Skip to main content

A Review of Heavy Metals Contamination Within the Laurentian Great Lakes

  • Chapter
  • First Online:
Contaminants of the Great Lakes

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 101))

Abstract

Heavy metals are ubiquitous in the Great Lakes basin at a wide range of concentrations. Their historical sources are associated with geological settings of the area, while contemporary ones are attributed to anthropogenic activities of the watershed’s inhabitants. Four heavy metals in particular can be credited with the development of this area: copper, iron, lead, and mercury. Copper has been mined and processed in the Lake Superior basin for almost 10,000 years, while the iron industry history impacts are relatively new, dating back to the nineteenth century. It was iron however, which first prompted widespread development of the region, due to its high demand and extensive use. Also, lead and mercury can be credited as elements marking critical moments in local economic progress: lead, as an exponent of the auto-moto industry, and mercury as a side pollutant of coal burning and as a determinant of the chlor-alkali industry. The following description of the Great Lakes status in relation to metals has been drawn based mostly on sediment contamination, since this compartment of the environment is considered an “archive” for most of the aquatic pollutants. A review of metal loadings in the Great Lakes shows a fascinating history of the civilizational progress and efforts and also scientific accomplishments in metal research. Temporal patterns of metal concentrations showed the highest values around the 1950s, followed by a generally decreasing trend attributed to notable achievements in emission reduction and remediation efforts. Although such a trend is a most desirable attainment and conclusion, still much remains to be considered in this field, especially in light of potential future climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bornhorst TJ (2016) An overview of the geology of the Great Lakes basin. A. E. Seaman Mineral Museum, Web Publication 1, 8 p. https://www.museum.mtu.edu/sites/default/files/AESMM_Web_Pub_1_Great_Lakes_Geology_0.pdf. Accessed 10 July 2019

  2. Pompeani DP, Abbott MB, Steinman BA, Bain DJ (2013) Lake sediments record prehistoric lead pollution related to early copper production in North America. Environ Sci Technol 47:5545–5552

    Article  CAS  Google Scholar 

  3. Pompeani DP, Abbott MB, Bain DJ, DePasqual S, Finkenbinder MS (2015) Copper mining on Isle Royale 6500–5400 years ago identified using sediment geochemistry from McCargoe Cove, Lake Superior. The Holocene 25(2):253–262

    Article  Google Scholar 

  4. Borhornst TJ, Barron RJ (2011) Copper deposit in the western Upper Peninsula of Michigan. In: Miller JD et al (eds) Archean to Anthropocene: field guides to the geology of the mid-continent of North America. The Geological Society of America Inc, pp 83–100

    Google Scholar 

  5. Thistle J, Langston N (2016) Entangled histories: iron ore mining in Canada and the United States. Extr Ind Soc 3:269–277

    Google Scholar 

  6. OMA (2017) Ontario Mining Association. Mining in Ontario: the latest trends and industry outlook. https://www.oma.on.ca/en/ontariomining/EconomicContribution.asp. Accessed 10 July 2019

  7. USGS (2016) U.S. Geological Survey. 2012–2013 Minerals Yearbook – Michigan. https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/state/2012_13/myb2-2012_13-mi.pdf. Accessed 10 July 2019

  8. Fasenfest D, Jacons J (2003) An anatomy of change and transition: the automobile industry of Southeast Michigan. Small Bus Econ 21:153–172

    Article  Google Scholar 

  9. Sutherland J, Gunter K, Allen D, Bauer D, Bras B, Gutowski T, Murphy C, Piwonka T, Sheng P, Thurston D, Wolff E (2004) A global perspective on the environmental challenges facing the automotive industry: state-of-the-art and directions for the future. Int J Veh Des 35(1/2):86–110

    Article  Google Scholar 

  10. Oudijk G (2007) The use of alkyl leads in gasoline age-dating investigations: new insights, common investigative techniques, limitations, and recommended practices. Environ Claims J 19(1–2):68–87

    Article  Google Scholar 

  11. OME (2015) Ontario Ministry of Energy. The end of coal. An Ontario primer on modernizing electricity supply. ISBN 978-1-4606-6765-1 HTML. http://www.ontla.on.ca/library/repository/mon/29011/332713.pdf. Accessed 12 July 2019

  12. ECCC (2017) Environment and Climate Change Canada and the U.S. Environmental Protection Agency. State of the Great Lakes 2017 Technical Report. Cat No. En161-3/1E-PDF. EPA 905-R-17-001

