Skip to main content

Chemistry of 1,2,3-Triazolium Salts

  • Chapter
  • First Online:
Chemistry of 1,2,3-triazoles

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 40))

Abstract

1,2,3-Triazolium salts have been known for a long time. However, their potential as ionic liquids and catalysts was recognized only quite recently. 1,2,3-Triazolium ionic liquids can serve as solvent, as catalyst, as hosts in anion recognition and as components of molecular machines. The major trends in application involve tethering catalytically active species such as (S)-proline with triazolium ionic liquids and the use as anion recognizing organocatalysts. Such catalysts are interesting not only due to their recyclability but also because of their outstanding tuneable properties. They can have wide liquid range, thermal stability, tuneable polarity, low flammability, tuneable solubility and low vapour pressure along with ease of separation. The syntheses of 1,2,3- triazolium salts are mainly based on the copper catalysed azide-alkyne cycloaddition (CuAAC) as the most famous click reaction, and subsequent N-alkylation of the resulting 1,2,3-triazoles. This synthetic route has the advantage of having four structural units, i.e. the alkyne, the azide, the alkylating agent and the counter anion that can be manipulated in order to tune the properties of the resulting ionic liquid. Unlike the imidazolium ionic liquids 1,2,3-triazolium salts do not have an acidic proton at position 2, which could make them inappropriate for reactions under basic conditions. The low acidity of 1,2,3-triazolium salts in position 4 is exploited in the formation of 1,2,3-triazol-4-ylidene metal complexes with marked catalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ar:

Aryl

Bn:

Benzyl

Boc:

Tert-butoxycarbonyl

cat:

Catalyst

Cbz:

Benzyloxycarbonyl

CuAAC:

Copper catalysed azide-alkyne cycloaddition

d:

Day(s)

DABCO:

1,4-diazabicyclo[2.2.2]octane

DCC:

N N-dicyclohexylcarbodiimide

DMAP:

4-(N N-dimethylamino)pyridine

DMF:

N N-dimethylformamide

DMSO:

Dimethyl sulphoxide

dr:

Diastereomer ratio

ee:

Enantiomer excess

equiv:

Equivalent(s)

Et:

Ethyl

Fmoc:

9-Fluorenylmethoxycarbonyl

h:

Hour(s)

IL(s):

Ionic liquids

iPr:

Isopropyl

KHMDS:

Potassium hexamethyldisilazide potassium bis(trimethylsilyl)amide

LDA:

Lithium diisopropylamide

Me:

Methyl

min:

Minute(s)

mol:

Mole(s)

nBu:

n-butyl

Nu:

Nucleophile

Ph:

Phenyl

Pr:

Propyl

py:

Pyridine

rt:

Room temperature

RTILs:

Room temperature ionic liquids

s:

Second(s)

TBAF:

Tetrabutylammonium fluoride

TBDMS:

Tert-butyldimethylsilyl

Tf:

Trifluoromethanesulphonyl (triflyl)

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

TIPS:

Triisopropylsilyl

TMEDA:

N,N,N′,N′-t etramethyl- 1,2-ethylenediamine

TMS:

Trimethylsilyl

Ts:

Tosyl (Tosyl) 4-toluenesulphonyl

References

  1. Zhou ZB, Matsumoto H, Tatsumi K (2005) Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem Eur J 11:7522

    Google Scholar 

  2. Sun J, Forsyth M, MacFarlane DR (1998) Room-temperature molten salts based on the quaternary ammonium ion. J Phys Chem B 102:88583

    Google Scholar 

  3. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:61034

    Google Scholar 

  4. Zhou ZB, Matsumoto H, Tatsumi K (2004) Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem Eur J 10:65815

    Google Scholar 

  5. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:11686

    Google Scholar 

  6. Saravanamurugan S, Fehrmann R, Riisager A (2012) Synthesis and characterization of ammonium-, pyridinium-, and pyrrolidinium-based sulfonamido functionalized ionic liquids. Synthetic Commun 42:33837

