Skip to main content

Binational Efforts Addressing Cyanobacterial Harmful Algal Blooms in the Great Lakes

  • Chapter
  • First Online:
Contaminants of the Great Lakes

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 101))

Abstract

Cyanobacterial harmful algal blooms (cyanoHABs) are a recurring impairment in many of the lakes and connecting water bodies that make up the Laurentian Great Lakes. In many of these lakes, eutrophication during the twentieth century resulted in shifts in summer phytoplankton populations to communities dominated by harmful and noxious colonial and filamentous cyanobacteria. Nutrient pollution of Lake Erie was an important factor behind the implementation of the 1972 Great Lakes Water Quality Agreement between the USA and Canada. While the GLWQA has been effective in targeting point sources of nutrient loading, nonpoint source contributions related to agricultural activity have increased in recent decades. Re-eutrophication as experienced in parts of western Lake Erie and portions of the other Great Lakes is exacerbated by global climate change with these factors collectively contributing to a resurgence in the frequency and severity of cyanoHABs. As the Laurentian Great Lakes are shared waters between the USA and Canada, successful mitigation of cyanoHABs will require increased binational coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kavcic R (2016) Connecting across borders. A special report on the Great Lakes and St. Lawrence regional economy. http://www.gsgp.org/media/1818/2016-cglslgp-bmo-economic-report.pdf. Accessed 7 Dec 2019

  2. Graziano M, Alexander KA, Liesch M, Lema E, Torres JA (2019) Understanding an emerging economic discourse through regional analysis: blue economy clusters in the US Great Lakes basin. Appl Geogr 105:111–123

    Article  Google Scholar 

  3. Smith RB, Bass B, Sawyer D, Depew D, Watson SB (2019) Estimating the economic costs of algal blooms in the Canadian Lake Erie Basin. Harmful Algae 87:E101624. https://doi.org/10.1016/j.hal.2019.101624

    Article  Google Scholar 

  4. Baker DB, Johnson LT, Confesor RB, Crumrine JP, Guo T, Manning NF (2019) Needed: early-term adjustments for Lake Erie phosphorus target loads to address western basin cyanobacterial blooms. J Great Lakes Res 45:203–211

    Article  CAS  Google Scholar 

  5. Wilson RS, Beetstra MA, Reutter JM, Hesse G, Fussell KMD, Johnson LT, King KW, LaBarge GA, Martin JF, Winslow C (2019) Commentary: achieving phosphorus reduction targets for Lake Erie. J Great Lakes Res 45:4–11

    Article  CAS  Google Scholar 

  6. Krienitz L, Ballot A, Kotut K, Wiegand C, Pütz S, Metcalf JS, Codd GA, Stephan P (2003) Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiol Ecol 43:141–148

    Article  CAS  Google Scholar 

  7. Murphy T, Irvine K, Guo J, Davies J, Murkin H, Charlton M, Watson S (2003) New microcystin concerns in the lower Great Lakes. Water Qual Res J 38:127–140

    Article  CAS  Google Scholar 

  8. Stewart I, Seawright AA, Shaw GR (2008) Cyanobacterial poisoning in livestock, wild mammals and birds – an overview. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, pp 613–637

    Chapter  Google Scholar 

  9. Faassen EJ, Harkema L, Begeman L, Lurling M (2012) First report of (homo)anatoxin-a and dog neurotoxicosis after ingestion of benthic cyanobacteria in The Netherlands. Toxicon 60:378–384

    Article  CAS  Google Scholar 

  10. Svirčev Z, Lalić D, Savić GB, Tokodi N, Backović DD, Chen L, Meriluoto J, Codd GA (2019) Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch Toxicol 93:2429–2481

    Article  CAS  Google Scholar 

  11. Scutti S (2019) How to spot the toxic algae that’s killing dogs in the Southeast. https://www.cnn.com/2019/08/12/health/toxic-algae-dog-deaths-trnd/index.html. Accessed 7 Dec 2019

  12. Hoffman R (2019) Agencies testing for toxic blue-green algae on South Shore of Lake Tahoe. https://www.tahoedailytribune.com/news/agency-testing-for-toxic-blue-green-algae-on-south-shore-of-lake-tahoe/. Accessed 7 Dec 2019

  13. McPhail C (2019) Cyanobacteria confirmed as cause of dog’s sudden death after swim in St. John River. https://www.cbc.ca/news/canada/new-brunswick/cyanobacteria-blue-green-algae-dog-death-fredericton-1.5229540. Accessed 7 Dec 2019

  14. Beeton A (1961) Environmental changes in Lake Erie. Trans Am Fish Soc 90:153–159

    Article  Google Scholar 

  15. Beeton A (1964) The eutrophication of the St. Lawrence Great Lakes. Limnol Oceanogr 10:240–254

    Article  Google Scholar 

  16. Ludsin SA, Kershner MW, Blocksom KA, Knight RL, Stein RA (2001) Life after death in Lake Erie: nutrient controls drive fish species richness, rehabilitation. Ecol Appl 11:731–746

