diego

    Google Scholar 

  51. Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67:370–372

    Article  CAS  PubMed  Google Scholar 

  52. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671

    Article  CAS  PubMed  Google Scholar 

  53. Dassault Systèmes BIOVIA (2015) Discovery studio modeling environment, release 4.5. Dassault Systèmes, San Diego, CA

    Google Scholar 

  54. Bhunia SS, Singh S, Saxena S, Saxena AK (2015) Pharmacophore modeling, docking and molecular dynamics studies on caspase-3 activators binding at beta-tubulin site. Curr Comput Aided Drug Des 11:72–83

    Article  CAS  PubMed  Google Scholar 

  55. Jones G, Willett P, Glen R (2000) GASP: genetic algorithm superimposition program. In: Guner OF (ed) Pharmacophore perception, development & use in drug design, vol 2. International University Line, La Jolla, CA, pp 85–106

    Google Scholar 

  56. Martin YC, Bures MG, Danaher EA, DeLazzer J, Lico I, Pavlik PA (1993) A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. J Comput Aided Mol Des 7:83–102

    Article  CAS  PubMed  Google Scholar 

  57. Richmond NJ, Abrams CA, Wolohan PR, Abrahamian E, Willett P, Clark RD (2006) GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D. J Comput Aided Mol Des 20:567–587

    Article  CAS  PubMed  Google Scholar 

  58. Prathipati P, Dixit A, Saxena AK (2007) Computer-aided drug design: integration of structure-based and ligand-based approaches in drug design. Curr Comput Aided Drug Des 3:133–148

    Article  CAS  Google Scholar 

  59. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  60. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  CAS  PubMed  Google Scholar 

  61. Cavasotto CN, Orry AJ (2007) Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 7:1006–1014

    Article  CAS  PubMed  Google Scholar 

  62. Saxena M, Bhunia SS, Saxena AK (2015) Molecular modelling studies on 2-substituted octahydropyrazinopyridoindoles for histamine H2 receptor antagonism. SAR QSAR Environ Res 26:739–755

    Article  CAS  PubMed  Google Scholar 

  63. Pitta E, Tsolaki E, Geronikaki A, Petrović J, Glamočlija J, Soković M et al (2015) 4-Thiazolidinone derivatives as potent antimicrobial agents: microwave-assisted synthesis, biological evaluation and docking studies. MedChemComm 6:319–326

    Article  CAS  Google Scholar 

  64. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein–ligand docking using GOLD. Proteins 52:609–623

    Article  CAS  PubMed  Google Scholar 

  66. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  PubMed  Google Scholar 

  67. Clark RD, Strizhev A, Leonard JM, Blake JF, Matthew JB (2002) Consensus scoring for ligand/protein interactions. J Mol Graph Model 20:281–295

    Article  CAS  PubMed  Google Scholar 

  68. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47:409–443

    Article  CAS  PubMed  Google Scholar 

  69. Krippahl L, Barahona P (2015) Protein docking with predicted constraints. Algorithms Mol Biol 10:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Azad CS, Bhunia SS, Krishna A, Shukla PK, Saxena AK (2014) Novel glycoconjugate of 8-fluoro norfloxacin derivatives as gentamicin-resistant Staphylococcus aureus inhibitors: synthesis and molecular modelling studies. Chem Biol Drug Des 86(4):440–446

    Article  CAS  Google Scholar 

  71. Saxena AK, Devillers J, Bhunia SS, Bro E (2015) Modelling inhibition of avian aromatase by azole pesticides. SAR QSAR Environ Res 26:757–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fischer M, Coleman RG, Fraser JS, Shoichet BK (2014) The incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery. Nat Chem 6:575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jain AN (2009) Effects of protein conformation in docking: improved pose prediction through protein pocket adaptation. J Comput Aided Mol Des 23:355–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5:789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McGovern SL, Shoichet BK (2003) Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J Med Chem 46:2895–2907

