Skip to main content

SnO2-Mixed Oxide Electrodes for Water Treatment: Role of the Low-Cost Active Anode

  • Chapter
  • First Online:
Cost-efficient Wastewater Treatment Technologies

Abstract

Recently, electrochemical oxidation water treatment is a promising method to solve environmental pollution issues. During the electrochemical oxidation process, electrode material is a critical factor affecting the treatment efficiency. Sb-doped SnO2 electrodes are reported as superiors for the decomposition of organic matters from water through the oxidation process. But the weak electrochemical stability is also a drawback of SnO2 electrodes, which limits their application. This article tries to review SnO2-based electrodes, which focuses on clarifying their stability and the application in water treatment as well as indicating future research prospects with the aim to highlight the attractive features of this electrode. Specifically, the properties and electrochemical oxidation mechanisms of SnO2-based electrodes for different pollutants are presented. Furthermore, typical methods for preparation of SnO2 electrodes along with respective nanostructures synthesized processes are also shown. Moreover, several studies on the application of SnO2-based electrodes in the treatment of different contaminated-water sources such as textiles, landfills, and phenol wastewaters are reviewed. In addition, recent research trends on development of SnO2-based electrodes and their recyclability are reported. As a result, this study indicates that the stability and electrochemical performance of SnO2-based electrodes can be increased by many approaches including doping metal oxide, new fabrication routes, and combining TiO2 nanotubes with SnO2. The study also indicates some operational parameters, which need to be considered thoroughly for the practical applicability of SnO2 electrodes in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41. https://doi.org/10.1016/j.seppur.2003.10.006

    Article  CAS  Google Scholar 

  2. Comninellis C, Chen G (2010) Electrochemistry for the environment. In: Electrochemistry for the environment. Springer, pp 55–69. https://doi.org/10.1007/978-0-387-68318-8

    Chapter  Google Scholar 

  3. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569. https://doi.org/10.1021/cr9001319

    Article  CAS  Google Scholar 

  4. Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340. https://doi.org/10.1039/b517632h

    Article  CAS  Google Scholar 

  5. Meaney KL, Omanovic S (2007) Sn0.86-Sb0.03-Mn0.10-Pt0.01-oxide/Ti anode for the electro-oxidation of aqueous organic wastes. Mater Chem Phys 105:143–147. https://doi.org/10.1016/j.matchemphys.2007.04.046

    Article  CAS  Google Scholar 

  6. Rajeshwar K, Ibanez JG, Swain GM (1994) Electrochemistry and the environment. J Appl Electrochem 24:1077–1091

    CAS  Google Scholar 

  7. Walsh FC (2001) Electrochemical technology for environmental treatment and clean energy conversion. Pure Appl Chem 73:1819–1837. https://doi.org/10.1351/pac200173121819

    Article  CAS  Google Scholar 

  8. Panizza M, Cerisola G (2007) Electrochemical processes for the treatment of organic pollutants. In: Zinger DV (ed) Advances in chemistry research, vol 2. Nova Science Publishers, New York, pp 1–38

    Google Scholar 

  9. Montilla F, Morallon E, Vazquez JL (2005) Evaluation of the electrocatalytic activity of antimony-doped tin dioxide anodes toward the oxidation of phenol in aqueous solutions. J Electrochem Soc 152:B421–B427. https://doi.org/10.1149/1.2013047

    Article  CAS  Google Scholar 

  10. Awad M, Abuzaid S (1997) Electrochemical treatment of phenolic wastewater: efficiency, design considerations and economic evaluation. J Environ Sci Heal Part A Environ Sci Eng Toxicol 32:1393–1414. https://doi.org/10.1080/10934529709376617

    Article  Google Scholar 

  11. Piya-areetham P, Shenchunthichai K, Hunsom M (2006) Application of electrooxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode. Water Res 40:2857–2864. https://doi.org/10.1016/j.watres.2006.05.025

    Article  CAS  Google Scholar 

  12. Gattrell M, Kirk DW (1990) The electrochemical oxidation of aqueous phenol at a glassy carbon electrode. Can J Chem Eng 68:997–1003

    CAS  Google Scholar 

  13. Ferreira M, Varela H, Torresi RM, Tremiliosi-Filho G (2006) Electrode passivation caused by polymerization of different phenolic compounds. Electrochim Acta 52:434–442. https://doi.org/10.1016/j.electacta.2006.05.025

    Article  CAS  Google Scholar 

  14. Cañizares P, Lobato J, Paz R, Rodrigo MA, Sáez C (2005) Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Res 39:2687–2703. https://doi.org/10.1016/j.watres.2005.04.042

    Article  CAS  Google Scholar 

  15. Pacheco MJ, Morão A, Lopes A, Ciríaco L, Gonçalves I (2007) Degradation of phenols using boron-doped diamond electrodes: a method for quantifying the extent of combustion. Electrochim Acta 53:629–636. https://doi.org/10.1016/j.electacta.2007.07.024

