Skip to main content

Environmental DNA as a Tool for Single Species Detection

  • Chapter
  • First Online:
Biosensors for the Marine Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 122))

Abstract

Environmental DNA (eDNA)-based biosensing has significant potential and offers many advantages over current methodologies for marine species monitoring. It is now possible to isolate a given species’ DNA from water samples and use this as a proxy for their detection. Whilst there are many challenges to be addressed in terms of relating DNA-based data back to actual species biomass, the sensitivity, specificity and potential to transition to on-site testing are driving innovation in this area. We describe the current advances in environmental DNA-based testing with a focus on the three steps or challenges that are being considered for on-site monitoring: (1) DNA acquisition, (2) Molecular Assay development, and (3) Detection mode. We describe the evolution of methods within each of these areas and highlight which techniques hold the most promise to realise a vision of eDNA-based marine biosensing. We conclude with an outline of recent innovations in eDNA-based biosensor devices including portable, remote and autonomous systems that, with further development, will facilitate the collection of real-time data on any species of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taberlet P, Coissac E, Hajibabaei M, Riesberg L (2012) Environmental DNA. Mol Ecol 21:1789–1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x

    Article  CAS  Google Scholar 

  2. Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x

    Article  CAS  Google Scholar 

  3. Díaz-Ferguson EE, Moyer GR (2014) History, applications, methodological issues and perspectives for the use of environmental DNA (eDNA) in marine and freshwater environments. Rev Biol Trop 62:1273–1284. https://doi.org/10.15517/RBT.V62I4.13231

    Article  Google Scholar 

  4. Turner CR, Barnes MA, Xu CCY, Jones SE, Jerde CL, Lodge DM (2014) Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods Ecol Evol 5:676–684. https://doi.org/10.1111/2041-210X.12206

    Article  Google Scholar 

  5. Goldberg CS, Pilliod DS, Arkle RS, Waits LP (2011) Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLoS One 6:e22746. https://doi.org/10.1371/journal.pone.0022746

    Article  CAS  Google Scholar 

  6. Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM (2014) Environmental conditions influence eDNA persistence in aquatic systems. Environ Sci Technol 48:1819–1827. https://doi.org/10.1021/ES404734P

    Article  CAS  Google Scholar 

  7. Lacoursière-Roussel A, Côté G, Leclerc V, Bernatchez L (2016) Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. J Appl Ecol 53:1148–1157. https://doi.org/10.1111/1365-2664.12598

    Article  CAS  Google Scholar 

  8. Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata Z (2012) Estimation of fish biomass using environmental DNA. PLoS One 7:e35868. https://doi.org/10.1371/journal.pone.0035868

    Article  CAS  Google Scholar 

  9. Pilliod DS, Goldberg CS, Arkle RS, Waits LP (2013) Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can J Fish Aquat Sci 70:1123–1130. https://doi.org/10.1139/cjfas-2013-0047

    Article  CAS  Google Scholar 

  10. Bracken FSA, Rooney SM, Kelly-Quinn M, King JJ, Carlsson J (2019) Identifying spawning sites and other critical habitat in lotic systems using eDNA “snapshots”: a case study using the sea lamprey Petromyzon marinus L. Ecol Evol 9:553–567. https://doi.org/10.1002/ECE3.4777

    Article  Google Scholar 

  11. Mahon AR, Jerde CL, Galaska M, Bergner JL, Chadderton WL, Lodge DM, Hunter ME, Nico LG (2013) Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS One 8:e58316. https://doi.org/10.1371/JOURNAL.PONE.0058316

    Article  CAS  Google Scholar 

  12. Evans N, Shirey P, Wieringa J, Mahon A, Lambertia G (2017) Comparitive cost and effort of fish distribution detection via environmental DNA analysis and electrofishing. Fisheries 42:90–99

    Article  Google Scholar 

  13. Andruszkiewicz EA, Koseff JR, Fringer OB, Ouellette NT, Lowe AB, Edwards CA, Boehm AB (2019) Modeling environmental DNA transport in the coastal ocean using Lagrangian particle tracking. Front Mar Sci 6:477. https://doi.org/10.3389/FMARS.2019.00477/BIBTEX

    Article  Google Scholar 

  14. Collins RA, Wangensteen OS, O’Gorman EJ, Mariani S, Sims DW, Genner MJ (2018) Persistence of environmental DNA in marine systems. Commun Biol 1:185. https://doi.org/10.1038/s42003-018-0192-6

    Article  CAS  Google Scholar 

  15. Jo T, Minamoto T (2021) Complex interactions between environmental DNA (eDNA) state and water chemistries on eDNA persistence suggested by meta-analyses. Mol Ecol Resour 21:1490–1503. https://doi.org/10.1111/1755-0998.13354

    Article  CAS  Google Scholar 

  16. Rourke ML, Fowler AM, Hughes JM, Broadhurst MK, DiBattista JD, Fielder S, Walburn JW, Furlan EM (2021) Environmental DNA (eDNA) as a tool for assessing fish biomass: a review of approaches and future considerations for resource surveys. Environ DNA 00:1–25. https://doi.org/10.1002/EDN3.185

    Article  Google Scholar 

  17. Snyder D (2003) Invite overview: conclusions from a review of electrofishing and its harmful effects on fish. Rev Fish Biol Fish 13:445–453

    Article  Google Scholar 

  18. Browne CL, Hecnar SJ (2007) Species loss and shifting population structure of freshwater turtles despite habitat protection. Biol Conserv 138:421–429. https://doi.org/10.1016/j.biocon.2007.05.008

    Article  Google Scholar 

  19. Dodd CK, Griffey ML, Corser JD (2001) The cave associated amphibians of Great Smoke Mountains National Park: review and monitoring. J Elisha Mitchell Sci Soc 117:139–149

    Google Scholar 

  20. Bohlin T, Hamrin S, Heggberget TG, Rasmussen G, Saltveit SJ (1989) Electrofishing – theory and practice with special emphasis on salmonids. Hydrobiologia 173:9–43. https://doi.org/10.1007/BF00008596