    Google Scholar 

  7. Fraser KJ, MacFarlane DR (2009) Phosphonium-based ionic liquids: an overview. Aust J Chem 62:3098

    Google Scholar 

  8. Khan SS, Hanelt S, Liebscher J (2009) Versatile synthesis of 1, 2, 3-triazolium-based ionic liquids. Arkivoc xii:1939

    Google Scholar 

  9. Hanelt S, Liebscher J (2008) A novel and versatile access to task-specific ionic liquids based on 1,2,3-triazolium salts. Synlett 7:1058

    Google Scholar 

  10. Drake G, Hawkins T, Tollison K, Hall L, Vij A, Sobaski S (2005) (1R)-4-amino-1,2,4-triazolium salts: New families of ionic liquids. Acs Sym Ser 902:259

    CAS  Google Scholar 

  11. Borowiecki P, Poterala M, Maurin J, Wielechowska M, Plenkiewicz J (2012) Preparation and thermal stability of optically active 1,2,4-triazolium-based ionic liquids. Arkivoc 2012:262

    Google Scholar 

  12. Aupoix A, Vo-Thanh G (2009) Solvent-free synthesis of Alkylthiazolium-based ionic liquids and their use as catalysts in the intramolecular stetter reaction. Synlett 12:1915

    Google Scholar 

  13. Hillesheim PC, Mahurin SM, Fulvio PF, Yeary JS, Oyola Y, Jiang DE, Dai S (2012) Synthesis and characterization of thiazolium-based room temperature ionic liquids for gas separations. Ind Eng Chem Res 51:11530

    CAS  Google Scholar 

  14. Zhang QH, Liu SM, Li ZP, Li J, Chen ZJ, Wang RF, Lu LJ, Deng YQ (2009) Novel cyclic sulfonium-based ionic liquids: synthesis, characterization, and physicochemical properties. Chem Eur J 15:765

    CAS  Google Scholar 

  15. Chiappe C, Sanzone A, Mendola D, Castiglione F, Famulari A, Raos G, Mele A (2013) Pyrazolium- versus imidazolium-based ionic liquids: structure, dynamics and physicochemical properties. J Phys Chem B 117:668

    CAS  Google Scholar 

  16. Chai M, Jin YD, Fang SH, Yang L, Hirano S, Tachibana K (2012) Low-viscosity ether-functionalized pyrazolium ionic liquids as new electrolytes for lithium battery. J Power Sources 216:323

    CAS  Google Scholar 

  17. Rogers RD, Seddon KR, American Chemical Society, Division of Industrial and Engineering Chemistry, American Chemical Society. Meeting (2002) Ionic liquids: industrial applications for green chemistry. American Chemical Society, Washington, D.C., xiv 474 p

    Google Scholar 

  18. Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim, xvi p

    Google Scholar 

  19. Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667

    CAS  Google Scholar 

  20. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071

    CAS  Google Scholar 

  21. Sowmiah S, Srinivasadesikan V, Tseng MC, Chu YH (2009) On the chemical stabilities of ionic liquids. Molecules 14:3780

    CAS  Google Scholar 

  22. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123

    CAS  Google Scholar 

  23. Yacob Z, Liebscher J (2011) 1,2,3-Triazolium salts as a versatile new class of ionic liquids. In: Handy TS (ed) Ionic liquids – classes and properties, InTech: 2011, vol Part 1, DOI:10.5772/24349

  24. Aizpurua JM, Fratila RM, Monasterio Z, Pérez-Esnaola N, Andreieff E, Irastorza A, Sagartzazu-Aizpurua M (2014) Triazolium cations: from the “click” pool to multipurpose applications. New J Chem 38:474

    CAS  Google Scholar 

  25. Hein JE, Fokin VV (2010) Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem Soc Rev 39:1302

    CAS  Google Scholar 

  26. Gompper R (1957) Untersuchungen in Der Azolreihe.5. Umsetzungen Der Oxazolone-(2) Mit Metallorganischen Verbindungen. Chem Ber 90:374

    CAS  Google Scholar 

  27. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004

    CAS  Google Scholar 

  28. Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057

    CAS  Google Scholar 

  29. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596

    CAS  Google Scholar 

  30. Rodionov VO, Presolski SI, Diaz DD, Fokin VV, Finn MG (2007) Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc 129:12705