    Article  CAS  Google Scholar 

  16. Scialdone O, Galia A, Guarisco C, Randazzo S, Filardo G (2008) Electrochemical incineration of oxalic acid at boron doped diamond anodes: role of operative parameters. Electrochim Acta 53:2095–2108. https://doi.org/10.1016/j.electacta.2007.09.007

    Article  CAS  Google Scholar 

  17. Zhu X, Shi S, Wei J, Lv F, Zhao H, Kong J, He Q, Ni J (2007) Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode. Environ Sci Technol 41:6541–6546

    CAS  Google Scholar 

  18. Borrás C, Laredo T, Mostany J, Scharifker R (2004) Study of the oxidation of solutions of p-chlorophenol and p-nitrophenol on Bi-doped PbO2 electrodes by UV-Vis and FTIR in situ spectroscopy. Electrochim Acta 49:641–648. https://doi.org/10.1016/j.electacta.2003.09.019

    Article  CAS  Google Scholar 

  19. Kong J, Shi S, Kong L, Zhu X, Ni J (2007) Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochim Acta 53:2048–2054. https://doi.org/10.1016/j.electacta.2007.09.003

    Article  CAS  Google Scholar 

  20. Liu H, Liu Y, Zhang C, Shen R (2008) Electrocatalytic oxidation of nitrophenols in aqueous solution using modified PbO2 electrodes. J Appl Electrochem 38:101–108. https://doi.org/10.1007/s10800-007-9406-1

    Article  CAS  Google Scholar 

  21. Quiroz MA, Reyna S, Martínez-Huitle CA, Ferro S, De Battisti A (2005) Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. Appl Catal B Environ 59:259–266. https://doi.org/10.1016/j.apcatb.2005.02.009

    Article  CAS  Google Scholar 

  22. Tong SP, Ma CA, Feng H (2008) A novel PbO2 electrode preparation and its application in organic degradation. Electrochim Acta 53:3002–3006. https://doi.org/10.1016/j.electacta.2007.11.011

    Article  CAS  Google Scholar 

  23. Hu JM, Zhang JQ, Meng HM, Zhang JT, Cao CN (2005) Electrochemical activity, stability and degradation characteristics of IrO2-based electrodes in aqueous solutions containing C1 compounds. Electrochim Acta 50:5370–5378. https://doi.org/10.1016/j.electacta.2005.03.016

    Article  CAS  Google Scholar 

  24. Kim K-W, Lee E-H, Kim J-S, Shin K-H, Jung B-I (2002) Material and organic destruction characteristics of high temperature-sintered RuO2 and IrO2 electrodes. J Electrochem Soc 149:D187–D192. https://doi.org/10.1149/1.1515280

    Article  CAS  Google Scholar 

  25. Li XY, Cui YH, Feng YJ, Xie ZM, Gu JD (2005) Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res 39:1972–1981. https://doi.org/10.1016/j.watres.2005.02.021

    Article  CAS  Google Scholar 

  26. Borras C, Berzoy C, Mostany J, Herrera C, Scharifker R (2007) A comparison of the electrooxidation kinetics of p-methoxyphenol and p-nitrophenol on Sb-doped SnO2 surfaces: concentration and temperature effects. Appl Catal B Environ 72:98–104. https://doi.org/10.1016/j.apcatb.2006.09.017

    Article  CAS  Google Scholar 

  27. Correa-Lozano B, Comninellis C, De Battisti A (1997) Service life of Ti/SnO2-Sb2O5 anodes. J Appl Electrochem 27:970–974. https://doi.org/10.1023/A:1018414005000

    Article  CAS  Google Scholar 

  28. Stucki S, Kötz R, Carcer B, Suter W (1991) Electrochemical waste water treatment using high overvoltage anodes. Part II: anode performance and applications. J Appl Electrochem 21:99–104

    CAS  Google Scholar 

  29. Kötz R, Stucki S, Carcer B (1991) Electrochemical waste water treatment using high overvoltage anodes. Part I: physical and electrochemical properties of SnO2 anodes. J Appl Electrochem 21:14–20. https://doi.org/10.1007/BF01103823

    Article  Google Scholar 

  30. Abuzaid S, Al-Hamouz Z, Bukhari A, Essa M (1999) Electrochemical treatment of nitrite using stainless steel electrodes. Water Air Soil Pollut 109:429–442

    CAS  Google Scholar 

  31. Allen J, Khader H, Bino M (1995) Electrooxidation of dyestuffs in waste waters. J Chem Tech Biotechnol 62:111–117

    CAS  Google Scholar 

  32. Lin SH, Wu CL (1997) Electrochemical nitrite and ammonia oxidation in sea water. J Environ Sci Heal A 32:2125–2138

    Google Scholar 

  33. Naumczyk J, Szpyrkowicz L, Faveri MDD, ZilioGrandi F (1996) Electrochemical treatment of tannery wastewater containing high strength pollutants. Trans IChemE B 74:59–68