    Article  Google Scholar 

  17. Verduin J (1964) Changes in western Lake Erie during the period 1948–1962. Verh Internat Verein Limnol 15:639–644

    Google Scholar 

  18. Davis C (1964) Evidence for the eutrophication of Lake Erie from phytoplankton records. Limnol Oceanogr 9:275–283

    Article  Google Scholar 

  19. Davis C (1962) The plankton of the Cleveland Harbor area of Lake Erie in 1956–1957. Ecol Monogr 32:209–247

    Article  Google Scholar 

  20. Dobson H, Gilbertson M, Sly P (1974) A summary and comparison of nutrients and related water quality in Lakes Erie, Ontario, Huron, and Superior. J Fish Res Board Can 31:731–738

    Article  CAS  Google Scholar 

  21. Munawar M, Munawar I (1976) A lakewide study of phytoplankton biomass and its species composition in Lake Erie, April-December 1970. J Fish Res Board Can 33:581–600

    Article  Google Scholar 

  22. Jetoo S, Thorn A, Friedman K, Gosman S, Krantzberg G (2015) Governance and geopolitics as drivers of change in the Great Lakes–St. Lawrence basin. J Great Lakes Res 41:108–118

    Article  Google Scholar 

  23. LeFeuvre A (1991) The Great Lakes water quality agreement: an exercise in co-operation and commitment. Can Water Res J 16:261–265

    Article  Google Scholar 

  24. DePinto JV, Young TC, McIlroy LM (1986) Great Lakes water quality improvement. Environ Sci Technol 20:752–759

    Article  CAS  Google Scholar 

  25. Scavia D, Allan JD, Arend KK, Bartell S, Beletsky D, Bosch NS, Brandt SB, Briland RD, Daloğlu I, DePinto JV, Dolan DM (2014) Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia. J Great Lakes Res 40:226–246

    Article  CAS  Google Scholar 

  26. Makarewicz JC, Bertram P (1991) Evidence for the restoration of the Lake Erie ecosystem. Bioscience 41:216–223

    Article  Google Scholar 

  27. Bertram PE (1993) Total phosphorus and dissolved oxygen trends in the central basin of Lake Erie, 1970–1991. J Great Lakes Res 19:224–236

    Article  CAS  Google Scholar 

  28. Makarewicz JC (1993) Phytoplankton as indicators of environmental health. Verh Internat Verein Limnol 25:363–365

    Google Scholar 

  29. Matisoff G, Ciborowski JJH (2005) Lake Erie trophic status collaborative study. J Great Lakes Res 31:1–10

    Article  CAS  Google Scholar 

  30. MacIsaac HJ, Sprules G, Johannson OE, Leach JH (1992) Filtering impacts of larval and sessile zebra mussels (Dreissena polymorpha) in western Lake Erie. Oecologia 92:30–39

    Article  Google Scholar 

  31. Nicholls KH, Hopkins GJ, Standke SJ (1999) Reduced chlorophyll to phosphorus ratios in nearshore Great Lakes waters coincide with the establishment of dreissenid mussels. Can J Fish Aquat Sci 56:153–161

    Article  Google Scholar 

  32. Higgins SN, Vander Zanden MJ, Joppa LN, Vadeboncoeur Y (2011) The effect of dreissenid invasions on chlorophyll and the chlorophyll: total phosphorus ratio in north-temperate lakes. Can J Fish Aquat Sci 68:319–329

    Article  CAS  Google Scholar 

  33. Baker DB, Confesor R, Ewing DE, Johnson LT, Kramer JW, Merryfield BJ (2014) Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: the importance of bioavailability. J Great Lakes Res 40:502–517

    Article  CAS  Google Scholar 

  34. Baker DB, Ewing DE, Johnson LT, Kramer JW, Merryfield BJ, Confesor R, Richards RO, Roerdink AA (2014) Lagrangian analysis of the transport and processing of agricultural runoff in the lower Maumee River and Maumee Bay. J Great Lakes Res 40:479–495

    Article  CAS  Google Scholar 

  35. Bullerjahn GS, McKay RML, Davis TW, Baker DB, Boyer GL, D’Anglada LV, Doucette GJ, Ho JC, Erwin EG, Kling CL, Kudela RM, Kurmayer R, Michalak AM, Ortiz JD, Otten TG, Paerl HW, Qin B, Sohngen BL, Stumpf RP, Visser PM, Wilhelm SW (2016) Global solutions for regional problems: collecting global expertise to address the problem of harmful algal blooms – a Lake Erie case study. Harmful Algae 54:223–238

    Article  Google Scholar 

  36. Kane DD, Conroy JD, Richards RP, Baker DB, Culver DA (2014) Re-eutrophication of Lake Erie: correlations between tributary nutrient loads and phytoplankton biomass. J Great Lakes Res 40:496–501

    Article  CAS  Google Scholar 

  37. Brittain SM, Wang J, Babcock-Jackson L, Carmichael WW, Rinehart KL, Culver DA (2000) Isolation and characterization of microcystins, cyclic heptapeptide hepatotoxins from a Lake Erie strain of Microcystis aeruginosa. J Great Lakes Res 26:241–249

    Article  CAS  Google Scholar 

  38. Davis TW, Stumpf R, Bullerjahn GS, McKay RML, Chaffin JD, Bridgeman TB, Winslow C (2019) Science meets policy: a framework for determining impairment designation criteria for large waterbodies affected by cyanobacterial harmful algal blooms. Harmful Algae 81:59–64