    Article  CAS  PubMed  Google Scholar 

  76. Larsson P, Wallner B, Lindahl E, Elofsson A (2008) Using multiple templates to improve quality of homology models in automated homology modeling. Protein Sci 17:990–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rataj K, Witek J, Mordalski S, Kościółek T, Bojarski AJ (2013) The importance of template choice in homology modeling. A 5-HT(6)R case study. J Cheminform 5:P8

    Article  PubMed Central  Google Scholar 

  78. Evers A, Klebe G (2004) Ligand-supported homology modeling of G-protein-coupled receptor sites: models sufficient for successful virtual screening. Angew Chem Int Ed Engl 43:248–251

    Article  CAS  PubMed  Google Scholar 

  79. Kumari P, Ghosh E, Shukla AK (2015) Emerging approaches to GPCR ligand screening for drug discovery. Trends Mol Med 21:687–701

    Article  CAS  PubMed  Google Scholar 

  80. Santos R, Hritz J, Oostenbrink C (2010) Role of water in molecular docking simulations of cytochrome P450 2D6. J Chem Inf Model 50:146–154

    Article  CAS  PubMed  Google Scholar 

  81. Kumar A, Zhang KY (2013) Investigation on the effect of key water molecules on docking performance in CSARdock exercise. J Chem Inf Model 53:1880–1892

    Article  CAS  PubMed  Google Scholar 

  82. Wang L, Berne BJ, Friesner RA (2011) Ligand binding to protein-binding pockets with wet and dry regions. Proc Natl Acad Sci 108:1326–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Salom D, Padayatti PS, Palczewski K (2013) Crystallization of G protein-coupled receptors. Methods Cell Biol 117:451–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xie XQ, Chowdhury A (2013) Advances in methods to characterize ligand-induced ionic lock and rotamer toggle molecular switch in G protein-coupled receptors. Methods Enzymol 520:153–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S (2012) Action of molecular switches in GPCRs – theoretical and experimental studies. Curr Med Chem 19:1090–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28:397–406

    Article  CAS  PubMed  Google Scholar 

  87. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krausz N, Choe H-W et al (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502

    Article  CAS  PubMed  Google Scholar 

  88. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS et al (2011) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tehan BG, Bortolato A, Blaney FE, Weir MP, Mason JS (2014) Unifying family A GPCR theories of activation. Pharmacol Ther 143:51–60

    Article  CAS  PubMed  Google Scholar 

  90. Sato J, Makita N, Iiri T (2016) Inverse agonism: the classic concept of GPCRs revisited. Endocr J 63(6):507–514

    Article  CAS  PubMed  Google Scholar 

  91. Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW et al (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450

    Article  CAS  PubMed  Google Scholar 

  92. Kang DS, Tian X, Benovic JL (2014) Role of beta-arrestins and arrestin domain-containing proteins in G protein-coupled receptor trafficking. Curr Opin Cell Biol 27:63–71

    Article  PubMed  CAS  Google Scholar 

  93. Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110:465–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Reiter E, Ahn S, Shukla AK, Lefkowitz RJ (2012) Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 52:179–197

    Article  CAS  PubMed  Google Scholar 

  95. Luttrell LM, Miller WE (2013) Arrestins as regulators of kinases and phosphatases. Prog Mol Biol Transl Sci 118:115–147

    Article  CAS  PubMed  Google Scholar 

  96. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273

    Article  CAS  PubMed  Google Scholar 

  97. Shukla AK, Singh G, Ghosh E (2014) Emerging structural insights into biased GPCR signaling. Trends Biochem Sci 39:594–602

    Article  CAS  PubMed  Google Scholar 

  98. DeWire SM, Violin JD (2011) Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology. Circ Res 109:205–216

    Article  CAS  PubMed  Google Scholar 

  99. Chang SD, Bruchas MR (2014) Functional selectivity at GPCRs: new opportunities in psychiatric drug discovery. Neuropsychopharmacology 39:248–249