    CAS  Google Scholar 

  34. Naumczyk J, Szpyrkowicz L, Grandi FZ (1996) Electrochemical treatment of textile wastewater. Water Sci Technol 34:17–24

    CAS  Google Scholar 

  35. Szpyrkowicz L, Naumczyk J, Zilio-Grandi F (1994) Application of electrochemical processes for tannery wastewater treatment. Toxicol Environ Chem 44:189–202

    CAS  Google Scholar 

  36. Vlyssides AG, Israilides CJ, Loizidou M, Karvouni G, Mourafeti V (1997) Electrochemical treatment of vinasse from beet molasses. Water Sci Technol 36:271–278

    CAS  Google Scholar 

  37. Vlyssides AG, Israilides CJ (1997) Detoxification of tannery waste liquors with an electrolysis system. Environ Pollut 97:147–152

    CAS  Google Scholar 

  38. Chiang LC, Chang JE, Wen TC (1995) Electrochemical oxidation process for the treatment of coke-plant wastewater. J Environ Sci Heal A 30:753–771

    Google Scholar 

  39. Chiang LC, Chang JE, Wen TC (1995) Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res 29:671–678. https://doi.org/10.1016/0043-1354(94)00146-X

    Article  CAS  Google Scholar 

  40. Vlyssides AG, Israilides CJ (1998) Electrochemical oxidation of a textile dye and finishing wastewater using a Pt/Ti electrode. J Environ Sci Heal A 33:847–862

    Google Scholar 

  41. Brillas E, Mur E, Sauleda R, Sanchez L, Peral F, Domenech X, Casado J (1998) Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl Catal B Environ 16:31–42

    CAS  Google Scholar 

  42. Brillas E, Sauleda R, Casado J (1998) Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes. J Electrochem Soc 145:759–765

    CAS  Google Scholar 

  43. Brillas E, Sauleda R, Casado J (1997) Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode. J Electrochem Soc 144:2374–2379

    CAS  Google Scholar 

  44. Brillas E, Bastida RM, Llosa E (1995) Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2-fed cathode. J Electrochem Soc 142:1733–1741

    CAS  Google Scholar 

  45. Brillias E, Mur E, Casado J (1996) Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode. J Electrochem Soc 143:L49–L53

    Google Scholar 

  46. Matsue T, Fujihira M, Osa T (1981) Oxidation of alkylbenzenes by electrogenerated hydroxyl radical. J Electrochem Soc 128:2565–2569

    CAS  Google Scholar 

  47. El-Shal W, Khordagui H, El-Sebaie O, El-Sharkawi F, Sedahmed GH (1991) Electrochemical generation of ozone for water treatment using a cell operating under natural convection. Desalination 99:149–157

    Google Scholar 

  48. Stucki S, Baumann H, Christen HJ, Kotz R (1987) Performance of a pressurized electrochemical ozone generator. J Appl Electrochem 17:773–778

    CAS  Google Scholar 

  49. Farmer JC, Wang FT, Hawley-Fedder RA, Lewis PR, Summers LJ, Foiles L (1992) Electrochemical treatment of mixed and hazardous wastes: oxidation of ethylene glycol and benzene by silver(II). J Electrochem Soc 139:654–662

    CAS  Google Scholar 

  50. Bringmann F, Ebert K, Galla U, Schmieder H (1995) Electrochemical mediators for total oxidation of chlorinated hydrocarbons: formation kinetics of Ag(II), Co(III), and Ce(IV). J Appl Electrochem 25:846–851

    CAS  Google Scholar 

  51. Cocheci V, Radovan C, Ciorba GA, Vlaiciu I (1995) Mediate electrochemical wastewater treatment. Rev Roum Chim 40:615–619

    CAS  Google Scholar 

  52. Farmer JC, Wang FT (1992) Electrochemical treatment of mixed and hazardous wastes: oxidation of ethylene glycol by cobalt(III) and iron(III). IChemE Symp Ser 127:203–214

    CAS  Google Scholar 

  53. Hickman RG, Farmer JC, Wang FT (1993) Mediated electrochemical process for hazardous waste destruction. In: ACS symposium series 518, emerging technologies in hazardous waste management III. American Chemical Society, pp 430–438

    Google Scholar 

  54. Paire A, Espinoux D, Masson M, Lecomte M (1997) Silver(II) mediated electrochemical treatment of selected organics: hydrocarbon destruction mechanism. Radiochim Acta 78:137–143

    CAS  Google Scholar 

  55. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862. https://doi.org/10.1016/0013-4686(94)85175-1