    Article  Google Scholar 

  39. Michalak AM, Anderson EJ, Beletsky D, Boland S, Bosch NS, Bridgeman TB, Chaffin JD, Cho K, Confesor R, Daloğlu I, DePinto JV, Evans MA, Fahnenstiel GL, He L, Ho JC, Jenkins L, Johengen TH, Kuo KC, LaPorte E, Liu X, McWilliams MR, Moore MR, Posselt DJ, Richards RP, Scavia D, Steiner AL, Verhamme E, Wright DM, Zagorski MA (2013) Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc Natl Acad Sci 110:6448–6452

    Article  CAS  Google Scholar 

  40. Stumpf RP, Johnson LT, Wynne TT, Baker DB (2016) Forecasting annual cyanobacterial bloom biomass to inform management decisions in Lake Erie. J Great Lakes Res 42:1174–1183

    Article  CAS  Google Scholar 

  41. Binding CE, Zastepa A, Zeng C (2019) The impact of phytoplankton community composition on optical properties and satellite observations of the 2017 western Lake Erie algal bloom. J Great Lakes Res 45:573–586

    Article  Google Scholar 

  42. Palagama DS, Baliu-Rodriguez D, Snyder BK, Thornburg JA, Bridgeman TB, Isailovic D (2020) Identification and quantification of microcystins in western Lake Erie during 2016 and 2017 harmful algal blooms. J Great Lakes Res 46(2):289–301. https://doi.org/10.1016/j.jglr.2020.01.002

  43. Steffen MM, Belisle BS, Watson SB, Boyer GL, Wilhelm SW (2014) Status, causes and controls of cyanobacterial blooms in Lake Erie. J Great Lakes Res 40:215–225

    Article  CAS  Google Scholar 

  44. Davis TW, Bullerjahn GS, Tuttle T, McKay RM, Watson SB (2015) Effects of increasing nitrogen and phosphorus concentrations on phytoplankton community growth and toxicity during Planktothrix blooms in Sandusky Bay, Lake Erie. Environ Sci Technol 49:7197–7207

    Article  CAS  Google Scholar 

  45. Conroy J, Quinlan E, Kane D, Culver D (2007) Cylindrospermopsis in Lake Erie: testing its association with other cyanobacterial general and major limnological parameters. J Great Lakes Res 33:519–535

    Article  Google Scholar 

  46. Salk KR, Bullerjahn GS, McKay RML, Chaffin JD, Ostrom NE (2018) Nitrogen cycling in Sandusky Bay, Lake Erie: oscillations between strong and weak export and implications for harmful algal blooms. Biogeosciences 15:2891–2907

    Article  CAS  Google Scholar 

  47. Kutovaya OA, McKay RML, Beall BF, Wilhelm SW, Kane DD, Chaffin JD, Bridgeman TB, Bullerjahn GS (2012) Evidence against fluvial seeding of recurrent toxic blooms of Microcystis spp. in Lake Erie’s western basin. Harmful Algae 15:71–77

    Article  Google Scholar 

  48. McKay RML, Tuttle T, Reitz LA, Bullerjahn GS, Cody WR, McDowell AJ, Davis TW (2018) Early onset of a microcystin-producing cyanobacterial bloom in an agriculturally-influenced Great Lakes tributary. J Oceanol Limnol 36:1112–1125

    Article  CAS  Google Scholar 

  49. Environment and Climate Change Canada and the U.S. Environmental Protection Agency (2019) Lake Erie Lakewide action and management plan, 2019–2023. https://binational.net/wp-content/uploads/2019/06/Draft-Lake-Erie-LAMP-061819-English.pdf. Accessed 7 Dec 2019

  50. Hampel JJ, McCarthy MJ, Neudeck M, Bullerjahn GS, McKay RML, Newell SE (2019) Ammonium recycling supports toxic Planktothrix blooms in Sandusky Bay, Lake Erie: evidence from stable isotope and metatranscriptome data. Harmful Algae 81:42–52

    Article  CAS  Google Scholar 

  51. Bartram J, Chorus I (eds) (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. CRC Press, Boca Raton

    Google Scholar 

  52. Chorus I, Falconer IR, Salas HJ, Bartram J (2000) Health risks caused by freshwater cyanobacteria in recreational waters. J Toxicol Environ Health B 3:323–347

    Article  CAS  Google Scholar 

  53. Huang I, Zimba P (2019) Cyanobacterial bioactive metabolites – a review of their chemistry and biology. Harmful Algae 83:42–94

    Article  CAS  Google Scholar 

  54. Janssen E (2019) Cyanobacterial peptides beyond microcystins – a review on co-occurrence, toxicity, and challenges for risk assessment. Water Res 151:488–499

    Article  CAS  Google Scholar 

  55. Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19

    Article  CAS  Google Scholar 

  56. Steffen MM, Davis TW, McKay RML, Bullerjahn GS, Krausfeldt LE, Stough JMA, Neitzey ML, Gilbert NE, Boyer GL, Johengen TH, Gossiaux DC, Burtner AM, Palladino D, Rowe MD, Dick GJ, Meyer KA, Levy S, Boone BE, Stumpf RP, Wynne TT, Zimba PV, Gutierrez D, Wilhelm SW (2017) Ecophysiological examination of the Lake Erie Microcystis bloom in 2014: linkages between biology and the water supply shutdown of Toledo, OH. Environ Sci Technol 51:6745–6755