    Article  Google Scholar 

  21. Kelly RP (2014) Will more, better, cheaper and faster monitoring improve environmental management? Environ Law 44:1111–1147

    Google Scholar 

  22. Dejean T, Valentini A, Duparc A, Pellier-Cuit S, Pompanon F, Taberlet P, Miaud C (2011) Persistence of environmental DNA in freshwater ecosystems. PLoS One 6:e23398. https://doi.org/10.1371/journal.pone.0023398

    Article  CAS  Google Scholar 

  23. Strickler KM, Fremier AK, Goldberg CS (2015) Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol Conserv 183:85–92. https://doi.org/10.1016/j.biocon.2014.11.038

    Article  Google Scholar 

  24. Ficetola GF, Poulenard J, Sabatier P, Messager E, Gielly L, Leloup A, Etienne D, Bakke J, Malet E, Fanget B, Støren E, Reyss JL, Taberlet P, Arnaud F (2018) DNA from lake sediments reveals long-term ecosystem changes after a biological invasion. Sci Adv 4:eaar4292. https://doi.org/10.1126/SCIADV.AAR4292/SUPPL_FILE/AAR4292_SM.PDF

    Article  Google Scholar 

  25. Barnes MA, Turner CR (2015) The ecology of environmental DNA and implications for conservation genetics. Conserv Genet 171(17):1–17. https://doi.org/10.1007/S10592-015-0775-4

    Article  Google Scholar 

  26. Eichmiller JJ, Best SE, Sorensen PW (2016) Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ Sci Technol 50:1859–1867. https://doi.org/10.1021/ACS.EST.5B05672/SUPPL_FILE/ES5B05672_SI_001.PDF

    Article  CAS  Google Scholar 

  27. Lance RF, Klymus KE, Richter CA, Guan X, Farrington HL, Carr MR, Thompson N, Chapman DC, Baerwaldt KL (2017) Experimental observations on the decay of environmental DNA from bighead and silver carps. Manag Biol Invasions 8:343–359. https://doi.org/10.3391/mbi.2017.8.3.08

    Article  Google Scholar 

  28. Jo T, Arimoto M, Murakami H, Masuda R, Minamoto T (2020) Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass. Environ DNA 2:140–151. https://doi.org/10.1002/EDN3.51

    Article  Google Scholar 

  29. Seymour M, Durance I, Cosby BJ, Ransom-Jones E, Deiner K, Ormerod SJ, Colbourne JK, Wilgar G, Carvalho GR, de Bruyn M, Edwards F, Emmett BA, Bik HM, Creer S (2018) Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun Biol 11(1):1–8. https://doi.org/10.1038/s42003-017-0005-3

    Article  CAS  Google Scholar 

  30. Tsuji S, Takahara T, Doi H, Shibata N, Yamanaka H (2019) The detection of aquatic macroorganisms using environmental DNA analysis – a review of methods for collection, extraction, and detection. Environ DNA 1:99–108. https://doi.org/10.1002/edn3.21

    Article  Google Scholar 

  31. Hinlo R, Gleeson D, Lintermans M, Furlan E (2017) Methods to maximise recovery of environmental DNA from water samples. PLoS One 12:e0179251. https://doi.org/10.1371/journal.pone.0179251

    Article  CAS  Google Scholar 

  32. Spens J, Evans AR, Halfmaerten D, Knudsen SW, Sengupta ME, Mak SST, Sigsgaard EE, Hellström M (2017) Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol Evol 8:635–645. https://doi.org/10.1111/2041-210X.12683

    Article  Google Scholar 

  33. Eichmiller JJ, Miller LM, Sorensen PW (2016) Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Mol Ecol Resour 16:56–68. https://doi.org/10.1111/1755-0998.12421

    Article  CAS  Google Scholar 

  34. Hunter ME, Ferrante JA, Meigs-Friend G, Ulmer A (2019) Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Sci Rep 91(9):1–9. https://doi.org/10.1038/s41598-019-40977-w

    Article  CAS  Google Scholar 

  35. Robson HLA, Noble TH, Saunders RJ, Robson SKA, Burrows DW, Jerry DR (2016) Fine-tuning for the tropics: application of eDNA technology for invasive fish detection in tropical freshwater ecosystems. Mol Ecol Resour 16:922–932. https://doi.org/10.1111/1755-0998.12505

    Article  CAS  Google Scholar 

  36. Doi H, Uchii K, Matsuhashi S, Takahara T, Yamanaka H, Minamoto T (2017) Isopropanol precipitation method for collecting fish environmental DNA. Limnol Oceanogr Methods 15:212–218. https://doi.org/10.1002/LOM3.10161

    Article  Google Scholar 

  37. Deiner K, Walser JC, Mächler E, Altermatt F (2015) Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol Conserv 183:53–63. https://doi.org/10.1016/J.BIOCON.2014.11.018

    Article  Google Scholar 

  38. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, vol 1, 2 and 3. 3rd edn. Cold Spring Harbor Laboratory Press

    Google Scholar 

  39. Renshaw MA, Olds BP, Jerde CL, McVeigh MM, Lodge DM (2015) The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Mol Ecol Resour 15:168–176. https://doi.org/10.1111/1755-0998.12281

    Article  CAS  Google Scholar 

  40. Thomas AC, Howard J, Nguyen PL, Seimon TA, Goldberg CS (2018) eDNA sampler: a fully integrated environmental DNA sampling system. Methods Ecol Evol 9:1379–1385. https://doi.org/10.1111/2041-210X.12994

    Article  Google Scholar 

  41. Bogenhagen DF (2012) Mitochondrial DNA nucleoid structure. Biochim Biophys Acta – Gene Regul Mech 1819:914–920. https://doi.org/10.1016/J.BBAGRM.2011.11.005

    Article  CAS  Google Scholar 

  42. Robinson CV, Garcia de Leaniz C, Rolla M, Consuegra S (2019) Monitoring the eradication of the highly invasive topmouth gudgeon (Pseudorasbora parva) using a novel eDNA assay. Environ DNA 1:74–85. https://doi.org/10.1002/edn3.12