    CAS  Google Scholar 

  31. Rodionov VO, Presolski SI, Gardinier S, Lim YH, Finn MG (2007) Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition. J Am Chem Soc 129:12696

    CAS  Google Scholar 

  32. Liu MN, Reiser O (2011) A Copper(I) isonitrile complex as a heterogeneous catalyst for azide-alkyne cycloaddition in water. Org Lett 13:1102

    CAS  Google Scholar 

  33. Orgueira HA, Fokas D, Isome Y, Chan PCM, Baldino CM (2005) Regioselective synthesis of [1,2,3]-triazoles catalyzed by Cu(I) generated in situ from Cu(0) nanosize activated powder and amine hydrochloride salts. Tetrahedron Lett 46:2911

    CAS  Google Scholar 

  34. Pachon LD, van Maarseveen JH, Rothenberg G (2005) Click chemistry: Copper clusters catalyse the cycloaddition of azides with terminal alkynes. Adv Synth Catal 347:811

    Google Scholar 

  35. Baig RBN, Varma RS (2013) Copper on chitosan: a recyclable heterogeneous catalyst for azide-alkyne cycloaddition reactions in water. Green Chem 15:1839

    CAS  Google Scholar 

  36. Wittig G, Krebs A (1961) Zur Existenz Niedergliedriger Cycloalkine .1. Chem Ber-Recl 94:3260

    CAS  Google Scholar 

  37. Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci U S A 104:16793

    CAS  Google Scholar 

  38. Debets MF, van Berkel SS, Schoffelen S, Rutjes FPJT, van Hest JCM, van Delft FL (2010) Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. Chem Commun 46:97

    CAS  Google Scholar 

  39. Bernardin A, Cazet A, Guyon L, Delannoy P, Vinet F, Bonnaffe D, Texier I (2010) Copper-free click chemistry for highly luminescent quantum dot conjugates: application to in vivo metabolic imaging. Bioconjug Chem 21:583

    CAS  Google Scholar 

  40. Kwok SW, Fotsing JR, Fraser RJ, Rodionov VO, Fokin VV (2010) Transition-metal-free catalytic synthesis of 1,5-diaryl-1,2,3-triazoles. Org Lett 12:4217

    CAS  Google Scholar 

  41. Yan JC, Wang L (2010) Synthesis of 1,4-disubstituted 1,2,3-triazoles by use of copper(I) and amino acids ionic liquid catalytic system. Synthesis 3:447

    Google Scholar 

  42. Fletcher JT, Keeney ME, Walz SE (2010) 1-Allyl- and 1-benzyl-3-methyl-1,2,3-triazolium salts via tandem click transformations. Synthesis 19:3339

    Google Scholar 

  43. Zhang L, Chen X, Xue P, Sun HH, Williams ID, Sharpless KB, Fokin VV, Jia G (2005) Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J Am Chem Soc 127:15998

    CAS  Google Scholar 

  44. Johansson JR, Lincoln P, Norden B, Kann N (2011) Sequential one-pot ruthenium-catalyzed azide-alkyne cycloaddition from primary alkyl halides and sodium azide. J Org Chem 76:2355

    CAS  Google Scholar 

  45. Chuprakov S, Chernyak N, Dudnik AS, Gevorgyan V (2007) Direct Pd-catalyzed arylation of 1,2,3-triazoles. Org Lett 9:2333

    CAS  Google Scholar 

  46. Coats SJ, Link JS, Gauthier D, Hlasta DJ (2005) Trimethylsilyl-directed 1,3-dipolar cycloaddition reactions in the solid-phase synthesis of 1,2,3-triazoles. Org Lett 7:1469

    CAS  Google Scholar 

  47. Kloss F, Kohn U, Jahn BO, Hager MD, Gorls H, Schubert US (2011) Metal-free 1,5-regioselective azide-alkyne [3+2]-cycloaddition. Chem Asian J 6:2816

    CAS  Google Scholar 

  48. Koguchi S, Izawa K (2012) A new method for the synthesis of 1,5-disubstituted 1,2,3-triazoles via triazolium salt intermediates. Synthesis 44:3603