    Article  CAS  Google Scholar 

  57. Bingham S, Sinha K, Lupi F (2015) Economic benefits of reducing harmful algal blooms in Lake Erie. Environmental Consulting and Technology, Inc. Report. 66pp

    Google Scholar 

  58. Mitra A, Flynn K (2006) Promotion of harmful algal blooms by zooplankton predatory activity. Biol Lett 2:194–197

    Article  Google Scholar 

  59. O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  CAS  Google Scholar 

  60. Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VLM (2013) Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw Biol 58:552–559

    Article  Google Scholar 

  61. O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD, McIntyre PB, Kraemer BM, Weyhenmeyer GA (2015) Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett 42:10–773

    Google Scholar 

  62. Sharma S, Gray DK, Read JS, O’Reilly CM, Schneider P, Qudrat A, Gries C et al (2015) A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci Data 2:150008. https://doi.org/10.1038/sdata.2015.8

    Article  Google Scholar 

  63. Zhong Y, Notaro M, Vavrus SJ, Foster MJ (2016) Recent accelerated warming of the Laurentian Great Lakes: physical drivers. Limnol Oceanogr 61:1762–1786

    Article  Google Scholar 

  64. Jensen OP, Benson BJ, Magnuson JJ, Card VM, Futter MN, Soranno PA, Stewart KM (2007) Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol Oceanogr 52:2013–2026

    Article  Google Scholar 

  65. Vavrus SJ, Notaro M, Lorenz DJ (2015) Interpreting climate model projections of extreme weather events. Weather Clim Extrem 10:10–28

    Article  Google Scholar 

  66. Austin JA, Colman SM (2007) Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophys Res Lett 34:L06604. https://doi.org/10.1029/2006GL029021

    Article  Google Scholar 

  67. Austin J, Colman S (2008) A century of temperature variability in Lake Superior. Limnol Oceanogr 53:2724–2730

    Article  Google Scholar 

  68. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  69. Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    Article  CAS  Google Scholar 

  70. Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37

    Article  CAS  Google Scholar 

  71. Kosten S, Huszar VLM, Bécares E, Costa LS, van Donk E, Hansson LA, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, De Meester L, Moss B, Lürling M, Nõges T, Romo S, Scheffer M (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Chang Biol 18:118–126

    Article  Google Scholar 

  72. Ho JC, Michalak AM, Pahlevan N (2019) Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574:667–670

    Article  CAS  Google Scholar 

  73. Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725

    Article  CAS  Google Scholar 

  74. Mantzouki E, Lürling M, Fastner J, De Senerpont DL, Wilk-Woźniak E, Koreivienė J, Seelen L, Teurlincx S et al (2018) Temperature effects explain continental scale distribution of cyanobacterial toxins. Toxins 10:156. https://doi.org/10.3390/toxins10040156

    Article  CAS  Google Scholar 

  75. Peng G, Martin RM, Dearth SP, Sun X, Boyer GL, Campagna SR, Lin S, Wilhelm SW (2018) Seasonally relevant cool temperatures interact with N chemistry to increase microcystins produced in lab cultures of Microcystis aeruginosa NIES-843. Environ Sci Technol 52:4127–4136

    Article  CAS  Google Scholar 

  76. Verspagen JMH, Van de Waal DB, Finke JF, Visser PM, Huisman J (2014) Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels. Ecol Lett 17:951–960

    Article  Google Scholar 

  77. Verspagen JMH, Van de Waal DB, Finke JF, Visser PM, Van Donk E, Huisman J (2014) Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLoS One 9:e104325. https://doi.org/10.1371/journal.pone.0104325

    Article  CAS  Google Scholar 

  78. Low-Décarie E, Bell G, Fussmann GF (2015) CO2 alters community composition and response to nutrient enrichment of freshwater phytoplankton. Oecologia 177:875–883

    Article  Google Scholar 

  79. Visser PM, Verspagen JMH, Sandrini G, Stal LJ, Matthijs HCP, Davis TW, Paerl HW, Huisman J (2016) How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145–159

    Article  CAS  Google Scholar 

  80. Schippers P, Lürling M, Scheffer M (2004) Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol Lett 7:446–451

    Article  Google Scholar 

  81. Van de Waal DB, Smith VH, Declerck SAJ, Stam ECM, Elser JJ (2014) Stoichiometric regulation of phytoplankton toxins. Ecol Lett 17:736–742

    Article  Google Scholar 

  82. Van De Waal DB, Verspagen JMH, Finke JF, Vournazou V, Immers AK, Kardinaal WEA, Tonk L, Becker S, Van Donk E, Visser PM, Huisman J (2011) Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J 5:1438–1450

    Article  CAS  Google Scholar 

  83. Van De Waal DB, Verspagen JMH, Lürling M, Van Donk E, Visser PM, Huisman J (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Lett 12:1326–1335

    Article  Google Scholar 

  84. Verschoor AM, Van Dijk MA, Huisman JEF, Van Donk E (2013) Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshw Biol 58:597–611

    Article  CAS  Google Scholar 

  85. Phillips JC, McKinley GA, Bennington V, Bootsma HA, Pilcher DJ, Sterner RW, Urban NR (2015) The potential for CO2-induced acidification in freshwater: a Great Lakes case study. Oceanography 28:136–145