    Article  Google Scholar 

  43. Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E (2012) Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One 7:e41732. https://doi.org/10.1371/journal.pone.0041732

    Article  CAS  Google Scholar 

  44. Wilcox TM, McKelvey KS, Young MK, Jane SF, Lowe WH, Whiteley AR, Schwartz MK (2013) Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS One 8:e59520. https://doi.org/10.1371/journal.pone.0059520

    Article  CAS  Google Scholar 

  45. Boothroyd M, Mandrak NE, Fox M, Wilson CC (2016) Environmental DNA (eDNA) detection and habitat occupancy of threatened spotted gar (Lepisosteus oculatus). Aquat Conserv Mar Freshwat Ecosyst 26:1107–1119. https://doi.org/10.1002/aqc.2617

    Article  Google Scholar 

  46. Carlsson JEL, Egan D, Collins PC, Farrell ED, Igoe F, Carlsson J (2017) A qPCR MGB probe based eDNA assay for European freshwater pearl mussel (Margaritifera margaritifera L.). Aquat Conserv Mar Freshwat Ecosyst 27:1341–1344. https://doi.org/10.1002/aqc.2788

    Article  Google Scholar 

  47. Gargan LM, Morato T, Pham CK, Finarelli JA, Carlsson JEL, Carlsson J (2017) Development of a sensitive detection method to survey pelagic biodiversity using eDNA and quantitative PCR: a case study of devil ray at seamounts. Mar Biol 164:112. https://doi.org/10.1007/s00227-017-3141-x

    Article  CAS  Google Scholar 

  48. Atkinson S, Carlsson JEL, Ball B, Egan D, Kelly-Quinn M, Whelan K, Carlsson J (2018) A quantitative PCR-based environmental DNA assay for detecting Atlantic salmon (Salmo salar L.). Aquat Conserv Mar Freshwat Ecosyst 28:1238–1243. https://doi.org/10.1002/aqc.2931

    Article  Google Scholar 

  49. Rusch JC, Hansen H, Strand DA, Markussen T, Hytterød S, Vrålstad T (2018) Catching the fish with the worm: a case study on eDNA detection of the monogenean parasite Gyrodactylus salaris and two of its hosts, Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Parasit Vectors 11:333. https://doi.org/10.1186/s13071-018-2916-3

    Article  CAS  Google Scholar 

  50. Baker CS, Steel D, Nieukirk S, Klinck H (2018) Environmental DNA (eDNA) from the wake of the whales: droplet digital PCR for detection and species identification. Front Mar Sci 5:133. https://doi.org/10.3389/fmars.2018.00133

    Article  Google Scholar 

  51. Uthicke S, Lamare M, Doyle JR (2018) eDNA detection of corallivorous seastar (Acanthaster cf. solaris) outbreaks on the Great Barrier Reef using digital droplet PCR. Coral Reefs 37:1229–1239. https://doi.org/10.1007/s00338-018-1734-6

    Article  Google Scholar 

  52. Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425. https://doi.org/10.1098/rsbl.2008.0118

    Article  Google Scholar 

  53. Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C (2012) Improved detection of alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J Appl Ecol 49:953–959

    Article  Google Scholar 

  54. Davy CM, Kidd AG, Wilson CC (2015) Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles. PLoS One 10:e0130965. https://doi.org/10.1371/journal.pone.0130965

    Article  CAS  Google Scholar 

  55. Deiner K, Altermatt F (2014) Transport distance of invertebrate environmental DNA in a natural river. PLoS One 9:e88786. https://doi.org/10.1371/journal.pone.0088786

    Article  CAS  Google Scholar 

  56. Janosik AM, Johnston CE (2015) Environmental DNA as an effective tool for detection of imperiled fishes. Environ Biol Fish 98:1889–1893. https://doi.org/10.1007/s10641-015-0405-5

    Article  Google Scholar 

  57. Jerde CL, Mahon AR, Chadderton WL, Lodge DM (2011) “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv Lett 4:150–157. https://doi.org/10.1111/j.1755-263X.2010.00158.x

    Article  Google Scholar 

  58. Ardura A, Zaiko A, Martinez JL, Samulioviene A, Semenova A, Garcia-Vazquez E (2015) eDNA and specific primers for early detection of invasive species – a case study on the bivalve Rangia cuneata, currently spreading in Europe. Mar Environ Res 112:48–55. https://doi.org/10.1016/J.MARENVRES.2015.09.013

    Article  CAS  Google Scholar 

  59. Muñoz-Colmenero M, Ardura A, Clusa L, Miralles L, Gower F, Zaiko A, Garcia-Vazquez E (2018) New specific molecular marker detects Ficopomatus enigmaticus from water eDNA before positive results of conventional sampling. J Nat Conserv 43:173–178. https://doi.org/10.1016/J.JNC.2017.12.004

    Article  Google Scholar 

  60. Nathan LM, Simmons M, Wegleitner BJ, Jerde CL, Mahon AR (2014) Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. Environ Sci Technol 48:12800–12806. https://doi.org/10.1021/es5034052

    Article  CAS  Google Scholar 

  61. Xia Z, Johansson ML, Gao Y, Zhang L, Haffner GD, MacIsaac HJ, Zhan A (2018) Conventional versus real-time quantitative PCR for rare species detection. Ecol Evol 8:11799–11807. https://doi.org/10.1002/ece3.4636

    Article  Google Scholar 

  62. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, Ståhlberg A, Zoric N (2006) The real-time polymerase chain reaction. Mol Asp Med 27:95–125. https://doi.org/10.1016/j.mam.2005.12.007

    Article  CAS  Google Scholar 

  63. Hernandez CC, Bougas B, Perreault-Payette A, Simard A, Côté G, Bernatchez L, Perreault A, Simard A, Cote G, Bernatchez L (2020) 60 specific eDNA qPCR assays to detect invasive, threatened and exploited freshwater vertebrates and invertebrates in Eastern Canada. Environ DNA 2:373–386. https://doi.org/10.1002/edn3.89