    Article  CAS  PubMed  Google Scholar 

  100. Heilker R, Wolff M, Tautermann CS, Bieler M (2009) G-protein-coupled receptor-focused drug discovery using a target class platform approach. Drug Discov Today 14:231–240

    Article  CAS  PubMed  Google Scholar 

  101. Peeters MC, van Westen GJ, Li Q, IJzerman AP (2011) Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. Trends Pharmacol Sci 32:35–42

    Article  CAS  PubMed  Google Scholar 

  102. Wheatley M, Wootten D, Conner MT, Simms J, Kendrick R, Logan RT et al (2012) Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol 165:1688–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Klabunde T, Evers A (2005) GPCR antitarget modeling: pharmacophore models for biogenic amine binding GPCRs to avoid GPCR-mediated side effects. Chembiochem 6:876–889

    Article  CAS  PubMed  Google Scholar 

  104. Lee SM, Booe JM, Pioszak AA (2015) Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs. Eur J Pharmacol 763:196–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Magnani F, Pappas CG, Crook T, Magafa V, Cordopatis P, Ishiguro S et al (2014) Electronic sculpting of ligand-GPCR subtype selectivity: the case of angiotensin II. ACS Chem Biol 9:1420–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kruse AC, Kobilka BK, Gautam D, Sexton PM, Christopoulos A, Wess J (2014) Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov 13:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33:17–27

    Article  CAS  PubMed  Google Scholar 

  108. Conn PJ, Christopoulos A, Lindsley CW (2009) Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 8:41–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Conn PJ, Lindsley CW, Meiler J, Niswender CM (2014) Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Discov 13:692–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Urwyler S (2011) Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 63:59–126

    Article  CAS  PubMed  Google Scholar 

  111. Lane JR, Sexton PM, Christopoulos A (2013) Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends Pharmacol Sci 34:59–66

    Article  CAS  PubMed  Google Scholar 

  112. Kamal M, Jockers R (2009) Bitopic ligands: all-in-one orthosteric and allosteric. F1000 Biol Rep 1:77

    Article  PubMed  PubMed Central  Google Scholar 

  113. Valant C, Robert Lane J, Sexton PM, Christopoulos A (2012) The best of both worlds? Bitopic orthosteric/allosteric ligands of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 52:153–178

    Article  CAS  PubMed  Google Scholar 

  114. Charifson PS, Bowen JP, Wyrick SD, Hoffman AJ, Cory M, McPhail AT et al (1989) Conformational analysis and molecular modeling of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines as D1 dopamine receptor ligands. J Med Chem 32:2050–2058

    Article  CAS  PubMed  Google Scholar 

  115. Mottola DM, Laiter S, Watts VJ, Tropsha A, Wyrick SD, Nichols DE et al (1996) Conformational analysis of D1 dopamine receptor agonists: pharmacophore assessment and receptor mapping. J Med Chem 39:285–296

    Article  CAS  PubMed  Google Scholar 

  116. Wilcox RE, Tseng T, Brusniak MY, Ginsburg B, Pearlman RS, Teeter M et al (1998) CoMFA-based prediction of agonist affinities at recombinant D1 vs D2 dopamine receptors. J Med Chem 41:4385–4399

    Article  CAS  PubMed  Google Scholar 

  117. Tonani R, Dunbar J Jr, Edmonston B, Marshall GR (1987) Computer-aided molecular modeling of a D2-agonist dopamine pharmacophore. J Comput Aided Mol Des 1:121–132

    Article  CAS  PubMed  Google Scholar 

  118. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  119. Archer E, Maigret B, Escrieut C, Pradayrol L, Fourmy D (2003) Rhodopsin crystal: new template yielding realistic models of G-protein-coupled receptors? Trends Pharmacol Sci 24:36–40