    Article  Google Scholar 

  86. Hasler CT, Butman D, Jeffrey JD, Suski CD (2016) Freshwater biota and rising pCO2? Ecol Lett 19:98–108

    Article  Google Scholar 

  87. Minor EC, Tennant CJ, Brown ET (2019) A seasonal to interannual view of inorganic and organic carbon and pH in western Lake Superior. J Geophys Res Biogeosci 124:405–419

    Article  CAS  Google Scholar 

  88. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  Google Scholar 

  89. Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862

    Article  Google Scholar 

  90. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196

    Article  CAS  Google Scholar 

  91. Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, Dortch Q, Gobler CJ, Heil CA, Humphries E, Lewitus A, Magnien R, Marshall HG, Sellner K, Stockwell DA, Stoecker DK, Suddleson M (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13

    Article  CAS  Google Scholar 

  92. Watson SB, Miller C, Arhonditsis G, Boyer GL, Carmichael W, Charlton MN, Confesor R, Depew DC, Höök TO, Ludsin SA, Matisoff G (2016) The re-eutrophication of Lake Erie: harmful algal blooms and hypoxia. Harmful Algae 56:44–66

    Article  CAS  Google Scholar 

  93. Mohamed MN, Wellen C, Parsons CT, Taylor WD, Arhonditsis G, Chomicki KM, Boyd D, Weidman P, Mundle SO, Van Cappellen P, Sharpley AN, Haffner DG (2019) Understanding and managing the re-eutrophication of Lake Erie: knowledge gaps and research priorities. Freshw Sci 38:675–691

    Article  Google Scholar 

  94. Davis TW, Harke MJ, Marcoval MA, Goleski J, Orano-Dawson C, Berry DL, Gobler CJ (2010) Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat Microb Ecol 61:149–162

    Article  Google Scholar 

  95. Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745

    Article  CAS  Google Scholar 

  96. Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van de Waal DB (2016) The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54:87–97

    Article  CAS  Google Scholar 

  97. Muenich RL, Kalcic M, Scavia D (2016) Evaluating the impact of legacy P and agricultural conservation practices on nutrient loads from the Maumee River Watershed. Environ Sci Technol 50:8146–8154

    Article  CAS  Google Scholar 

  98. Berardo R, Formica F, Reutter J, Singh A (2017) Impact of land use activities in the Maumee River watershed on harmful algal blooms in Lake Erie. Case Stud Environ 1:1–8. https://doi.org/10.1525/cse.2017.sc.450561

    Article  Google Scholar 

  99. Klump JV, Fitzgerald SA, Waples JT (2009) Benthic biogeochemical cycling, nutrient stoichiometer, and carbon and nitrogen balances in a eutrophic freshwater bay. Limnol Oceanogr 53:692–712

    Article  Google Scholar 

  100. Harris HJ, Wenger RB, Sager PE, Klump JV (2018) The Green Bay saga: environmental change, scientific investigation, and watershed management. J Great Lakes Res 44:829–836

    Article  CAS  Google Scholar 

  101. Qualls TM, Harris HJ, Harris VA (2013) The state of Green Bay: the condition of the bay of Green Bay/Lake Michigan 2013. UW Sea Grant Institute/Water Resources Institute. https://publications.aqua.wisc.edu/product/the-state-of-the-bay-the-condition-of-the-bay-of-green-baylake-michigan-2013/. Accessed 7 Dec 2019

  102. De Stasio BT, Beranek AE, Schrimpf MB (2018) Zooplankton-phytoplankton interactions in Green Bay, Lake Michigan: lower food web responses to biological invasions. J Great Lakes Res 44:910–923

    Article  Google Scholar 

  103. De Stasio BT, Schrimpf MB, Beranek AE, Daniels WC (2008) Increased chlorophyll a, phytoplankton abundance, and cyanobacteria occurrence following invasion of Green Bay, Lake Michigan by dreissenid mussels. Aquat Invasions 3:21–27

    Article  Google Scholar 

  104. De Stasio BT, Schrimpf MB, Cornwell BH (2014) Phytoplankton communities in Green Bay, Lake Michigan after invasion by dreissenid mussels: increased dominance by cyanobacteria. Diversity 6:681–704

    Article  Google Scholar 

  105. Sayers M, Fahnenstiel GL, Shuchman RA, Whitley M (2016) Cyanobacteria blooms in three eutrophic basins of the Great Lakes: a comparative analysis using satellite remote sensing. Int J Remote Sens 37:4148–4171

    Article  Google Scholar 

  106. Bartlett SL, Brunner SL, Klump JV, Houghton EM, Miller TR (2018) Spatial analysis of toxic or otherwise bioactive cyanobacterial peptides in Green Bay, Lake Michigan. J Great Lakes Res 44:924–933

    Article  CAS  Google Scholar 

  107. Bierman VJ, Dolan DM, Kasprzyk R, Clark JL (1984) Retrospective analysis of the response of Saginaw Bay, Lake Huron, to reductions in phosphorus loadings. Environ Sci Technol 18:23–31

    Article  CAS  Google Scholar 

  108. He C, Zhang L, DeMarchi C, Croley II TE (2014) Estimating point and non-point source nutrient loads in the Saginaw Bay watersheds. J Great Lakes Res 40:11–17