    CAS  Google Scholar 

  49. Begtrup M (1971) Reactions between azolium salts and nucleophilic reagents.2. Bromo-1,2,3-triazolium salts and sodium hydroxide. Acta Chem Scand 25:249

    CAS  Google Scholar 

  50. Drake G, Hawkins T, Brand A, Hall L, Mckay M, Vij A, Ismail I (2003) Energetic, low-melting salts of simple heterocycles. Propell Explos Pyrot 28:174

    CAS  Google Scholar 

  51. Khan SS, Shah J, Liebscher J (2010) Synthesis of new ionic-liquid-tagged organocatalysts and their application in stereoselective direct aldol reactions. Tetrahedron 66:5082

    CAS  Google Scholar 

  52. Jeong Y, Ryu JS (2010) Synthesis of 1,3-dialkyl-1,2,3-triazolium ionic liquids and their applications to the Baylis-Hillman reaction. J Org Chem 75:4183

    CAS  Google Scholar 

  53. Begtrup M, Larsen P (1990) Alkylation, acylation and silylation of azoles. Acta Chem Scand 44:1050

    CAS  Google Scholar 

  54. Jeong Y, Kim DY, Choi Y, Ryu JS (2011) Intramolecular hydroalkoxylation in Bronsted acidic ionic liquids and its application to the synthesis of (+/-)-centrolobine. Org Biomol Chem 9:374

    CAS  Google Scholar 

  55. Yoshida Y, Takizawa S, Sasai H (2012) Design and synthesis of spiro bis(1,2,3-triazolium) salts as chiral ionic liquids. Tetrahedron Asymmetry 23:843

    CAS  Google Scholar 

  56. Yoshida Y, Takizawa S, Sasai H (2011) Synthesis of spiro bis(1,2,3-triazolium) salts as chiral ionic liquids. Tetrahedron Lett 52:6877

    CAS  Google Scholar 

  57. Aizpurua JM, Sagartzazu-Aizpurua M, Azcune I, Miranda JI, Monasterio Z, Garcia-Lecina E, Fratila RM (2011) ‘Click’ synthesis of nonsymmetrical 4,4′-Bis(1,2,3-triazolium) salts. Synthesis 17:2737

    Google Scholar 

  58. Khan SS, Liebscher J (2010) Synthesis of new dicationic azolium salts and their application as NHC precursors in Suzuki–Miyaura coupling. Synthesis 15:2609

    Google Scholar 

  59. Schulze B, Friebe C, Hager MD, Gunther W, Kohn U, Jahn BO, Gorls H, Schubert US (2010) Anion complexation by triazolium “Ligands”: mono- and bis-tridentate complexes of sulfate. Org Lett 12:2710

    CAS  Google Scholar 

  60. Dimitrov-Raytchev P, Beghdadi S, Serghei A, Drockenmuller E (2013) Main-chain 1,2,3-triazolium-based poly(ionic liquid)s issued from AB plus AB click chemistry polyaddition. J Polym Sci Polym Chem 51:34

    CAS  Google Scholar 

  61. Mathew P, Neels A, Albrecht M (2008) 1,2,3-triazolylidenes as versatile abnormal carbene ligands for late transition metals. J Am Chem Soc 130:13534

    CAS  Google Scholar 

  62. Yacob Z, Shah J, Leistner J, Liebscher J (2008) (S)-pyrrolidin-2-ylmethyl-1,2,3-triazolium salts – Ionic liquid supported organocatalysts for enantioselective Michael additions to beta-nitrostyrenes. Synlett 15:2342

    Google Scholar 

  63. Allen JJ, Schneider Y, Kail BW, Luebke DR, Nulwala H, Damodaran K (2013) Nuclear spin relaxation and molecular interactions of a novel triazolium-based ionic liquid. J Phys Chem B 117:3877

    CAS  Google Scholar 

  64. White NG, Carvalho S, Felix V, Beer PD (2012) Anion binding in aqueous media by a tetra-triazolium macrocycle. Org Biomol Chem 10:6951

    CAS  Google Scholar 

  65. Tseng MC, Cheng HT, Shen MJ, Chu YH (2011) Bicyclic 1,2,3-triazolium ionic liquids: synthesis, characterization, and application to Rutaecarpine synthesis. Org Lett 13:4434