    Article  CAS  Google Scholar 

  56. Murphy OJ, Hitchens GD, Kaba L, Verostko CE (1992) Direct electrochemical oxidation of organics for wastewater treatment. Water Res 26:443–451

    CAS  Google Scholar 

  57. Szpyrkowicz L, Naumczyk J, Zilio-Grandi F (1995) Electrochemical treatment of tannery wastewater using Ti/Pt and Ti/Pt/Ir electrodes. Water Res 29:517–524. https://doi.org/10.1016/0043-1354(94)00176-8

    Article  CAS  Google Scholar 

  58. Rajalo G, Petrovskaya T (1996) Selective electrochemical oxidation of sulphides in tannery wastewater. Environ Technol 17:605–612

    CAS  Google Scholar 

  59. Rao NN, Somasekhar KM, Kaul SN, Szpyrkowicz L (2001) Electrochemical oxidation of tannery. J Chem Technol Biotechnol 76:1124–1131

    CAS  Google Scholar 

  60. Boudenne JL, Cerclier O, Galea J, Vlist EV (1996) Electrochemical oxidation of aqueous phenol at a carbon black slurry electrode. Appl Catal A Gen 143:185–202

    CAS  Google Scholar 

  61. Boudenne L, Cerclier O (1999) Performance of carbon black-slurry electrodes for 4-chlorophenol oxidation. Water Res 33:494–504

    CAS  Google Scholar 

  62. Polcaro AM, Palmas S (1997) Electrochemical oxidation of chlorophenols. Ind Eng Chem Res 36:1791–1798

    CAS  Google Scholar 

  63. Hofseth CS, Chapman TW (1999) Electrochemical destruction of dilute cyanide by copper-catalyzed oxidation in a flow-through porous electrode. J Electrochem Soc 146:199–207

    CAS  Google Scholar 

  64. Manriquez J, Bravo JL, Gutierrez-Granados S, Succar SS, Bied-Charreton C, Ordaz AA, Bedioui F (1999) Electrocatalysis of the oxidation of alcohol and phenol derivative pollutants at vitreous carbon electrode coated by nickel macrocyclic complex-based films. Anal Chim Acta 378:159–168

    CAS  Google Scholar 

  65. Gattrell M, Kirk DW (1993) A study of the oxidation of phenol at platinum and preoxidized platinum surfaces. J Electrochem Soc 140:1534–1540. https://doi.org/10.1149/1.2221598

    Article  CAS  Google Scholar 

  66. Chen X, Chen G, Yue PL (2003) Anodic oxidation of dyes at novel Ti/B-diamond electrodes. Chem Eng Sci 58:995–1001. https://doi.org/10.1016/S0009-2509(02)00640-1

    Article  CAS  Google Scholar 

  67. Ehdaie S, Fleischmann M, Jansson REW (1982) Application of the trickle tower to problems of pollution control. I. the scavenging of metal ions. J Appl Electrochem 12:59–67

    CAS  Google Scholar 

  68. López-López A, Expósito E, Antón J, Rodríguez-Valera F, Aldaz A (1999) Use of Thiobacillus ferrooxidans in a coupled microbiological-electrochemical system for wastewater detoxification. Biotechnol Bioeng 63:79–86. https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<79::AID-BIT8>3.0.CO;2-Z

    Article  Google Scholar 

  69. Gabe DR, Walsh FC (1983) The rotating cylinder electrode: a review of development. J Appl Electrochem 13:3–21. https://doi.org/10.1007/BF00615883

    Article  CAS  Google Scholar 

  70. Walsh FC, Gardner NA, Gabe DR (1982) Development of the eco-cascade-cell reactor. J Appl Electrochem 12:299–309. https://doi.org/10.1007/BF00615095

    Article  CAS  Google Scholar 

  71. Backhurst R, Coulson M, Goodridge F, Plimley E, Fleischmann M (1969) A preliminary investigation of fluidized bed electrodes. J Electrochem Soc 116:1600–1607. https://doi.org/10.1149/1.2411628

    Article  Google Scholar 

  72. Kreysa G, Reynvaan C (1982) Optimal design of packed bed cells for high conversion. J Appl Electrochem 12:241–251

    CAS  Google Scholar 

  73. Sharifian H, Kirk DW (1986) Electrochemical oxidation of phenol. J Electrochem Soc 133:921–924. https://doi.org/10.1149/1.2108763

    Article  CAS  Google Scholar 

  74. Tennakoon CLK, Bhardwaj RC, Bockris JO (1996) Electrochemical treatment of human wastes in a packed bed reactor. J Appl Electrochem 26:18–29. https://doi.org/10.1007/BF00248184

    Article  CAS  Google Scholar 

  75. Sunderland JG, Dalrymple IM (1997) Cell and method for the recovery of metal from dilute solutions. U.S. Patent 5,690,806