    Article  CAS  Google Scholar 

  109. Fahnenstiel GL, Millie DF, Dyble J, Litaker RW, Tester PA, McCormick MJ, Rediske R, Klarer D (2008) Microcystin concentrations and cell quotas in Saginaw Bay, Lake Huron. Aquat Ecosyst Health Manag 11:190–195

    Article  CAS  Google Scholar 

  110. Millie DF, Fahnenstiel GL, Dyble J, Pigg R, Rediske R, Klarer DM, Litaker RW, Tester PA (2008) Influence of environmental conditions on late-summer cyanobacterial abundance in Saginaw Bay, Lake Huron. Aquat Ecosyst Health Manage 11:196–205

    Article  Google Scholar 

  111. Vanderploeg HA, Liebig JR, Carmichael WW, Agy MA, Johengen TH, Fahnenstiel GL, Nalepa TF (2001) Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can J Fish Aquat Sci 58:1208–1221

    Article  CAS  Google Scholar 

  112. Tang H, Vanderploeg HA, Johengen TH, Liebig JR (2014) Quagga mussel (Dreissena rostriformis bugensis) selective feeding of phytoplankton in Saginaw Bay. J Great Lakes Res 40:83–94

    Article  Google Scholar 

  113. Hall JD, O’Connor K, Ranieri J (2006) Progress toward delisting a Great Lakes Area of Concern: the role of integrated research and monitoring in the Hamilton Harbour Remedial Action Plan. Environ Monit Assess 113:227–243

    Article  Google Scholar 

  114. Munawar M, Fitzpatrick MAJ (2018) Eutrophication in three Canadian Areas of Concern: phytoplankton and major nutrient interactions. Aquat Ecosyst Health Manage 21:421–437

    Article  CAS  Google Scholar 

  115. Charlton MN (1997) The sewage issue in Hamilton Harbour: implications of population growth for the remedial action plan. Water Qual Res J 32:407–420

    Article  CAS  Google Scholar 

  116. Hiriart-Baer VP, Milne J, Charlton MN (2009) Water quality trends in Hamilton Harbour: two decades of change in nutrients and chlorophyll a. J Great Lakes Res 35:293–301

    Article  CAS  Google Scholar 

  117. City of Hamilton (2019) Update on the 2018 discharge in Chedoke Creek. https://www.hamilton.ca/government-information/news-centre/news-releases/update-2018-discharge-in-chedoke-creek. Accessed 7 Dec 2019

  118. Nicholls KH, Carney EC (2011) The phytoplankton of the Bay of Quinte, 1972–2008: point-source phosphorus loading control, dreissenid mussel establishment, and a proposed community reference. Aquat Ecosyst Health Manage 14:33–43

    Article  Google Scholar 

  119. Shimoda Y, Watson SB, Palmer ME, Koops MA, Mugalingam S, Morley A, Arhonditsis GB (2016) Delineation of the role of nutrient variability and dreissenids (Mollusca, Bivalvia) on phytoplankton dynamics in the Bay of Quinte, Ontario, Canada. Harmful Algae 55:121–136

    Article  CAS  Google Scholar 

  120. Munawar M, Fitzpatrick M, Niblock H, Rozon R, Lorimer J, Kling H (2018) Ecology of algal blooms in the Bay of Quinte: composition, diversity and dynamics. Aquat Ecosyst Health Manage 21:1–12

    Article  Google Scholar 

  121. Bocaniov SA, Scavia D (2018) Nutrient loss rates in relation to transport time scales in a large shallow lake (Lake St. Clair, USA – Canada): insights from a three-dimensional model. Water Resour Res 54:3825–3840

    Article  CAS  Google Scholar 

  122. Scavia D, Bocaniov SA, Dagnew A, Hu Y, Kerkez B, Long CM, Muenich RL, Read J, Vaccaro L, Wang YC (2019) Detroit River phosphorus loads: anatomy of a binational watershed. J Great Lakes Res 45(6):1150–1161. https://doi.org/10.1016/j.jglr.2019.09.008

    Article  CAS  Google Scholar 

  123. Leach JH (1980) Limnological sampling intensity in Lake St. Clair in relation to distribution of water masses. J Great Lakes Res 6:141–145

    Article  CAS  Google Scholar 

  124. Sprules WG, Munawar M (1991) Plankton community structure in Lake St. Clair, 1984. Hydrobiologia 219:229–237

    Article  Google Scholar 

  125. Vijayavel K, Sadowsky MJ, Ferguson JA, Kashian DR (2013) The establishment of the nuisance cyanobacteria Lyngbya wollei in Lake St. Clair and its potential to harbor fecal indicator bacteria. J Great Lakes Res 39:560–568

    Article  Google Scholar 

  126. Davis TW, Watson SB, Rozmarynowycz MJ, Ciborowski JJH, McKay RM, Bullerjahn GS (2014) Phylogenies of microcystin-producing cyanobacteria in the lower Laurentian Great Lakes suggest extensive genetic connectivity. PLoS One 9:e106093. https://doi.org/10.1371/journal.pone.0106093

    Article  CAS  Google Scholar 

  127. Hauser C (2018) Algae bloom in Lake Superior raises worries on climate change and tourism. https://www.nytimes.com/2018/08/29/science/lake-superior-algae-toxic.html. Accessed 7 Dec 2019