    Article  CAS  PubMed  Google Scholar 

  120. Bissantz C, Bernard P, Hibert M, Rognan D (2003) Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets? Proteins 50:5–25

    Article  CAS  PubMed  Google Scholar 

  121. Mobarec JC, Sanchez R, Filizola M (2009) Modern homology modeling of G-protein coupled receptors: which structural template to use? J Med Chem 52:5207–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V et al (2010) Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 132:11443–11445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR et al (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG et al (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA et al (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V et al (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G et al (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335:851–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E et al (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK et al (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485:321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E et al (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485:327–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS et al (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R et al (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dore AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B et al (2011) Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19:1283–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chun E, Thompson AA, Liu W, Roth CB, Griffith MT, Katritch V et al (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20:967–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chaudhari R, Heim AJ, Li Z (2015) Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions. J Comput Aided Mol Des 29:413–420

    Article  CAS  PubMed  Google Scholar 

  139. Latek D, Pasznik P, Carlomagno T, Filipek S (2013) Towards improved quality of GPCR models by usage of multiple templates and profile-profile comparison. PLoS One 8:e56742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Perry SR, Xu W, Wirija A, Lim J, Yau MK, Stoermer MJ et al (2015) Three homology models of PAR2 derived from different templates: application to antagonist discovery. J Chem Inf Model 55:1181–1191

    Article  CAS  PubMed  Google Scholar 

  141. Levit A, Barak D, Behrens M, Meyerhof W, Niv MY (2012) Homology model-assisted elucidation of binding sites in GPCRs. Methods Mol Biol 914:179–205

    CAS  PubMed  Google Scholar 

  142. Rodriguez D, Ranganathan A, Carlsson J (2014) Strategies for improved modeling of GPCR-drug complexes: blind predictions of serotonin receptors bound to ergotamine. J Chem Inf Model 54:2004–2021

    Article  CAS  PubMed  Google Scholar 

  143. Cavasotto CN, Palomba D (2015) Expanding the horizons of G protein-coupled receptor structure-based ligand discovery and optimization using homology models. Chem Commun (Camb) 51:13576–13594

    Article  CAS  Google Scholar 

  144. Bremner JB, Coban B, Griffith R (1996) Pharmacophore development for antagonists at alpha 1 adrenergic receptor subtypes. J Comput Aided Mol Des 10:545–557

    Article  CAS  PubMed  Google Scholar 

  145. Bremner JB, Coban B, Griffith R, Groenewoud KM, Yates BF (2000) Ligand design for alpha1 adrenoceptor subtype selective antagonists. Bioorg Med Chem 8:201–214

    Article  CAS  PubMed  Google Scholar 

  146. Sleight AJ, Koek W, Bigg DCH (1993) Binding of antipsychotic drugs at α1A- and α1B-adrenoceptors: risperidone is selective for the α1B-adrenoceptors. Eur J Pharmacol 238:407–410

    Article  CAS  PubMed  Google Scholar 

  147. Wetzel JM, Salon SA, Tamm JA, Forray C, Craig D, Nakanishi H et al (1996) Modeling and mutagenesis of the human alpha 1a-adrenoceptor: orientation and function of transmembrane helix V sidechains. Receptors Channels 4:165–177

    CAS  PubMed  Google Scholar 

  148. Barbaro R, Betti L, Botta M, Corelli F, Giannaccini G, Maccari L et al (2001) Synthesis, biological evaluation, and pharmacophore generation of new pyridazinone derivatives with affinity toward α1- and α2-adrenoceptors1. J Med Chem 44:2118–2132

    Article  CAS  PubMed  Google Scholar 

  149. Sinha N, Jain S, Saxena AK, Anand N, Saxena RM, Dubey MP et al (2000). Methods for preparing 1-[4-arylpiperazin-1-yl]-3-[2-oxopyrrolidin/piperidin-1-yl] propanes. Google Patents