    Google Scholar 

  76. Kuroda M, Watanabe T, Umedu Y (1996) Simultaneous oxidation and reduction treatments of polluted water by a bio-electro reactor. Water Sci Technol 34:101–108. https://doi.org/10.1016/S0273-1223(96)00792-5

    Article  CAS  Google Scholar 

  77. Aboaf JA, Marcotte V, Chou N (1973) Chemical composition and electrical properties of tin oxide films prepared by vapor deposition. J Electrochem Soc 120:701–702. https://doi.org/10.1149/1.2403539

    Article  CAS  Google Scholar 

  78. Sundaram KB, Bhagavat GK (1981) Chemical vapour deposition of tin oxide films and their electrical properties. J Phys D Appl Phys 14:333–338

    CAS  Google Scholar 

  79. Kojima M, Kato H, Imai A, Yoshida A (1988) Electronic conduction of tin oxide thin films prepared by chemical vapor deposition. J Appl Phys 64:1902–1905

    CAS  Google Scholar 

  80. Adams B, Tian M, Chen A (2009) Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochim Acta 54:1491–1498. https://doi.org/10.1016/j.electacta.2008.09.034

    Article  CAS  Google Scholar 

  81. Chatelon JP, Terrier C, Bernstein E, Berjoan R, Roger JA (1994) Morphology of SnO2 thin films obtained by the sol-gel technique. Thin Solid Films 247:162–168

    CAS  Google Scholar 

  82. Correa-Lozano B, Comninellis C, De Battisti A (1996) Physicochemical properties of SnO2-Sb2O5 films prepared by the spray pyrolysis technique. J Electrochem Soc 143:203–209

    CAS  Google Scholar 

  83. Patil GE, Kajale DD, Gaikwad VB, Jain GH (2012) Spray pyrolysis deposition of nanostructured tin oxide thin films. ISRN Nanotechnol 1–5. https://doi.org/10.5402/2012/275872

  84. Ong BH, Lee HC, Hamid SBA (2013) Morphological and structural study of nanostructured tin dioxide (SnO2) thin films by spray pyrolysis. Adv Mater Res 626:672–676. https://doi.org/10.4028/www.scientific.net/AMR.626.672

    Article  CAS  Google Scholar 

  85. Giani E, Kelly R (1974) A study of SnO2 thin films formed by sputtering and by anodizing. J Electrochem Soc 121:394–399. https://doi.org/10.1149/1.2401823

    Article  CAS  Google Scholar 

  86. Hossain MA, Yang G, Parameswaran M, Jennings JR, Wang Q (2010) Mesoporous SnO2 spheres synthesized by electrochemical anodization and their application in CdSe-sensitized solar cells. J Phys Chem C 114:21878–21884

    CAS  Google Scholar 

  87. Yamaguchi A, Iimura T, Hotta K, Teramae N (2011) Transparent nanoporous tin-oxide film electrode fabricated by anodization. Thin Solid Films 519:2415–2420. https://doi.org/10.1016/j.tsf.2010.11.049

    Article  CAS  Google Scholar 

  88. Le H (2013) Electrodeposition of nanostructured SnO2 films for DNA label-free electrochemical detection. Universite Grenoble Alpes

    Google Scholar 

  89. Xiong J, Han C, Li Z, Dou S (2015) Effects of nanostructure on clean energy: big solutions gained from small features. Sci Bull 60:2083–2090. https://doi.org/10.1007/s11434-015-0972-z

    Article  Google Scholar 

  90. Ma YJ, Zhou F, Lu L, Zhang Z (2004) Low-temperature transport properties of individual SnO2 nanowires. Solid State Commun 130:313–316. https://doi.org/10.1016/j.ssc.2004.02.013

    Article  CAS  Google Scholar 

  91. Liu Y, Liu M (2005) Growth of aligned square-shaped SnO2 tube arrays. Adv Funct Mater 15:57–62. https://doi.org/10.1002/adfm.200400001

    Article  CAS  Google Scholar 

  92. Davar F, Salavati-Niasari M, Fereshteh Z (2010) Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor. J Alloys Compd 496:638–643. https://doi.org/10.1016/j.jallcom.2010.02.152

    Article  CAS  Google Scholar 

  93. Wang W, Xu C, Wang G, Liu Y, Zheng C (2002) Synthesis and Raman scattering study of rutile SnO2 nanowires. J Appl Phys 92:2740–2742. https://doi.org/10.1063/1.1497718

    Article  CAS  Google Scholar 

  94. Grimm J, Bessarabov D, Maier W, Storck S, Sanderson RD (1998) Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water. Desalination 115:295–302. https://doi.org/10.1016/S0011-9164(98)00048-4

    Article  CAS  Google Scholar 

  95. Zhang G, Liu M (1999) Preparation of nanostructured tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol. J Mater Sci 34:3213–3219