  128. Sterner RW, Smutka TM, McKay RML, Xiaoming Q, Brown ET, Sherrell RM (2004) Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol Oceanogr 49:495–507

    Article  CAS  Google Scholar 

  129. Cooney EM, McKinney P, Sterner R, Small GE, Minor EC (2018) Tale of two storms: impact of extreme rain events on the biogeochemistry of Lake Superior. J Geophys Res Biogeosci 123:1719–1731

    Article  CAS  Google Scholar 

  130. Miller T, Beversdorf L, Weirich C, Bartlett S (2017) Cyanobacterial toxins of the Laurentian Great Lakes, their toxicological effects, and numerical limits in drinking water. Mar Drugs 15:E160. https://doi.org/10.3390/md15060160

    Article  CAS  Google Scholar 

  131. Carmichael WW, Boyer GL (2016) Health impacts from cyanobacteria harmful algae blooms: implications for the North American Great Lakes. Harmful Algae 54:194–212

    Article  Google Scholar 

  132. Zegura B, Straser A, Filipic M (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins – a review. Mutat Res 727:16–41

    Article  CAS  Google Scholar 

  133. Meng G, Sun Y, Fu W, Guo Z, Xu L (2011) Microcystin-LR induces cytoskeleton system reorganization though hyperphosphorylation of tau and HSP27 via PP2A inhibition and subsequent activation of the p38 MAPK signaling pathway in neuroendocrine (PC12) cells. Toxicology 290:218–229

    Article  CAS  Google Scholar 

  134. Hong Y, Steinman A, Biddanda B, Rediske R, Fahnenstiel G (2006) Occurrence of the toxin-producing cyanobacterium Cylindrospermopsis raciborskii in Mona and Muskegon Lakes, Michigan. J Great Lakes Res 32:645–652

    Article  Google Scholar 

  135. Preussel K, Stuken A, Wiedner C, Chorus I, Fastner J (2006) First report on cylindrospermopsin producing Aphanizomenon flos-aquae (cyanobacteria) isolated from two German lakes. Toxicon 50:800–809

    Google Scholar 

  136. Brient L, Lengronne M, Bormans M, Fastner J (2009) First occurrence of cylindrospermopsin in freshwater in France. Environ Toxicol 24:415–420

    Article  CAS  Google Scholar 

  137. Seifert M, McGregor G, Eaglesham G, Wickramasinghe W, Shaw G (2007) First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 6:73–80

    Article  CAS  Google Scholar 

  138. Mazmouz R, Chapuis-Hugon F, Mann S, Pichon V, Mejean A, Ploux O (2010) Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria sp. strain PCC 6506: identification of the cyr gene cluster and toxin analysis. Appl Environ Microbiol 76:4943–4949

    Article  CAS  Google Scholar 

  139. Boyer GL (2007) The occurrence of cyanobacterial toxins in New York lakes: lessons from the MERHAB-lower Great Lakes program. Lake Reserv Manage 23:153–160

    Article  Google Scholar 

  140. Runnegar M, Xie C, Snider B, Wallace G, Weinreb S, Kuhlenkamp J (2002) In vitro hepatotoxicity of the cyanobacterial alkaloid cylindrospermopsin and related synthetic analogues. Toxicol Sci 67:81–87

    Article  CAS  Google Scholar 

  141. Broude E, Demidenko Z, Vivo C, Swift M, Davis B, Blagosklonny M, Roninson I (2007) p21 (CDKN1A) is a negative regulator of p53 stability. Cell Cycle 6:1468–1471

    Article  CAS  Google Scholar 

  142. Griffiths D, Saker M (2003) The Palm Island mystery disease 20 years on: a review of research on the cyanotoxin cylindrospermopsin. Environ Toxicol 18:78–93

    Article  CAS  Google Scholar 

  143. Hawkins P, Runnegar M, Jackson A, Falconer I (1985) Severe hepatotoxicity cause by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Appl Environ Microbiol 50:1292–1295

    Article  CAS  Google Scholar 

  144. Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, Heil CA, Kudela RM, Parsons ML, Rensel JJ, Townsend DW, Trainer VL (2008) Harmful algal blooms and eutrophication: examining linkages from selected coastal regions of the United States. Harmful Algae 8:39–53

    Article  CAS  Google Scholar 

  145. Hackett JD, Wisecave JH, Brosnahan ML, Kulis DM, Anderson DM, Bhattacharya D, Plumley FG, Erdner DL (2012) Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Mol Biol Evol 30:70–78

    Article  CAS  Google Scholar 

  146. Bridgeman TB, Penamon WA (2010) Lyngbya wollei in western Lake Erie. J Great Lakes Res 36:167–171

    Article  Google Scholar 

  147. Chaffin JD, Mishra S, Kane DD, Bade DL, Stanislawczyk K, Slodysko KN, Jones KW, Parker EM, Fox EL (2019) Cyanobacterial blooms in the central basin of Lake Erie: potentials for cyanotoxins and environmental drivers. J Great Lakes Res 45:277–289