    Google Scholar 

  150. Sinha N, Jain S, Saxena AK, Anand N, Saxena RM, Dubey MP et al (2000). 1-[4-arylpiperazin-1-yl]-3-[2-oxopyrrolidin/piperidin-1-yl]propanes and their use in medical treatments. Google Patents

    Google Scholar 

  151. Li M-Y, Tsai K-C, Xia L (2005) Pharmacophore identification of α1A-adrenoceptor antagonists. Bioorg Med Chem Lett 15:657–664

    Article  CAS  PubMed  Google Scholar 

  152. Li M, Fang H, Du L, Xia L, Wang B (2008) Computational studies of the binding site of alpha1A-adrenoceptor antagonists. J Mol Model 14:957–966

    Article  CAS  PubMed  Google Scholar 

  153. Waugh DJ, Gaivin RJ, Zuscik MJ, Gonzalez-Cabrera P, Ross SA, Yun J et al (2001) Phe-308 and Phe-312 in transmembrane domain 7 are major sites of alpha 1-adrenergic receptor antagonist binding. Imidazoline agonists bind like antagonists. J Biol Chem 276:25366–25371

    Article  CAS  PubMed  Google Scholar 

  154. Ahmed M, Hossain M, Bhuiyan MA, Ishiguro M, Tanaka T, Muramatsu I et al (2008) Mutational analysis of the alpha 1a-adrenergic receptor binding pocket of antagonists by radioligand binding assay. Biol Pharm Bull 31:598–601

    Article  CAS  PubMed  Google Scholar 

  155. Evers A, Klabunde T (2005) Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor. J Med Chem 48:1088–1097

    Article  CAS  PubMed  Google Scholar 

  156. Hamaguchi N, True TA, Saussy DL Jr, Jeffs PW (1996) Phenylalanine in the second membrane-spanning domain of alpha 1A-adrenergic receptor determines subtype selectivity of dihydropyridine antagonists. Biochemistry 35:14312–14317

    Article  CAS  PubMed  Google Scholar 

  157. Hamaguchi N, True TA, Goetz AS, Stouffer MJ, Lybrand TP, Jeffs PW (1998) Alpha 1-adrenergic receptor subtype determinants for 4-piperidyl oxazole antagonists. Biochemistry 37:5730–5737

    Article  CAS  PubMed  Google Scholar 

  158. Evers A, Hessler G, Matter H, Klabunde T (2005) Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. J Med Chem 48:5448–5465

    Article  CAS  PubMed  Google Scholar 

  159. MacDougall IJ, Griffith R (2006) Selective pharmacophore design for alpha1-adrenoceptor subtypes. J Mol Graph Model 25:146–157

    Article  CAS  PubMed  Google Scholar 

  160. Maïga A, Dupont M, Blanchet G, Marcon E, Gilquin B, Servent D et al (2014) Molecular exploration of the α1A-adrenoceptor orthosteric site: binding site definition for epinephrine, HEAT and prazosin. FEBS Lett 588:4613–4619

    Article  PubMed  CAS  Google Scholar 

  161. Chen J, Campbell AP, Urmi KF, Wakelin LPG, Denny WA, Griffith R et al (2014) Human α1-adrenoceptor subtype selectivity of substituted homobivalent 4-aminoquinolines. Bioorg Med Chem 22:5910–5916

    Article  CAS  PubMed  Google Scholar 

  162. Pandey N, Yadav M, Nayarisseri A, Ojha M, Prajapati J, Gupta S (2013) Cross evaluation of different classes of alpha-adrenergic receptor antagonists to identify overlapping pharmacophoric requirements. J Pharm Res 6:173–178

    CAS  Google Scholar 

  163. Gupta AK, Saxena AK (2010) 3D-QSAR CoMFA and CoMSIA studies on a set of diverse α1a-adrenergic receptor antagonists. Med Chem Res 20:1455–1464