    CAS  Google Scholar 

  96. Zhu W, Wang W, Xu H, Shi J (2006) Fabrication of ordered SnO2 nanotube arrays via a template route. Mater Chem Phys 99:127–130. https://doi.org/10.1016/j.matchemphys.2005.10.002

    Article  CAS  Google Scholar 

  97. Manorama S, Gopal Reddy C, Rao V (1999) Tin dioxide nanoparticles prepared by sol-gel method for an improved hydrogen sulfide sensor. Nanostruct Mater 11:643–649. https://doi.org/10.1016/S0965-9773(99)00352-9

    Article  CAS  Google Scholar 

  98. Huang J, Matsunaga N, Shimanoe K, Yamazoe N, Kunitake T (2005) Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing. Chem Mater 17:3513–3518

    CAS  Google Scholar 

  99. Chang ST, Leu IC, Hon MH (2002) Preparation and characterization of nanostructured tin oxide films by electrochemical deposition. Electrochem Solid-State Lett 5:C71–C74. https://doi.org/10.1149/1.1485808

    Article  CAS  Google Scholar 

  100. Chang ST, Leu IC, Hon MH (2004) Electrodeposition of nanocrystalline SnO2 coatings with two-layer microstructure. J Cryst Growth 273:195–202. https://doi.org/10.1016/j.jcrysgro.2004.07.087

    Article  CAS  Google Scholar 

  101. Chen X, Liang J, Zhou Z, Duan H, Li B, Yang Q (2010) The preparation of SnO2 film by electrodeposition. Mater Res Bull 45:2006–2011. https://doi.org/10.1016/j.materresbull.2010.07.029

    Article  CAS  Google Scholar 

  102. Kim S, Lee H, Park CM, Jung Y (2012) Synthesis of tin oxide nanoparticle film by cathodic electrodeposition. J Nanosci Nanotechnol 12:1616–1619. https://doi.org/10.1166/jnn.2012.4646

    Article  CAS  Google Scholar 

  103. Lai M, Gonzalez Martinez JA, Gratzel M, Jason Riley D (2006) Preparation of tin dioxide nanotubes via electrosynthesis in a template. J Mater Chem 16:2843–2845. https://doi.org/10.1039/b606433g

    Article  CAS  Google Scholar 

  104. Spray RL, Choi K-S (2007) Electrochemical synthesis of SnO2 films containing three-dimensionally organized uniform mesopores via interfacial surfactant templating. Chem Commun 35:3655–3657. https://doi.org/10.1039/b704428c

    Article  CAS  Google Scholar 

  105. Ishizaki T, Saito N, Takai O (2009) Surfactant-assisted fabrication of tin oxide nanowires through one-step electrochemically induced chemical deposition. J Electrochem Soc 156:D413–D417. https://doi.org/10.1149/1.3190161

    Article  CAS  Google Scholar 

  106. Lipp L, Pletcher D (1997) The preparation and characterization of tin dioxide coated titanium electrodes. Electrochim Acta 42:1091–1099. https://doi.org/10.1016/S0013-4686(96)00257-5

    Article  CAS  Google Scholar 

  107. Chen X, Gao F, Chen G (2005) Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation. J Appl Electrochem 35:185–191. https://doi.org/10.1007/s10800-004-6068-0

    Article  CAS  Google Scholar 

  108. Chen X, Chen G, Yue PL (2001) Stable Ti/IrOx–Sb2O5–SnO2 anode for O2 evolution with low Ir content. J Phys Chem B 105:4623–4628. https://doi.org/10.1021/jp010038d

    Article  CAS  Google Scholar 

  109. Chen X, Chen G (2005) Investigation of Ti/IrO2-Sb2O5-SnO2 electrodes for O2 evolution - calcination temperature and precursor composition effects. J Electrochem Soc 152:J59–J64. https://doi.org/10.1149/1.1922890

    Article  CAS  Google Scholar 

  110. Feng YJ, Li XY (2003) Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res 37:2399–2407. https://doi.org/10.1016/S0043-1354(03)00026-5

    Article  CAS  Google Scholar 

  111. Li Y, Wang F, Zhou G, Ni Y (2003) Aniline degradation by electrocatalytic oxidation. Chemosphere 53:1229–1234. https://doi.org/10.1016/S0045-6535(03)00590-3

    Article  CAS  Google Scholar 

  112. Coteiro RD, Teruel FS, Ribeiro J, De Andrade AR (2006) Effect of solvent on the preparation and characterization of DSA -type anodes containing RuO2 -TiO2 -SnO2. J Braz Chem Soc 17:771–779

    CAS  Google Scholar 

  113. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154. https://doi.org/10.1016/j.progsurf.2005.09.002