    Article  Google Scholar 

  64. Jane SF, Wilcox TM, McKelvey KS, Young MK, Schwartz MK, Lowe WH, Letcher BH, Whiteley AR (2015) Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol Ecol Resour 15:216–227. https://doi.org/10.1111/1755-0998.12285

    Article  CAS  Google Scholar 

  65. Minamoto T, Uchii K, Takahara T, Kitayoshi T, Tsuji S, Yamanaka H, Doi H (2017) Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio. Mol Ecol Resour 17:324–333. https://doi.org/10.1111/1755-0998.12586

    Article  CAS  Google Scholar 

  66. Wood SA, Pochon X, Laroche O, Ammon U, Adamson J, Zaiko A (2019) A comparison of droplet digital polymerase chain reaction (PCR), quantitative PCR and metabarcoding for species-specific detection in environmental DNA. Mol Ecol Resour 19:1407–1419. https://doi.org/10.1111/1755-0998.13055

    Article  CAS  Google Scholar 

  67. Yang S, Rothman RE (2004) PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 4:337–348. https://doi.org/10.1016/S1473-3099(04)01044-8

    Article  CAS  Google Scholar 

  68. Goldberg CS, Sepulveda A, Ray A, Baumgardt J, Waits LP (2013) Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshw Sci 32:792–800. https://doi.org/10.1899/13-046.1

    Article  Google Scholar 

  69. Lugg WH, Griffiths J, Rooyen AR, Weeks AR, Tingley R (2018) Optimal survey designs for environmental DNA sampling. Methods Ecol Evol 9:1049–1059. https://doi.org/10.1111/2041-210X.12951

    Article  Google Scholar 

  70. O’Sullivan AM, Samways KM, Perreault A, Hernandez C, Gautreau MD, Curry RA, Bernatchez L (2020) Space invaders: searching for invasive Smallmouth Bass (Micropterus dolomieu) in a renowned Atlantic Salmon (Salmo salar) river. Ecol Evol 10:2588–2596. https://doi.org/10.1002/ece3.6088

    Article  Google Scholar 

  71. Franklin TW, McKelvey KS, Golding JD, Mason DH, Dysthe JC, Pilgrim KL, Squires JR, Aubry KB, Long RA, Greaves SE, Raley CM, Jackson S, MacKay P, Lisbon J, Sauder JD, Pruss MT, Heffington D, Schwartz MK (2019) Using environmental DNA methods to improve winter surveys for rare carnivores: DNA from snow and improved noninvasive techniques. Biol Conserv 229:50–58. https://doi.org/10.1016/j.biocon.2018.11.006

    Article  Google Scholar 

  72. Salter I, Joensen M, Kristiansen R, Steingrund P, Vestergaard P (2019) Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters. Commun Biol 21(2):1–9. https://doi.org/10.1038/s42003-019-0696-8

    Article  CAS  Google Scholar 

  73. Weltz K, Lyle JM, Ovenden J, Morgan JAT, Moreno DA, Semmens JM (2017) Application of environmental DNA to detect an endangered marine skate species in the wild. PLoS One 12:e0178124. https://doi.org/10.1371/journal.pone.0178124

    Article  CAS  Google Scholar 

  74. Gillum JE, Jimenez L, White DJ, Goldstien SJ, Gemmell NJ (2014) Development and application of a quantitative real-time PCR assay for the globally invasive tunicate Styela clava. Manag Biol Invasions 5:133–142. https://doi.org/10.3391/mbi.2014.5.2.06

    Article  Google Scholar 

  75. Piggott MP (2016) Evaluating the effects of laboratory protocols on eDNA detection probability for an endangered freshwater fish. Ecol Evol 6:2739–2750. https://doi.org/10.1002/ece3.2083

    Article  Google Scholar 

  76. Tsuji S, Iguchi Y, Shibata N, Teramura I, Kitagawa T, Yamanaka H (2018) Real-time multiplex PCR for simultaneous detection of multiple species from environmental DNA: an application on two Japanese medaka species. Sci Rep 8:9138. https://doi.org/10.1038/s41598-018-27434-w

    Article  CAS  Google Scholar 

  77. Hulley EN, Tharmalingam S, Zarnke A, Boreham DR (2019) Development and validation of probe-based multiplex real-time PCR assays for the rapid and accurate detection of freshwater fish species. PLoS One 14:e0210165. https://doi.org/10.1371/journal.pone.0210165

    Article  CAS  Google Scholar 

  78. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/CLINCHEM.2008.112797

    Article  CAS  Google Scholar 

  79. Klymus KE, Merkes CM, Allison MJ, Goldberg CS, Helbing CC, Hunter ME, Jackson CA, Lance RF, Mangan AM, Monroe EM, Piaggio AJ, Stokdyk JP, Wilson CC, Richter CA (2020) Reporting the limits of detection and quantification for environmental DNA assays. Environ DNA 2:271–282. https://doi.org/10.1002/edn3.29

    Article  Google Scholar 

  80. Langlois VS, Allison MJ, Bergman LC, To TA, Helbing CC (2020) The need for robust qPCR-based eDNA detection assays in environmental monitoring and species inventories. Environ DNA. https://doi.org/10.1002/edn3.164

  81. Bruce K, Blackman RC, Bourlat SJ, Hellström M, Bakker J, Bista I, Bohmann K, Bouchez A, Brys R, Clark K, Elbrecht V, Fazi S, Fonseca VG, Hänfling B, Leese F, Mächler E, Mahon AR, Meissner K, Panksep K, Pawlowski J, Luis P, Yáñez S, Seymour M, Thalinger B, Valentini A, Woodcock P, Traugott M, Vasselon V, Deiner K (2021) A practical guide to DNA-based methods for biodiversity assessment. Adv Books 1:e68634. https://doi.org/10.3897/AB.E68634

    Article  Google Scholar 

  82. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005. https://doi.org/10.1038/nmeth.2633