    Article  CAS  Google Scholar 

  164. Maciejewska D, Żołek T, Herold F (2006) CoMFA methodology in structure-activity analysis of hexahydro- and octahydropyrido[1,2-c]pyrimidine derivatives based on affinity towards 5-HT1A, 5-HT2A and α1-adrenergic receptors. J Mol Graph Model 25:353–362

    Article  CAS  PubMed  Google Scholar 

  165. Li M, Xia L (2007) Rational design, synthesis, biologic evaluation, and structure–activity relationship studies of novel 1-indanone α1-adrenoceptor antagonists. Chem Biol Drug Des 70:461–464

    Article  CAS  PubMed  Google Scholar 

  166. Thobois S (2006) Proposed dose equivalence for rapid switch between dopamine receptor agonists in Parkinson’s disease: a review of the literature. Clin Ther 28:1–12

    Article  CAS  PubMed  Google Scholar 

  167. Taravini IR, Larramendy C, Gomez G, Saborido MD, Spaans F, Fresno C et al (2016) Contrasting gene expression patterns induced by levodopa and pramipexole treatments in the rat model of Parkinson’s disease. Neuropharmacology 101:576–589

    Article  CAS  PubMed  Google Scholar 

  168. Ravenscroft P, Chalon S, Brotchie JM, Crossman AR (2004) Ropinirole versus L-DOPA effects on striatal opioid peptide precursors in a rodent model of Parkinson’s disease: implications for dyskinesia. Exp Neurol 185:36–46

    Article  CAS  PubMed  Google Scholar 

  169. Freeman HS, McDermed JD (1982) Chemical regulation of biological mechanisms. Royal Society of Chemistry, London, pp 154–165

    Google Scholar 

  170. McDermed JD, Freeman HS, Ferris RM (1979) Enantioselective binding of (+) and (-) 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalenes and related agonists to dopamine receptors. In: Usdin E (ed) Catacholamines: basic and clinical frontiers, vol 1. Pergamon Press, New York, NY, p 568

    Chapter  Google Scholar 

  171. Mewshaw RE, Kavanagh J, Stack G, Marquis KL, Shi X, Kagan MZ et al (1997) New generation dopaminergic agents. 1. Discovery of a novel scaffold which embraces the D2 agonist pharmacophore. Structure-activity relationships of a series of 2-(aminomethyl)chromans. J Med Chem 40:4235–4256

    Article  CAS  PubMed  Google Scholar 

  172. Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32:229–313

    CAS  PubMed  Google Scholar 

  173. McDermed JD, McKenzie GM, Freeman HS (1976) Synthesis and dopaminergic activity of (+-)-, (+)-, and (-)-2-dipropylamino-5-hydroxy-1,2,3,4-tetrahydronaphthalene. J Med Chem 19:547–549

    Article  CAS  PubMed  Google Scholar 

  174. Freeman H, McDermed J (1982) Chemical regulation of biological mechanisms. In: Proceedings of the 1st Medicinal Chemistry Symposium, Cambridge, England, Sept 1981 (special publication/Royal Society of Chemistry ISSN 0260-6291; No 42)

    Google Scholar 

  175. McDermed J, Freeman H, Ferris R (1979) In: Usdin E, Kopin I, Barchas J (eds) Chemical regulation of biological mechanisms, vol 1. Pergamon Press, New York, NY, p 568

    Google Scholar 

  176. Hjorth S, Carlsson A, Wikström H, Lindberg P, Sanchez D, Hacksell U et al (1981) 3-PPP, a new centrally acting DA-receptor agonist with selectivity for autoreceptors. Life Sci 28:1225–1238

    Article  CAS  PubMed  Google Scholar 

  177. Hjorth S, Carlsson A, Clark D, Svensson K, Wikström H, Sanchez D et al (1983) Central dopamine receptor agonist and antagonist actions of the enantiomers of 3-PPP. Psychopharmacology (Berl) 81:89–99