    Article  CAS  Google Scholar 

  114. Jarzebski ZM, Marton JP (1976) Physical properties of SnO2 materials. I. Preparation and defect structure. J Electrochem Soc 123:199C–205C. https://doi.org/10.1002/jrs

    Article  CAS  Google Scholar 

  115. Mannie GJA (2013) Surface chemistry and morphology of tin oxide thin films grown by chemical vapor deposition. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR751861

  116. Kılıç Ç, Zunger A (2002) Origins of coexistence of conductivity and transparency in SnO2. Phys Rev Lett 88:95501. https://doi.org/10.1103/PhysRevLett.88.095501

    Article  CAS  Google Scholar 

  117. Salehi H, Aryadoust M, Farbod M (2010) Electronic and structural properties of tin dioxide in cubic phase. Iran J Sci Technol Trans A 34:131–138

    CAS  Google Scholar 

  118. Hsu YS, Ghandhi S (1980) The effect of phosphorus doping on tin oxide films made by the oxidation of phosphine and tetramethyltin. II. Electrical properties. J Electrochem Soc 127:1595–1599. https://doi.org/10.1149/1.2129959

    Article  CAS  Google Scholar 

  119. Hsu YS, Ghandhi SK (1980) The effect of phosphorus doping on tin oxide films made by the oxidation of phosphine and tetramethyltin. I. Growth and etching properties. J Electrochem Soc 127:1592–1595. https://doi.org/10.1149/1.2129959

    Article  CAS  Google Scholar 

  120. Hsu YS, Ghandhi SK (1979) The preparation and properties of arsenic-doped tin oxide films. J Electrochem Soc 126:1434–1435

    CAS  Google Scholar 

  121. Vincent CA, Weston DGC (1972) Preparation and properties of semiconducting polycrystalline tin oxide. J Electrochem Soc 119:518–521. https://doi.org/10.1149/1.2404242

    Article  CAS  Google Scholar 

  122. Comninellis C, Pulgarin C (1993) Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J Appl Electrochem 23:108–112

    CAS  Google Scholar 

  123. Vicent F, Morallon E, Quijada C, Vázquez JL, Aldaz A, Cases FJ (1998) Characterization and stability of doped SnO2 anodes. J Appl Electrochem 28:607–612. https://doi.org/10.1023/A:1003250118996

    Article  CAS  Google Scholar 

  124. Nanthakumar A, Armstrong NR (1988) Studies in physical and theoretical chemistry. In: Semiconductor electrodes, vol 55. Elsevier, Amsterdam, p 203

    Google Scholar 

  125. Chen X, Chen G, Gao F, Yue PL (2003) High-performance Ti/BDD electrodes for pollutant oxidation. Environ Sci Technol 37:5021–5026. https://doi.org/10.1021/es026443f

    Article  CAS  Google Scholar 

  126. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145. https://doi.org/10.1016/j.apcatb.2008.09.017

    Article  CAS  Google Scholar 

  127. Polcaro AM, Palmas S, Renoldi F, Mascia M (1999) On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment. J Appl Electrochem 29:147–151. https://doi.org/10.1023/A:1003411906212

    Article  CAS  Google Scholar 

  128. Bonfatti F, Ferro S, Lavezzo F, Malacarne M, Lodi G, De A (1999) Electrochemical incineration of glucose as a model organic substrate. I. Role of the electrode material. J Electrochem Soc 146:2175–2179. https://doi.org/10.1149/1.1391909

    Article  CAS  Google Scholar 

  129. Comninellis C (1992) Electrochemical treatment of wastewater containing phenol. Trans IChemE B 70:219–224

    CAS  Google Scholar 

  130. Fugivara CS, Sumodjo PTA, Cardoso AA, Benedetti AV (1996) Electrochemical decomposition of cyanides on tin dioxide electrodes in alkaline media. Analyst 121:541–545

    CAS  Google Scholar 

  131. Panizza M, Martinez-Huitle CA (2013) Role of electrode materials for the anodic oxidation of a real landfill leachate - comparison between Ti-Ru-Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere 90:1455–1460. https://doi.org/10.1016/j.chemosphere.2012.09.006

    Article  CAS  Google Scholar 

  132. Ruparelia JP, Soni BD (2012) Application of Ti/RuO2-SnO2-Sb2O5 anode for degradation of reactive Black-5 dye. World Acad Sci Eng Technol Int J Environ Chem Ecol Geol Geophys Eng 6:715–721

    Google Scholar 

  133. León MI, Aguilar ZG, Nava JL (2014) Electrochemical combustion of indigo at ternary oxide coated titanium anodes. J Electrochem Sci Eng 4:247–258. https://doi.org/10.5599/jese.2014.0061

    Article  Google Scholar 

  134. Ramalho AMZ, Martínez-Huitle CA, da Silva DR (2010) Application of electrochemical technology for removing petroleum hydrocarbons from produced water using a DSA-type anode at different flow rates. Fuel 89:531–534. https://doi.org/10.1016/j.fuel.2009.07.016