    Article  CAS  Google Scholar 

  83. Tsang HH, Domingos JA, Westaway JA, Kam MH, Huerlimann R, Gomes GB (2021) Digital droplet PCR-based environmental DNA tool for monitoring Cryptocaryon irritans in a marine fish farm from Hong Kong. Diversity 13:350

    Article  CAS  Google Scholar 

  84. Cao Y, Griffith JF, Weisberg SB (2016) The next-generation PCR-based quantification method for ambient waters: digital PCR. In: Bourlat SJ (ed) Marine genomics: methods and protocols. Springer, pp 113–130

    Chapter  Google Scholar 

  85. Doi H, Takahara T, Minamoto T, Matsuhashi S, Uchii K, Yamanaka H (2015) Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species. Environ Sci Technol 49:5601–5608. https://doi.org/10.1021/acs.est.5b00253

    Article  CAS  Google Scholar 

  86. Capo E, Spong G, Norman S, Königsson H, Bartels P, Byström P (2019) Droplet digital PCR assays for the quantification of brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) from environmental DNA collected in the water of mountain lakes. PLoS One 14:e0226638. https://doi.org/10.1371/journal.pone.0226638

    Article  CAS  Google Scholar 

  87. McKee AM, Spear SF, Pierson TW (2015) The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. Biol Conserv 183:70–76. https://doi.org/10.1016/j.biocon.2014.11.031

    Article  Google Scholar 

  88. Yang R, Paparini A, Monis P, Ryan U (2014) Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int J Parasitol 44(14):1105–1113. https://doi.org/10.1016/j.ijpara.2014.08.004

    Article  CAS  Google Scholar 

  89. Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies – a review. Nucleosides Nucleotides Nucleic Acids 27:224–243

    Article  CAS  Google Scholar 

  90. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:e204. https://doi.org/10.1371/journal.pbio.0040204

    Article  CAS  Google Scholar 

  91. Gonzales F, McDonough S (1998) Applications of transcription-mediated amplification to quantification of gene sequences. In: Francois F (ed) Gene amplification. Birkhauser, Boston, pp 189–204

    Google Scholar 

  92. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP (1992) Strand displacement amplification – an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20:1691–1696. https://doi.org/10.1093/nar/20.7.1691

    Article  CAS  Google Scholar 

  93. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19:225–232. https://doi.org/10.1038/898

    Article  CAS  Google Scholar 

  94. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63–e63

    Article  CAS  Google Scholar 

  95. Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289:150–154. https://doi.org/10.1006/bbrc.2001.5921

    Article  CAS  Google Scholar 

  96. Njiru ZK, Mikosza ASJ, Armstrong T, Enyaru JC, Ndung’u JM, ARC T (2008) Loop-mediated isothermal amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense. PLoS Negl Trop Dis 2. https://doi.org/10.1371/journal.pntd.0000147

  97. Kaneko H, Kawana T, Fukushima E, Suzutani T (2007) Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Methods 70:499–501. https://doi.org/10.1016/j.jbbm.2006.08.008

    Article  CAS  Google Scholar 

  98. Boehme CC, Nabeta P, Henostroza G, Raqib R, Rahim Z, Gerhardt M, Sanga E, Hoelscher M, Notomi T, Hase T, Perkins MD (2007) Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol 45:1936–1940. https://doi.org/10.1128/JCM.02352-06

    Article  CAS  Google Scholar 

  99. Curtis KA, Rudolph DL, Owen SM (2008) Rapid detection of HIV-1 by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 151:264–270. https://doi.org/10.1016/j.jviromet.2008.04.011

    Article  CAS  Google Scholar 

  100. Williams MR, Stedtfeld RD, Engle C, Salach P, Fakher U, Stedtfeld T, Dreelin E, Stevenson RJ, Latimore J, Hashsham SA (2017) Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS One 12:e0186462. https://doi.org/10.1371/journal.pone.0186462

    Article  CAS  Google Scholar 

  101. Davis CN, Tyson F, Cutress D, Davies E, Jones DL, Brophy PM, Prescott A, Rose MT, Williams M, Williams HW, Jones RA (2020) Rapid detection of Galba truncatula in water sources on pasture-land using loop-mediated isothermal amplification for control of trematode infections. Parasit Vectors 13:1–11. https://doi.org/10.1186/S13071-020-04371-0/TABLES/4

    Article  Google Scholar 

  102. Fast K, Popp A, O’Neil P, McGregor S, Sandel M (2020) Surveillance of a federally protected freshwater fish using loop-mediated isothermal amplification (LAMP) and eDNA. Authorea Prepr. https://doi.org/10.22541/AU.159586067.74431972

  103. Martzy R, Kolm C, Brunner K, Mach RL, Krska R, Sinkovec H, Sommer R, Farnleitner AH, Reischer GH (2017) A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Enterococcus spp. in water. Water Res 122:62–69

    Article  CAS  Google Scholar 

  104. Lobato IM, O’Sullivan CK (2018) Recombinase polymerase amplification: basics, applications and recent advances. TrAC Trends Anal Chem 98:19–35. https://doi.org/10.1016/J.TRAC.2017.10.015

    Article  CAS  Google Scholar 

  105. Wu YD, Xu MJ, Wang QQ, Zhou CX, Wang M, Zhu XQ, Zhou DH (2017) Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for detection of Toxoplasma gondii in the environment. Vet Parasitol 243:199–203. https://doi.org/10.1016/j.vetpar.2017.06.026

    Article  CAS  Google Scholar 

  106. Cha D, Kim D, Choi W, Park S, Han H (2020) Point-of-care diagnostic (POCD) method for detecting Bursaphelenchus xylophilus in pinewood using recombinase polymerase amplification (RPA) with the portable optical isothermal device (POID). PLoS One 15. https://doi.org/10.1371/journal.pone.0227476

  107. Toldrà A, Alcaraz C, Andree KB, Fernández-Tejedor M, Diogène J, Katakis I, O’Sullivan CK, Campàs M (2019) Colorimetric DNA-based assay for the specific detection and quantification of Ostreopsis cf. ovata and Ostreopsis cf. siamensis in the marine environment. Harmful Algae 84:27–35. https://doi.org/10.1016/j.hal.2019.02.003