    Article  CAS  Google Scholar 

  178. Riffee W, Wilcox R, Smith R, Davis P, Brubaker A (1981) Proceedings of a satellite symposium to the 8th International Congress of Pharmacology, Okayama, Japan. Pergamon Press, New York, NY

    Google Scholar 

  179. Wikstroem H, Sanchez D, Lindberg P, Arvidsson L-E, Hacksell U, Johansson A et al (1982) Monophenolic octahydrobenzo[f]quinolines: central dopamine- and serotonin-receptor stimulating activity. J Med Chem 25:925–931

    Article  CAS  Google Scholar 

  180. Wikstroem H, Andersson B, Sanchez D, Lindberg P, Arvidsson LE, Johansson AM et al (1985) Resolved monophenolic 2-aminotetralins and 1,2,3,4,4a,5,6,10b-octahydrobenzo[f]quinolines: structural and stereochemical considerations for centrally acting pre- and postsynaptic dopamine-receptor agonists. J Med Chem 28:215–225

    Article  CAS  Google Scholar 

  181. Wikstroem H, Sanchez D, Lindberg P, Hacksell U, Arvidsson LE, Johnsson AM et al (1984) Resolved 3-(3-hydroxyphenyl)-N-n-propylpiperidine and its analogs: central dopamine receptor activity. J Med Chem 27:1030–1036

    Article  CAS  Google Scholar 

  182. Wikstrom H, Andersson B, Sanchez D, Lindberg P, Arvidsson LE, Johansson AM et al (1985) Resolved monophenolic 2-aminotetralins and 1,2,3,4,4a,5,6,10b-octahydrobenzo[f]quinolines: structural and stereochemical considerations for centrally acting pre- and postsynaptic dopamine-receptor agonists. J Med Chem 28:215–225

    Article  CAS  PubMed  Google Scholar 

  183. Liljefors T, Wikstrom H (1986) A molecular mechanics approach to the understanding of presynaptic selectivity for centrally acting dopamine receptor agonists of the phenylpiperidine series. J Med Chem 29:1896–1904

    Article  CAS  PubMed  Google Scholar 

  184. Liljefors T, Bogeso KP, Hyttel J, Wikstrom H, Svensson K, Carlsson A (1990) Pre- and postsynaptic dopaminergic activities of indolizidine and quinolizidine derivatives of 3-(3-hydroxyphenyl)-N-(n-propyl)piperidine (3-PPP). Further developments of a dopamine receptor model. J Med Chem 33:1015–1022

    Article  CAS  PubMed  Google Scholar 

  185. Chidester CG, Lin CH, Lahti RA, Haadsma-Svensson SR, Smith MW (1993) Comparison of 5-HT1A and dopamine D2 pharmacophores. X-ray structures and affinities of conformationally constrained ligands. J Med Chem 36:1301–1315

    Article  CAS  PubMed  Google Scholar 

  186. Seeman P, Westman K, Protiva M, Jilek J, Jain PC, Saxena AK et al (1979) Neuroleptic receptors: stereoselectivity for neuroleptic enantiomers. Eur J Pharmacol 56:247–251

    Article  CAS  PubMed  Google Scholar 

  187. Saxena AK, Singh HK, Dhawan BN, Anand N (1986). A process for the synthesis of cis-4-substituted 1,2,3,4,4a,5,6,11c-octahydro-7H-pyrido(2,3-c)carbazoles as potential dopaminergic agents. Indian Patent 167494

    Google Scholar 

  188. Saxena AK, Singh HK, Dhawan BN, Anand N (1986). A process for the synthesis of 1-alkyl substituted 1,2,3,4,4a,5,11,11a-octahydro-6H-pyrido(3,2-b)carbazoles. Indian Patent 167492

    Google Scholar 

  189. Saxena AK, Singh HK, Dhawan BN, Anand N (1986). A process for the synthesis of cis-1-methyl 1,2,3,4,4a,5,11,11a-octahydro-6H-pyrido(3,2-b)carbazole. Indian Patent 165919