    Article  CAS  Google Scholar 

  135. Houk LL, Johnson SK, Feng J, Houk RS, Johnson DC (1998) Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte. J Appl Electrochem 28:1167–1177. https://doi.org/10.1023/a:1003439727317

    Article  CAS  Google Scholar 

  136. Zanta CLPS, Michaud P-A, Comninellis C, De Andrade AR, Boodts JFC (2003) Electrochemical oxidation of p-chlorophenol on SnO2– Sb2O5 based anodes for wastewater treatment. J Appl Electrochem 33:1211–1215

    CAS  Google Scholar 

  137. Cossu R, Polcaro AM, Lavagnolo MC, Mascia M, Palmas S, Renoldi F (1998) Electrochemical treatment of landfill leachate: oxidation at Ti/PbO2 and Ti/SnO2 anodes. Environ Sci Technol 32:3570–3573. https://doi.org/10.1021/es971094o

    Article  CAS  Google Scholar 

  138. Hastie J, Bejan D, Teutli-Leon M, Bunce NJ (2006) Electrochemical methods for degradation of orange II (sodium 4-(2-hydroxy-1-naphthylazo)benzenesulfonate). Ind Eng Chem Res 45:4898–4904

    CAS  Google Scholar 

  139. Panizza M, Cerisola G (2004) Influence of anode material on the electrochemical oxidation of 2-naphthol. part 2. Bulk electrolysis experiments. Electrochim Acta 49:3221–3226. https://doi.org/10.1016/j.electacta.2004.02.036

    Article  CAS  Google Scholar 

  140. Panizza M, Cerisola G (2003) Influence of anode material on the electrochemical oxidation of 2-naphthol. part 1. Cyclic voltammetry and potential step experiments. Electrochim Acta 48:3491–3497. https://doi.org/10.1016/S0013-4686(03)00468-7

    Article  CAS  Google Scholar 

  141. Panizza M, Cerisola G (2007) Electrocatalytic materials for the electrochemical oxidation of synthetic dyes. Appl Catal B Environ 75:95–101. https://doi.org/10.1016/j.apcatb.2007.04.001

    Article  CAS  Google Scholar 

  142. Li P, Zhao G, Cui X, Zhang Y, Tang Y (2009) Constructing stake structured TiO2-NTs/Sb-doped SnO2 electrode simultaneously with high electrocatalytic and photocatalytic performance for complete mineralization of refractory aromatic acid. J Phys Chem C 113:2375–2383. https://doi.org/10.1021/jp8078106

    Article  CAS  Google Scholar 

  143. Tang B, Liu M, Zhao G (2016) Preparation of TiO2 nanotubes-based electrophotocatalysts and their applications in organic pollutants oxidation. In: Nanostructured photocatalysts. Springer, pp 125–136. https://doi.org/10.1007/978-3-319-26079-2_6

    Chapter  Google Scholar 

  144. Zhao G, Cui X, Liu M, Li P, Zhang Y, Cao T, Li H, Lei Y, Liu L, Li D (2009) Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode. Environ Sci Technol 43:1480–1486. https://doi.org/10.1021/es802155p

    Article  CAS  Google Scholar 

  145. Chai S, Zhao G, Li P, Lei Y, Zhang YN, Li D (2011) Novel sieve-like SnO2/TiO2 nanotubes with integrated photoelectrocatalysis: fabrication and application for efficient toxicity elimination of nitrophenol wastewater. J Phys Chem C 115:18261–18269. https://doi.org/10.1021/jp205228h

    Article  CAS  Google Scholar 

  146. Wu T, Zhao G, Lei Y, Li P (2011) Distinctive tin dioxide anode fabricated by pulse electrodeposition: high oxygen evolution potential and efficient electrochemical degradation of fluorobenzene. J Phys Chem C 115:3888–3898. https://doi.org/10.1021/jp110149v

    Article  CAS  Google Scholar 

  147. Xiong K, Deng Z, Li L, Chen S, Xia M, Zhang L, Qi X, Ding W, Tan S, Wei Z (2013) Sn and Sb co-doped RuTi oxides supported on TiO2 nanotubes anode for selectivity toward electrocatalytic chlorine evolution. J Appl Electrochem 43:847–854. https://doi.org/10.1007/s10800-013-0570-1

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research is funded by Vietnam Ministry of Education and Training (MOET) under grant number B2021-VGU-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Le Luu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ho, N.A.D. et al. (2022). SnO2-Mixed Oxide Electrodes for Water Treatment: Role of the Low-Cost Active Anode. In: Nasr, M., Negm, A.M. (eds) Cost-efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry, vol 118. Springer, Cham. https://doi.org/10.1007/698_2022_874

Download citation

Publish with us

Policies and ethics