    CAS  Google Scholar 

  66. Shah J, Khan SS, Blumenthal H, Liebscher J (2009) 1,2,3-Triazolium-tagged prolines and their application in asymmetric Aldol and Michael reactions. Synthesis 23:3975

    Google Scholar 

  67. Khan SS, Shah J, Liebscher J (2011) Ionic-liquid tagged prolines as recyclable organocatalysts for enantioselectiive α-aminoxylations of carbonyl compounds. Tetrahedron 67:1812

    CAS  Google Scholar 

  68. Maltsev OV, Kucherenko AS, Chimishkyan AL, Zlotin SG (2010) alpha,alpha-Diarylprolinol-derived chiral ionic liquids: recoverable organocatalysts for the domino reaction between alpha,beta-enals and N-protected hydroxylamines. Tetrahedron Asymmetry 21:2659

    CAS  Google Scholar 

  69. Siyutkin DE, Kucherenko AS, Struchkova MI, Zlotin SG (2008) A novel (S)-proline-modified task-specific chiral ionic liquid – an amphiphilic recoverable catalyst for direct asymmetric aldol reactions in water. Tetrahedron Lett 49:1212

    CAS  Google Scholar 

  70. Yacob Z, Liebscher J (2012) Synthesis and application of Azolium ionic liquid tagged TADDOL catalysts. Arkivoc 2012:312

    Google Scholar 

  71. Ohmatsu K, Kiyokawa M, Ooi T (2011) Chiral 1,2,3-triazoliums as new cationic organic catalysts with anion-recognition ability: application to asymmetric alkylation of oxindoles. J Am Chem Soc 133:1307

    CAS  Google Scholar 

  72. Ohmatsu K, Hamajima Y, Ooi T (2012) Catalytic asymmetric ring openings of meso and terminal aziridines with halides mediated by chiral 1,2,3-triazolium silicates. J Am Chem Soc 134:8794

    CAS  Google Scholar 

  73. Ohmatsu K, Goto A, Ooi T (2012) Catalytic asymmetric Mannich-type reactions of alpha-cyano alpha-sulfonyl carbanions. Chem Commun 48:7913

    CAS  Google Scholar 

  74. Sanghi S, Willett E, Versek C, Tuominen M, Coughlin EB (2012) Physicochemical properties of 1,2,3-triazolium ionic liquids. RSC Adv 2:848

    CAS  Google Scholar 

  75. Bini R, Bortolini O, Chiappe C, Pieraccini D, Siciliano T (2007) Development of cation/anion “interaction” scales for ionic liquids through ESI-MS measurements. J Phys Chem B 111:598

    CAS  Google Scholar 

  76. Forsyth SA, MacFarlane DR (2003) 1-Alkyl-3-methylbenzotriazolium salts: ionic solvents and electrolytes. J Mater Chem 13:2451

    CAS  Google Scholar 

  77. Reiter J, Jeremias S, Paillard E, Winter M, Passerini S (2013) Fluorosulfonyl-(trifluoromethanesulfonyl)imide ionic liquids with enhanced asymmetry. Phys Chem Chem Phys 15:2565

    CAS  Google Scholar 

  78. Dupont J, Spencer J (2004) On the noninnocent nature of 1,3-dialkylimidazolium ionic liquids. Angew Chem Int Ed Engl 43:5296

    CAS  Google Scholar 

  79. Guisado-Barrios G, Bouffard J, Donnadieu B, Bertrand G (2010) Crystalline 1H-1,2,3-triazol-5-ylidenes: new stable mesoionic carbenes (MICs). Angew Chem Int Ed 49:4759

    CAS  Google Scholar 

  80. Kan HC, Tseng MC, Chu YH (2007) Bicyclic imidazolium-based ionic liquids: synthesis and characterization. Tetrahedron 63:1644

    CAS  Google Scholar 

  81. Crowley JD, Lee AL, Kilpin KJ (2011) 1,3,4-Trisubstituted-1,2,3-triazol-5-ylidene ‘click’ carbene ligands: synthesis, catalysis and self-assembly. Aust J Chem 64:1118