    Article  CAS  Google Scholar 

  108. Wu L, Ye L, Wang Z, Cui Y, Wang J (2019) Utilization of recombinase polymerase amplification combined with a lateral flow strip for detection of Perkinsus beihaiensis in the oyster Crassostrea hongkongensis. Parasit Vectors 12:360. https://doi.org/10.1186/s13071-019-3624-3

    Article  CAS  Google Scholar 

  109. Li J, Macdonald J, Von Stetten F (2019) Review: a comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst 144:31–67

    Article  CAS  Google Scholar 

  110. Chen JS, Ma E, Harrington LB, Da CM, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–439. https://doi.org/10.1126/SCIENCE.AAR6245

    Article  CAS  Google Scholar 

  111. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–442. https://doi.org/10.1126/science.aam9321

    Article  CAS  Google Scholar 

  112. Li SY, Cheng QX, Li XY, Zhang ZL, Gao S, Cao RB, Zhao GP, Wang JM, Wang JM (2018) CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov 4:20

    Article  Google Scholar 

  113. Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941. https://doi.org/10.1038/nbt.3659

    Article  CAS  Google Scholar 

  114. Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, Zorn K, Gopez A, Hsu E, Gu W, Miller S, Pan CY, Guevara H, Wadford DA, Chen JS, Chiu CY (2020) CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol 38:870–874. https://doi.org/10.1038/s41587-020-0513-4

    Article  CAS  Google Scholar 

  115. Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911. https://doi.org/10.1038/s41467-018-04252-2

    Article  CAS  Google Scholar 

  116. Baerwald MR, Goodbla AM, Nagarajan RP, Gootenberg JS, Abudayyeh OO, Zhang F, Schreier AD (2020) Rapid and accurate species identification for ecological studies and monitoring using CRISPR-based SHERLOCK. Mol Ecol Resour 20:961–970. https://doi.org/10.1111/1755-0998.13186

    Article  Google Scholar 

  117. Williams MA, O’Grady J, Ball B, Carlsson J, de Eyto E, McGinnity P, Jennings E, Regan F, Parle-McDermott A (2019) The application of CRISPR-Cas for single species identification from environmental DNA. Mol Ecol Resour 19:1755–0998. https://doi.org/10.1111/1755-0998.13045

    Article  CAS  Google Scholar 

  118. Williams M-A, Hernandez C, O’Sullivan AM, April J, Regan F, Bernatchez L, Parle-McDermott A (2021) Comparing CRISPR-Cas and qPCR eDNA assays for the detection of Atlantic salmon (Salmo salar L.). Environ DNA 3:297–304. https://doi.org/10.1002/EDN3.174

    Article  CAS  Google Scholar 

  119. Whiley DM, Sloots TP (2005) Sequence variation in primer targets affects the accuracy of viral quantitative PCR. J Clin Virol 34:104–107. https://doi.org/10.1016/j.jcv.2005.02.010

    Article  CAS  Google Scholar 

  120. Rees HC, Maddison BC, Middleditch DJ, Patmore JRM, Gough KC (2014) Review: the detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology. J Appl Ecol 51:1450–1459. https://doi.org/10.1111/1365-2664.12306

    Article  CAS  Google Scholar 

  121. Goggins S, Frost CG (2016) Approaches towards molecular amplification for sensing. Analyst 141:3157–3218. https://doi.org/10.1039/C6AN00348F

    Article  CAS  Google Scholar 

  122. Zhao J, Chen G (2019) Introduction. In: Li G (ed) Nano-inspired biosensors for protein assay with clinical applications. Elsevier, pp 17–47

    Google Scholar 

  123. Alberti G, Zanoni C, Magnaghi LR, Biesuz R (2020) Disposable and low-cost colorimetric sensors for environmental analysis. Int J Environ Res Public Health 17:1–23. https://doi.org/10.3390/IJERPH17228331

    Article  Google Scholar 

  124. Papadakis G, Pantazis AK, Fikas N, Chatziioannidou S, Tsiakalou V, Michaelidou K, Pogka V, Megariti M, Vardaki M, Giarentis K, Heaney J, Nastouli E, Karamitros T, Mentis A, Zafiropoulos A, Sourvinos G, Agelaki S, Gizeli E (2022) Portable real-time colorimetric LAMP-device for rapid quantitative detection of nucleic acids in crude samples. Sci Rep 121(12):1–15. https://doi.org/10.1038/s41598-022-06632-7

    Article  CAS  Google Scholar 

  125. Huang B, Montgomery BL, Adamczyk R, Ehlers G, van den Hurk AF, Warrilow D (2020) A LAMP-based colorimetric assay to expedite field surveillance of the invasive mosquito species Aedes aegypti and Aedes albopictus. PLoS Negl Trop Dis 14:e0008130. https://doi.org/10.1371/JOURNAL.PNTD.0008130

    Article  Google Scholar 

  126. Elumalai M, Ipatov A, Carvalho J, Guerreiro J, Prado M (2021) Dual colorimetric strategy for specific DNA detection by nicking endonuclease-assisted gold nanoparticle signal amplification. Anal Bioanal Chem. https://doi.org/10.1007/S00216-021-03564-5

  127. Xu W, Xue X, Li T, Zeng H, Liu X (2009) Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed 48:6849–6852. https://doi.org/10.1002/ANIE.200901772

    Article  CAS  Google Scholar 

  128. Butler SA, Khanlian SA, Cole LA (2001) Detection of early pregnancy forms of human chorionic gonadotropin by home pregnancy test devices. Clin Chem 47:2131–2136. https://doi.org/10.1093/CLINCHEM/47.12.2131

    Article  CAS  Google Scholar 

  129. Hsiao WWW, Le TN, Pham DM, Ko HH, Chang HC, Lee CC, Sharma N, Lee CK, Chiang WH (2021) Recent advances in novel lateral flow technologies for detection of COVID-19. Biosensors 11:295. https://doi.org/10.3390/BIOS11090295