    Article  CAS  Google Scholar 

  148. Carmichael W, Biggs D, Gorham P (1975) Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science 187:542–544

    Article  CAS  Google Scholar 

  149. Almuhtaram H, Cui Y, Zamyadi A, Hofmann R (2018) Cyanotoxins and cyanobacteria cell accumulations in drinking water treatment plants with a low risk of bloom formation at the source. Toxins 10:E430. https://doi.org/10.3390/toxins10110430

    Article  CAS  Google Scholar 

  150. Krantzberg G (2004) Science must inform Great Lakes policy. J Great Lakes Res 30:573–574

    Article  Google Scholar 

  151. Krantzberg G (2007) The ongoing review of the Great Lakes Water Quality Agreement. J Great Lakes Res 33:699–704

    Article  Google Scholar 

  152. Clamen M, Macfarlane D (2015) The International Joint Commission, water levels, and transboundary governance in the Great Lakes. Rev Policy Res 32:40–59

    Article  Google Scholar 

  153. Esterby SR, Bertram PE (1993) Compatibility of sampling and laboratory procedures evaluated for the 1985 three-ship intercomparison study on Lake Erie. J Great Lakes Res 19:400–417

    Article  CAS  Google Scholar 

  154. Chapra SC, Dove A, Rockwell DC (2009) Great Lakes chloride trends: long-term mass balance and loading analysis. J Great Lakes Res 35:272–284

    Article  CAS  Google Scholar 

  155. Chapra SC, Dove A, Warren GJ (2012) Long-term trends of Great Lakes major ion chemistry. J Great Lakes Res 38:550–560

    Article  CAS  Google Scholar 

  156. Dove A, Chapra SC (2015) Long-term trends of nutrients and trophic response variables for the Great Lakes. Limnol Oceanogr 60:696–721

    Article  CAS  Google Scholar 

  157. Richardson V, Warren GJ, Nielson M, Horvatin PJ (2012) Cooperative science and monitoring initiative (CSMI) for the Great Lakes—Lake Ontario 2008. J Great Lakes Res 38:10–13

    Article  Google Scholar 

  158. Allen K (2019) Scientists on high alert as green menace threatens Lake Erie. https://www.thestar.com/news/canada/2019/08/12/scientists-on-high-alert-as-massive-green-menace-threatens-lake-erie.html. Accessed 7 Dec 2019

  159. Henry T (2019) Summer algal bloom coming on strong in western Lake Erie. https://www.toledoblade.com/local/environment/2019/08/07/summer-2019-algal-bloom-coming-strong-western-lake-erie-algae-scientists-canada/stories/20190807160. Accessed 7 Dec 2019

  160. Pinto J (2019) International research flotilla chase giant Lake Erie algal bloom. https://www.cbc.ca/news/canada/windsor/international-flotilla-erie-bloom-1.5239324?__vfz=medium%3Dsharebar. Accessed 7 Dec 2019

  161. Gibbons K, Pebbles V (2017) Great Lakes HABs Collaboratory aims for collective impact on HABs. LakeLine 37:37–39

    Google Scholar 

  162. Pearson B, Kearns T, Slawecki T, Stubbs B, Herzog M, Paige K, Fitch D (2019) Making Lake Erie smart by driving innovations in technology and networking. Front Mar Sci 6:731. https://doi.org/10.3389/fmars.2019.00731

    Article  Google Scholar 

  163. Anderson CR, Berdalet E, Kudela RM, Cusack CK, Silke J, O’Rourke E, Dugan D, McCammon M, Newton JA, Moore SK, Paige K (2019) Scaling up from regional case studies to a global harmful algal bloom observing system. Front Mar Sci 6:250. https://doi.org/10.3389/fmars.2019.00250

    Article  Google Scholar 

  164. Stauffer BA, Bowers HA, Buckley E, Davis T, Johengen TH, Kudela RM, McManus MA, Purcell H, Smith GJ, VanderWoude A, Tamburri M (2019) Considerations in harmful algal bloom research and monitoring: perspectives from a consensus-building workshop and technology testing. Front Mar Sci 6:399. https://doi.org/10.3389/fmars.2019.00399

    Article  Google Scholar 

  165. Erie Hack (2019). https://eriehack.io/. Accessed 18 Jan 2020

  166. Berardo R, Turner VK, Rice S (2019) Systemic coordination and the problem of seasonal harmful algal blooms in Lake Erie. Ecol Soc 24:24. https://doi.org/10.5751/ES-11046-240324

    Article  Google Scholar 

Download references

Acknowledgements

This material is based in part upon work conducted through the Bowling Green State University Great Lakes Center for Fresh Waters and Human Health supported by the National Science Foundation (OCE-1840715) and the National Institute of Environmental Health Sciences (1P01ES028939-01). Additional support comes from NOAA’s National Centers for Coastal Ocean Science (NCCOS), the Natural Sciences and Engineering Research Council of Canada, and Environment and Climate Change Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Michael L. McKay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McKindles, K., Frenken, T., McKay, R.M.L., Bullerjahn, G.S. (2020). Binational Efforts Addressing Cyanobacterial Harmful Algal Blooms in the Great Lakes. In: Crossman, J., Weisener, C. (eds) Contaminants of the Great Lakes. The Handbook of Environmental Chemistry, vol 101. Springer, Cham. https://doi.org/10.1007/698_2020_513

Download citation

Publish with us

Policies and ethics