    Google Scholar 

  190. Saxena AK, Singh HK, Dhawan BN, Anand N (1986). A process for the synthesis of cis-4-alkyl substituted 1,2,3,4,4a,5,6,11c-octahydro-7H-pyrido(2,3-c)carbazole. Indian Patent 167493

    Google Scholar 

  191. Mehta P, Kumar Y, Saxena AK, Gulati AK, Singh HK, Anand N (1991) Synthesis of cis & trans 1-substituted 1,2,3,4,4a,5,11,11a-octahydro-6H-pyrido(3,2-b)carbazoles, 4-substituted-1,2,3,4,4a,5,6,11c-octahydro-7H-pyrido(2,3-c)-carbazoles, cis-4-methyl-1,2,3,4,4a,5,6,12b-octahydro-7H-pyrido(2,3-c)-acridine & cis-1-methyl-1,2,3,4,-4a,5,12,12a-octahydro-6H-pyrido(3,2-b)acridine – a new class of potential antiparkinsonian agents. Indian J Chem 213–221

    Google Scholar 

  192. Krogsgaard-Larsen N, Harpsoe K, Kehler J, Christoffersen CT, Brosen P, Balle T (2014) Revision of the classical dopamine D2 agonist pharmacophore based on an integrated medicinal chemistry, homology modelling and computational docking approach. Neurochem Res 39:1997–2007

    Article  CAS  PubMed  Google Scholar 

  193. Malo M, Brive L, Luthman K, Svensson P (2010) Selective pharmacophore models of dopamine D(1) and D(2) full agonists based on extended pharmacophore features. ChemMedChem 5:232–246

    Article  CAS  PubMed  Google Scholar 

  194. Malo M, Brive L, Luthman K, Svensson P (2012) Investigation of D(2) receptor–agonist interactions using a combination of pharmacophore and receptor homology modeling. ChemMedChem 7:471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Saxena M, Gaur S, Prathipati P, Saxena AK (2006) Synthesis of some substituted pyrazinopyridoindoles and 3D QSAR studies along with related compounds: piperazines, piperidines, pyrazinoisoquinolines, and diphenhydramine, and its semi-rigid analogs as antihistamines (H1). Bioorg Med Chem 14:8249–8258

    Article  CAS  PubMed  Google Scholar 

  196. ter Laak AM, Venhorst J, Donne-Op den Kelder GM, Timmerman H (1995) The histamine H1-receptor antagonist binding site. A stereoselective pharmacophoric model based upon (semi-)rigid H1-antagonists and including a known interaction site on the receptor. J Med Chem 38:3351–3360

    Article  PubMed  Google Scholar 

  197. Saxena AK, Alam I, Dixit A, Saxena M (2008) Internet resources in GPCR modelling. SAR QSAR Environ Res 19:11–25

    Article  CAS  PubMed  Google Scholar 

  198. Saxena M, Bhunia SS, Saxena AK (2012) Docking studies of novel pyrazinopyridoindoles class of antihistamines with the homology modelled H(1)-receptor. SAR QSAR Environ Res 23:311–325

    Article  CAS  PubMed  Google Scholar 

  199. Saxena AK, Dhaon MK, Ram S, Saxena M, Jain PC, Patnaik GK, Anand N (1983) Synthesis & QSAR in 2-substituted 1,2,3,4,6,7,12,12a,-Octahydropyrazino[2′,1′:6,1]pyrido[3,4-b]indoles-a new class of H1-antagonists. Ind J Chem 22B:1224–1232

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saxena, A.K., Bhunia, S.S., Saxena, M. (2017). Integration on Ligand and Structure Based Approaches in GPCRs. In: Lebon, G. (eds) Structure and Function of GPCRs. Topics in Medicinal Chemistry, vol 30. Springer, Cham. https://doi.org/10.1007/7355_2016_24

Download citation

Publish with us

Policies and ethics