    Article  CAS  Google Scholar 

  130. Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB (2021) The potential use of isothermal amplification assays for in-field diagnostics of plant pathogens. Plants (Basel) 10. https://doi.org/10.3390/PLANTS10112424

  131. Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y (2016) Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens Bioelectron 75:166–180. https://doi.org/10.1016/J.BIOS.2015.08.032

    Article  CAS  Google Scholar 

  132. Lee L, Nordman E, Johnson M, Oldham M (2013) A low-cost, high-performance system for fluorescence lateral flow assays. Biosensors 3:360–373. https://doi.org/10.3390/bios3040360

    Article  CAS  Google Scholar 

  133. Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G (2009) Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem 81:1660–1668. https://doi.org/10.1021/ac8024653

    Article  CAS  Google Scholar 

  134. Jahanpeyma F, Forouzandeh M, Rasaee MJ, Shoaie N (2019) An enzymatic paper-based biosensor for ultrasensitive detection of DNA. Front Biosci (Schol Ed) 11:122–135. https://doi.org/10.2741/S530

    Article  Google Scholar 

  135. Koczula KMM, Gallotta A (2016) Lateral flow assays. Essays Biochem 60:111. https://doi.org/10.1042/EBC20150012

    Article  Google Scholar 

  136. Li J, Ma B, Fang J, Zhi A, Chen E, Xu Y, Yu X, Sun C, Zhang M (2019) Recombinase polymerase amplification (RPA) combined with lateral flow immunoassay for rapid detection of Salmonella in food. Foods (Basel) 9. https://doi.org/10.3390/FOODS9010027

  137. Doyle J, Uthicke S (2021) Sensitive environmental DNA detection via lateral flow assay (dipstick) – a case study on corallivorous crown-of-thorns sea star (Acanthaster cf. solaris) detection. Environ DNA 3:323–342. https://doi.org/10.1002/EDN3.123

    Article  CAS  Google Scholar 

  138. Kobayashi H, Longmire MR, Ogawa M, Choyke PL (2011) Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev 40:4626–4648. https://doi.org/10.1039/C1CS15077D

    Article  CAS  Google Scholar 

  139. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′----3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88:7276–7280. https://doi.org/10.1073/pnas.88.16.7276

    Article  CAS  Google Scholar 

  140. Herrero B, Madriñán M, Vieites JM, Espiñeira M (2010) Authentication of Atlantic Cod (Gadus morhua) using real time PCR. J Agric Food Chem 58:4794–4799. https://doi.org/10.1021/jf904018h

    Article  CAS  Google Scholar 

  141. Kutyavin IV, Afonina IA, Mills A, Gorn VV, Lukhtanov EA, Belousov ES, Singer MJ, Walburger DK, Lokhov SG, Gall AA, Dempcy R, Reed MW, Meyer RB, Hedgpeth J (2000) 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res 28:655–661. https://doi.org/10.1093/nar/28.2.655

    Article  CAS  Google Scholar 

  142. Marmiroli N, Maestri E (2007) Chapter 6 – Polymerase chain reaction (PCR). In: Picó Y (ed) Food toxicants analysis. Elsevier, Amsterdam, pp 147–187

    Chapter  Google Scholar 

  143. Mauvisseau Q, Coignet A, Delaunay C, Pinet F, Bouchon D, Souty-Grosset C (2018) Environmental DNA as an efficient tool for detecting invasive crayfishes in freshwater ponds. Hydrobiologia 805:163–175. https://doi.org/10.1007/s10750-017-3288-y

    Article  CAS  Google Scholar 

  144. Dragan AI, Pavlovic R, McGivney JB, Casas-Finet JR, Bishop ES, Strouse RJ, Schenerman MA, Geddes CD (2012) SYBR Green I: fluorescence properties and interaction with DNA. J Fluoresc 22:1189–1199. https://doi.org/10.1007/S10895-012-1059-8

    Article  CAS  Google Scholar 

  145. Choi JH, Lim J, Shin M, Paek SH, Choi JW (2021) CRISPR-Cas12a-based nucleic acid amplification-free DNA biosensor via Au nanoparticle-assisted metal-enhanced fluorescence and colorimetric analysis. Nano Lett 21:693–699. https://doi.org/10.1021/ACS.NANOLETT.0C04303/SUPPL_FILE/NL0C04303_SI_001.PDF

    Article  CAS  Google Scholar 

  146. Thomas AC, Tank S, Nguyen PL, Ponce J, Sinnesael M, Goldberg CS (2019) A system for rapid eDNA detection of aquatic invasive species. Environ DNA 2(3):261–270. https://doi.org/10.1002/edn3.25

    Article  Google Scholar 

  147. Ponce JJ, Arismendi I, Thomas A (2021) Using in-situ environmental DNA sampling to detect the invasive New Zealand Mud Snail (Potamopyrgus antipodarum) in freshwaters. PeerJ 9:e11835. https://doi.org/10.7717/PEERJ.11835/SUPP-1

    Article  Google Scholar 

  148. Sepulveda AJ, Hutchins PR, Massengill RL, Dunker KJ (2018) Tradeoffs of a portable, field-based environmental DNA platform for detecting invasive northern pike (Esox lucius) in Alaska. Manag Biol Invasions 9:253–258. https://doi.org/10.3391/mbi.2018.9.3.07

    Article  Google Scholar 

  149. Nguyen PL, Sudheesh PS, Thomas AC, Sinnesael M, Haman K, Cain KD (2018) Rapid detection and monitoring of Flavobacterium psychrophilum in water by using a handheld, field-portable quantitative PCR system. J Aquat Anim Health 30:302–311. https://doi.org/10.1002/aah.10046

    Article  CAS  Google Scholar 

  150. Doi H, Watanabe T, Nishizawa N, Saito T, Nagata H, Kameda Y, Maki N, Ikeda K, Fukuzawa T (2021) On-site environmental DNA detection of species using ultrarapid mobile PCR. Mol Ecol Resour 21:2364–2368. https://doi.org/10.1111/1755-0998.13448