    CAS  Google Scholar 

  82. Donnelly KF, Petronilho A, Albrecht M (2013) Application of 1,2,3-triazolylidenes as versatile NHC-type ligands. Chem Commun 49:1145

    CAS  Google Scholar 

  83. Rosa JN, Afonso CAM, Santos AG (2001) Ionic liquids as a recyclable reaction medium for the Baylis-Hillman reaction. Tetrahedron 57:4189

    CAS  Google Scholar 

  84. Miao WS, Chan TH (2006) Ionic-liquid-supported organocatalyst: Efficient and recyclable ionic-liquid-anchored proline for asymmetric aldol reaction. Adv Synth Catal 348:1711

    CAS  Google Scholar 

  85. Lombardo M, Pasi F, Easwar S, Trombini C (2007) An improved protocol for the direct asymmetric aldol reaction in ionic liquids, catalysed by onium ion-tagged prolines. Adv Synth Catal 349:2061

    CAS  Google Scholar 

  86. Davis JH (2004) Task-specific ionic liquids. Chem Lett 33:1072

    CAS  Google Scholar 

  87. Yang SD, Shi Y, Sun ZH, Zhao YB, Liang YM (2006) Asymmetric borane reduction of prochiral ketones using imidazolium-tagged sulfonamide catalyst. Tetrahedron Asymmetry 17:1895

    Google Scholar 

  88. Zhou L, Wang L (2007) Chiral ionic liquid containing L-proline unit as a highly efficient and recyclable asymmetric organocatalyst for aldol reaction. Chem Lett 36:628

    CAS  Google Scholar 

  89. Khan SS, Shah J, Liebscher J (2010) Synthesis of new ionic-liquid-tagged organocatalysts and their application in stereoselective direct aldol reactions. Tetrahedron 66:9468

    CAS  Google Scholar 

  90. Yan ZY, Niu YN, Wei HL, Wu LY, Zhao YB, Liang YM (2006) Combining proline and ‘click chemistry’: a class of versatile organocatalysts for the highly diastereo- and enantioselective Michael addition in water. Tetrahedron Asymmetry 17:3288

    CAS  Google Scholar 

  91. Hagiwara H, Okabe T, Hakoda K, Hoshi T, Ono H, Kamat VP, Suzuki T, Ando M (2001) Catalytic enamine reaction: an expedient 1,4-conjugate addition of naked aldehydes to vinylketones and its application to synthesis of cyclohexenone from Stevia purpurea. Tetrahedron Lett 42:2705

    CAS  Google Scholar 

  92. Zekarias Y (2010) 1,2,3-triazolium ionic liquid tagged catalysts in asymmetric organocatalysis monograph. Humboldt University of Berlin, Berlin

    Google Scholar 

  93. Gajewski M, Seaver B, Esslinger CS (2007) Design, synthesis, and biological activity of novel triazole amino acids used to probe binding interactions between ligand and neutral amino acid transport protein SN1. Bioorg Med Chem Lett 17:4163

    CAS  Google Scholar 

  94. Seebach D, Beck AK, Heckel A (2001) TADDOLs, their derivatives, and TADDOL analogues: versatile chiral auxiliaries. Angew Chem Int Ed 40:92

    CAS  Google Scholar 

  95. Huang Y, Rawal VH (2002) Hydrogen-bond-promoted hetero-Diels-Alder reactions of unactivated ketones. J Am Chem Soc 124:9662

    CAS  Google Scholar 

  96. Saravanakumar R, Ramkumar V, Sankararaman S (2013) Synthesis and structural characterization of cis isomer of 1,2,3-triazol-5-ylidene based palladium complexes. J Organomet Chem 736:36

    CAS  Google Scholar 

  97. Guisado-Barrios G, Bouffard J, Donnadieu B, Bertrand G (2011) Bis(1,2,3-triazol-5-ylidenes) (i-bitz) as Stable 1,4-Bidentate ligands based on Mesoionic Carbenes (MICs). Organometallics 30:6017

    CAS  Google Scholar 

  98. Aizpurua JM, Sagartzazu-Aizpurua M, Monasterio Z, Azcune I, Mendicute C, Miranda JI, Garcia-Lecina E, Altube A, Fratila RM (2012) Introducing axial chirality into mesoionic 4,4′-Bis(1,2,3-triazole) Dicarbenes. Org Lett 14:1866