    Google Scholar 

  13. Lepak RF, Yin R, Krabbenhoft DP, Ogorek JM, DeWild JF, Holsen TM, Hurley JP (2015) Environ Sci Technol Lett 2:335–341

    Article  CAS  Google Scholar 

  14. Burniston D, Klawunn P, Backus S, Hill B, Dove A, Waltho J, Richardson V, Struger J, Bradley L, McGoldrick D, Marvin C (2012) Spatial distributions and temporal trends in pollutants in the Great Lakes 1968–2008. Water Qual Res J Can 46(4):269–289

    Article  CAS  Google Scholar 

  15. Wiener JG, Evers DC, Gay DA, Morrison HA, Williams KA (2012) Mercury contamination in the Laurentian Great Lakes region: introduction and overview. Environ Pollut 161:243–251

    Article  CAS  Google Scholar 

  16. Szalinska E, Drouillard KG, Fryer B, Haffner GD (2006) Distribution of heavy metals in sediments of the Detroit River. J Great Lakes Res 32:442–454

    Article  CAS  Google Scholar 

  17. CCME (2002) Canadian Council of Ministers of the Environment, Canadian sediment quality guidelines for the protection of aquatic life: summary tables. Winnipeg

    Google Scholar 

  18. Marvin C, Painter S, Williams D, Richardson V, Rossmann R, Van Hoof P (2004) Spatial and temporal trends in surface water and sediment contamination in the Laurentian Great Lakes. Environ Pollut 129:131–144

    Article  CAS  Google Scholar 

  19. Gewurtz SB, Shen L, Helm PA, Waltho J, Reiner EJ, Painter S, Brindle ID, Marvin CM (2008) Spatial distributions of legacy contaminants in sediments of Lakes Huron and Superior. J Great Lakes Res 34:153–168

    Article  CAS  Google Scholar 

  20. Cahill RA (1981) Geochemistry of recent Lake Michigan sediments. State Geological Survey Division, Illinois Institute of Natural Resources, Champaign, Circular 517

    Google Scholar 

  21. Marvin CH, Charlton MN, Reiner EJ, Kolic T, MacPherson K, Stern GA, Braekevelt E, Estenik JF, Thiessen L, Painter S (2002) Surficial sediment contamination in Lakes Erie and Ontario: a comparative analysis. J Great Lakes Res 28(3):437–450

    Article  CAS  Google Scholar 

  22. Thomas RL, Dell CI (1978) Sediments of Lake Superior. J Great Lakes Res 4(3-4):264–275

    Article  CAS  Google Scholar 

  23. Kerfoot WC, Harting SL, Jeong J, Robbins JA, Rossmann R (2004) Local, regional, and global implications of elemental mercury in metal (copper, silver, gold, and zinc) ores: insights from Lake Superior sediments. J. Great Lakes Res 30(Suppl 1):162–184

    Google Scholar 

  24. LAMP (2016) Environment and Climate Change Canada and the U.S. Environmental Protection Agency. Lake Superior Lakewide Action and Management Plan, 2015–2019

    Google Scholar 

  25. Kerfoot WC, Urban NR, McDonald CP, Rossmann R, Zhang H (2016) Legacy mercury releases during copper mining near Lake Superior. J. Great Lakes Res 42:50–61

    Article  CAS  Google Scholar 

  26. Marvin C, Painter S, Rossmann R (2004) Spatial and temporal patterns in mercury contamination in sediments of the Laurentian Great Lakes. Environ Res 95:351–362

    Article  CAS  Google Scholar 

  27. Mortimer CH (2004) Lake Michigan in motion: responses of an Inland Sea to weather, earth-spin, and human activities. University of Wisconsin Press, Madison, p 310. https://greatlakes.guide/. Accessed 18 July 2019

  28. Harris HJ, Wenger RB, Sager PE, Klump JV (2018) The Green Bay saga: environmental change, scientific investigation, and watershed management. J Great Lakes Res 44:829–836

    Article  CAS  Google Scholar 

  29. Pfeiffer EL, Rossmann R (2010) Lead in Lake Michigan and Green Bay surficial sediments. J Great Lakes Res 36:20–27

    Article  CAS  Google Scholar 

  30. Rossmann R, Pfeiffer EL, Filkins JC (2014) Lake Michigan sediment lead storage and history of loads. J Great Lakes Res 40:851–858