    Article  CAS  Google Scholar 

  151. Heery B, Briciu-Burghina C, Zhang D, Duffy G, Brabazon D, O’Connor N, Regan F (2016) ColiSense, today’s sample today: a rapid on-site detection of β-d-glucuronidase activity in surface water as a surrogate for E. coli. Talanta 148:75–83. https://doi.org/10.1016/J.TALANTA.2015.10.035

    Article  CAS  Google Scholar 

  152. Briciu-Burghina C, Heery B, Duffy G, Brabazon D, Regan F (2019) Demonstration of an optical biosensor for the detection of faecal indicator bacteria in freshwater and coastal bathing areas. Anal Bioanal Chem 411:7637–7643. https://doi.org/10.1007/s00216-019-02182-6

    Article  CAS  Google Scholar 

  153. Paul J, Scholin C, van den Engh G, Perry MJ (2007) In situ instrumentation. Oceanography 20:70–78. https://doi.org/10.5670/OCEANOG.2007.50

    Article  Google Scholar 

  154. Scholin C, Doucette G, Jensen S, Roman B, Pargett D, Marin R, Preston C, Jones W, Feldman J, Everlove C, Harris A, Alvarado N, Massion E, Birch J, Greenfield D, Vrijenhoek R, Mikulski C, Jones K (2009) Remote detection of marine microbes, small invertebrates, harmful algae and biotoxins using the environmental sample processor (ESP). Oceanography 22:158–167

    Article  Google Scholar 

  155. Pargett DM, Birch JM, Preston CM, Ryan JP, Zhang Y, Scholin CA (2016) Development of a mobile ecogenomic sensor. In: OCEANS 2015-MTS/IEEE Washington. https://doi.org/10.23919/OCEANS.2015.7404361

    Chapter  Google Scholar 

  156. Sepulveda AJ, Birch JM, Barnhart EP, Merkes CM, Yamahara KM, Marin R, Kinsey SM, Wright PR, Schmidt C (2020) Robotic environmental DNA bio-surveillance of freshwater health. Sci Rep 101(10):1–8. https://doi.org/10.1038/s41598-020-71304-3

    Article  CAS  Google Scholar 

  157. Tang W, Cerdán-García E, Berthelot H, Polyviou D, Wang S, Baylay A, Whitby H, Planquette H, Mowlem M, Robidart J, Cassar N (2020) New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods. ISME J 1410(14):2514–2526. https://doi.org/10.1038/s41396-020-0703-6

    Article  CAS  Google Scholar 

  158. Yamahara KM, Preston CM, Birch J, Walz K, Marin R, Jensen S, Pargett D, Roman B, Ussler W, Zhang Y, Ryan J, Hobson B, Kieft B, Raanan B, Goodwin KD, Chavez FP, Scholin C (2019) In situ autonomous acquisition and preservation of marine environmental DNA using an autonomous underwater vehicle. Front Mar Sci 6:373. https://doi.org/10.3389/FMARS.2019.00373/BIBTEX

    Article  Google Scholar 

  159. Preston CM, Harris A, Ryan JP, Roman B, Marin R, Jensen S, Everlove C, Birch J, Dzenitis JM, Pargett D, Adachi M, Turk K, Zehr JP, Scholin CA (2011) Underwater application of quantitative PCR on an ocean mooring. PLoS One 6:e22522. https://doi.org/10.1371/JOURNAL.PONE.0022522

    Article  CAS  Google Scholar 

  160. Hansen BK, Jacobsen MW, Middelboe AL, Preston CM, Marin R, Bekkevold D, Knudsen SW, Møller PR, Nielsen EE (2020) Remote, autonomous real-time monitoring of environmental DNA from commercial fish. Sci Rep 101(10):1–8. https://doi.org/10.1038/s41598-020-70206-8

    Article  CAS  Google Scholar 

  161. Scholin C, Jensen S, Roman B, Massion E, Marin R, Preston C, Greenfield D, Jones W, Wheeler K (2006) The environmental sample processor (ESP) – an autonomous robotic device for detecting microorganisms remotely using molecular probe technology. In: Ocean. https://doi.org/10.1109/OCEANS.2006.306885

    Chapter  Google Scholar 

  162. Roman B, Scholin C, Jensen S, Marin R, Massion E, Feldman J (2005) The 2nd generation environmental sample processor: evolution of a robotic underwater biochemical laboratory. In: Proc MTS/IEEE ocean. https://doi.org/10.1109/OCEANS.2005.1639911

    Chapter  Google Scholar 

  163. Ussler W, Preston C, Tavormina P, Pargett D, Jensen S, Roman B, Marin R, Shah SR, Girguis PR, Birch JM, Orphan V, Scholin C (2013) Autonomous application of quantitative PCR in the deep sea: in situ surveys of aerobic methanotrophs using the deep-sea environmental sample processor. Environ Sci Technol 47:9339–9346. https://doi.org/10.1021/ES4023199/SUPPL_FILE/ES4023199_SI_001.PDF

    Article  CAS  Google Scholar 

  164. Revenga C, Campbell I, Abell R, de Villiers P, Bryer M (2005) Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philos Trans R Soc B Biol Sci 360:397–413. https://doi.org/10.1098/RSTB.2004.1595

    Article  CAS  Google Scholar 

  165. WWF (2020) Living planet report 2020: bending the curve of biodiversity loss. Gland, Switzerland

    Google Scholar 

  166. Thomsen PF, Willerslev E (2015) Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18. https://doi.org/10.1016/J.BIOCON.2014.11.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Parle-McDermott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, M.A., Bracken, F.S.A., Idelegbagbon, O., Parle-McDermott, A. (2023). Environmental DNA as a Tool for Single Species Detection. In: Regan, F., Hansen, PD., BarcelĂł, D. (eds) Biosensors for the Marine Environment. The Handbook of Environmental Chemistry, vol 122. Springer, Cham. https://doi.org/10.1007/698_2022_956

Download citation

Publish with us

Policies and ethics