    CAS  Google Scholar 

  99. Nakamura T, Ogata K, Fukuzawa S (2010) Synthesis of Dichlorobis(1,4-dimesityl-1H-1,2,3-triazol-5-ylidene)palladium [PdCl2(TMes)(2)] and its application to Suzuki-Miyaura coupling reaction. Chem Lett 39:920

    CAS  Google Scholar 

  100. Terashima T, Inomata S, Ogata K, Fukuzawa S (2012) Synthetic, structural, and catalytic studies of well-defined allyl 1,2,3-triazol-5-ylidene (tzNHC) palladium complexes. Eur J Inorg Chem 9:1387

    Google Scholar 

  101. Canseco-Gonzalez D, Gniewek A, Szulmanowicz M, Muller-Bunz H, Trzeciak AM, Albrecht M (2012) PEPPSI-type palladium complexes containing basic 1,2,3-triazolylidene ligands and their role in Suzuki-Miyaura catalysis. Chem Eur J 18:6055

    CAS  Google Scholar 

  102. Inomata S, Hiroki H, Terashima T, Ogata K, Fukuzawa S (2011) 1,2,3-Triazol-5-ylidene-palladium complex catalyzed Mizoroki-Heck and Sonogashira coupling reactions. Tetrahedron 67:7263

    CAS  Google Scholar 

  103. Keske EC, Zenkina OV, Wang RY, Crudden CM (2012) Synthesis and structure of palladium 1,2,3-triazol-5-ylidene mesoionic carbene PEPPSI complexes and their catalytic applications in the Mizoroki-Heck reaction. Organometallics 31:6215

    CAS  Google Scholar 

  104. Nakamura T, Terashima T, Ogata K, Fukuzawa S (2011) Copper(I) 1,2,3-Triazol-5-ylidene complexes as efficient catalysts for click reactions of azides with alkynes. Org Lett 13:620

    CAS  Google Scholar 

  105. Hohloch S, Sarkar B, Nauton L, Cisnetti F, Gautier A (2013) Are Cu(I)-mesoionic NHC carbenes associated with nitrogen additives the best Cu-carbene catalysts for the azide-alkyne click reaction in solution? A case study. Tetrahedron Lett 54:1808

    CAS  Google Scholar 

  106. Hohloch S, Su CY, Sarkar B (2011) Copper(I) complexes of normal and abnormal carbenes and their use as catalysts for the Huisgen [3+2] cycloaddition between azides and alkynes. Eur J Inorg Chem 20:3067

    Google Scholar 

  107. Klein JEMN, Holzwarth MS, Hohloch S, Sarkar B, Plietker B (2013) Redox-active triazolium-derived ligands in nucleophilic Fe-catalysis – reactivity profile and development of a regioselective O-allylation. Eur J Org Chem 2013:6310

    CAS  Google Scholar 

  108. Nomura R, Tsuchiya Y, Ishikawa H, Okamoto S (2013) Grignard allylic substitution reaction catalyzed by 1,2,3-triazol-5-ylidene magnesium complexes. Tetrahedron Lett 54:1360

    CAS  Google Scholar 

  109. Bouffard J, Keitz BK, Tonner R, Guisado-Barrios G, Frenking G, Grubbs RH, Bertrand G (2011) Synthesis of highly stable 1,3-diaryl-1H-1,2,3-triazol-5-ylidenes and their applications in ruthenium-catalyzed olefin metathesis. Organometallics 30:2617

    CAS  Google Scholar 

  110. Petronilho A, Rahman M, Woods JA, Al-Sayyed H, Muller-Bunz H, MacElroy JMD, Bernhard S, Albrecht M (2012) Photolytic water oxidation catalyzed by a molecular carbene iridium complex. Dalton T 41:13074

    CAS  Google Scholar 

  111. Lalrempuia R, McDaniel ND, Muller-Bunz H, Bernhard S, Albrecht M (2010) Water oxidation catalyzed by strong carbene-type donor-ligand complexes of iridium. Angew Chem Int Ed 49:9765

    CAS  Google Scholar 

  112. Bernet L, Lalrempuia R, Ghattas W, Mueller-Bunz H, Vigara L, Llobet A, Albrecht M (2011) Tunable single-site ruthenium catalysts for efficient water oxidation. Chem Commun 47:8058

    CAS  Google Scholar 

  113. Schulze B, Escudero D, Friebe C, Siebert R, Gorls H, Kohn U, Altuntas E, Baumgaertel A, Hager MD, Winter A, Dietzek B, Popp J, Gonzalez L, Schubert US (2011) A heteroleptic bis(tridentate) ruthenium(II) complex of a click-derived abnormal carbene pincer ligand with potential for photosensitzer application. Chem Eur J 17:5494

    CAS  Google Scholar 

  114. Leigh V, Ghattas W, Lalrempuia R, Muller-Bunz H, Pryce MT, Albrecht M (2013) Synthesis, photo-, and electrochemistry of ruthenium bis(bipyridine) complexes comprising a N-heterocyclic carbene ligand. Inorg Chem 52:5395

    CAS  Google Scholar 

  115. Prades A, Peris E, Albrecht M (2011) Oxidations and oxidative couplings catalyzed by triazolylidene ruthenium complexes. Organometallics 30:1162

    CAS  Google Scholar 

  116. Canseco-Gonzalez D, Albrecht M (2013) Wingtip substituents tailor the catalytic activity of ruthenium triazolylidene complexes in base-free alcohol oxidation. Dalton T 42:7424

    CAS  Google Scholar 

  117. Kumar A, Pandey PS (2008) Anion recognition by 1,2,3-triazolium receptors: Application of click chemistry in anion recognition. Org Lett 10:165

    CAS  Google Scholar 

  118. Mullen KM, Mercurio J, Serpell CJ, Beer PD (2009) Exploiting the 1,2,3-Triazolium Motif in anion-templated formation of a bromide-selective rotaxane host assembly. Angew Chem Int Ed 48:4781

    CAS  Google Scholar 

  119. Kilah NL, Wise MD, Serpell CJ, Thompson AL, White NG, Christensen KE, Beer PD (2010) Enhancement of anion recognition exhibited by a halogen-bonding rotaxane host system. J Am Chem Soc 132:11893

    CAS  Google Scholar 

  120. Gilday LC, White NG, Beer PD (2012) Triazole- and triazolium-containing porphyrin-cages for optical anion sensing. Dalton T 41:7092

    CAS  Google Scholar 

  121. Sui BL, Kim B, Zhang YW, Frazer A, Belfield KD (2013) Highly selective fluorescence turn-on sensor for fluoride detection. ACS Appl Mater Inter 5:2920

    CAS  Google Scholar 

  122. Cao QY, Pradhan T, Lee MH, No K, Kim JS (2012) Ferrocene-based anion receptor bearing amide and triazolium donor groups. Analyst 137:4454

    CAS  Google Scholar 

  123. Coutrot F, Busseron E (2008) A new glycorotaxane molecular machine based on an anilinium and a triazolium station. Chem Eur J 14:4784

    CAS  Google Scholar 

  124. Clavel C, Romuald C, Brabet E, Coutrot F (2013) A pH-sensitive lasso-based rotaxane molecular switch. Chem Eur J 19:2982

    CAS  Google Scholar 

  125. Zhang ZJ, Han M, Zhang HY, Liu Y (2013) A double-leg donor-acceptor molecular elevator: new insight into controlling the distance of two platforms. Org Lett 15:1698

    CAS  Google Scholar 

  126. Jiang Y, Guo JB, Chen CF (2010) A New [3]Rotaxane molecular machine based on a dibenzylammonium ion and a triazolium station. Org Lett 12:4248

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yacob, Z., Liebscher, J. (2014). Chemistry of 1,2,3-Triazolium Salts. In: Dehaen, W., Bakulev, V. (eds) Chemistry of 1,2,3-triazoles. Topics in Heterocyclic Chemistry, vol 40. Springer, Cham. https://doi.org/10.1007/7081_2014_123

Download citation

Publish with us

Policies and ethics