    Article  CAS  Google Scholar 

  31. Thomas RL, Kemp AL, Lewis CFM (1973) The surficial sediments of Lake Huron. Can J Earth Sci 10(2):226–271

    Article  CAS  Google Scholar 

  32. LAMP (2017) Environment and Climate Change Canada and the U.S. Environmental Protection Agency. Lake Huron Lakewide Action and Management Plan, 2017–2021

    Google Scholar 

  33. Dove A, Hill B, Klawunn P, Waltho J, Backus S, McCrea RC (2012) Spatial distribution and trends of total mercury in waters of the Great Lakes and connecting channels using an improved sampling technique. Environ Pollut 161:328–334

    Article  CAS  Google Scholar 

  34. Thomas RL (1974) The distribution and transport of mercury in sediments of the Laurentian Great Lakes system. In: Proceedings of the international conference on transport of persistent chemicals in aquatic ecosystems. National Research Council of Canada, Ottawa, pp I-1–I-16

    Google Scholar 

  35. Szalinska E, Drouillard KG, Anderson EJ, Haffner GD (2011) Factors influencing contaminant distribution in the Huron-Erie Corridor sediments. J Great Lakes Res 37:132–139

    Article  CAS  Google Scholar 

  36. Gewurtz SB, Helm PA, Waltho J, Stern GA, Reiner EJ, Painter S, Marvin CM (2007) Spatial distributions and temporal trends in sediment contamination in Lake St. Clair. J Great Lakes Res 33:668–685

    Article  CAS  Google Scholar 

  37. Gewurtz SB, Bhavsar SP, Jackson DA, Fletcher R, Awad E, Moody R, Reiner EJ (2010) Temporal and spatial trends of organochlorines and mercury in fishes from the St. Clair River/Lake St. Clair corridor, Canada. J Great Lakes Res 36:100–112

    Article  CAS  Google Scholar 

  38. Jia J, Thiessen L, Schachtschneider JA, Waltho J, Marvin CM (2010) Contaminant trends in suspended sediments in the Detroit River-Lake St. Clair-St. Clair River Corridor, 2000 to 2004. Water Qual Res J Can 45(1):69–80

    Article  CAS  Google Scholar 

  39. Richman L, Millani D (2010) Temporal trends in near-shore sediment contaminant concentrations in the St. Clair River and potential long-term implications for fish tissue concentrations. J Great Lakes Res 36:722–735

    Article  CAS  Google Scholar 

  40. Richman L, Millani D, Marvin C (2018) Trends in suspended sediment quality in the upper St. Clair River: assessment of large-scale remediation of contaminated sediments in a dynamic riverine environment. Aquat Ecosyst Health Manag 21(1):93–106

    Article  CAS  Google Scholar 

  41. Forsythe KW, Marvin CM, Valancius CJ, Watt JP, Aversa JM, Swales SJ, Jakubek DJ, Shaker RR (2016) Geovisualization of mercury contamination in Lake St. Clair sediments. J Mar Sci Eng 4:19. https://doi.org/10.3390/jmse4010019

    Article  Google Scholar 

  42. Thomas RL, Christensen MD, Szalinska E, Scarlat M (2006) Formation of the St. Clair River Delta in the Laurentian Great Lakes system. J Great Lakes Res 32:738–748

    Article  Google Scholar 

  43. Maguire TJ, Spencer C, Grgicak-Mannion A, Drouillard K, Mayer B, Mundle SOC (2019) Distinguishing point and non-point sources of dissolved nutrients, metals, and legacy contaminants in the Detroit River. Sci Total Environ 681:1–8

    Article  CAS  Google Scholar 

  44. Hartig JH, Zarull MA, Ciborowski JJH, Gannon JE, Wilke E, Nrowood G (2009) Long-term ecosystem monitoring and assessment of the Detroit River and Western Lake Erie. Environ Monit Assess 158:7–104

    Article  Google Scholar 

  45. Szalinska E, Grgicak-Mannion A, Haffner GD, Drouillard KG (2013) Assessment of decadal changes in sediment contamination in a large connecting channel (Detroit River, North America). Chemosphere 93:1773–1781

    Article  CAS  Google Scholar 

  46. Youan F (2017) A multi-element sediment record of hydrological and environmental changes from Lake Erie since 1800. J Paleolimnol 58:23–42

    Article  Google Scholar 

  47. LAMP (2019) Environment and Climate Change Canada and the U.S. Environmental Protection Agency. Lake Erie Lakewide Action and Management Plan, 2019–2023

    Google Scholar 

  48. Smith DR, King KW, Williams MR (2015) What is causing the harmful algal blooms in Lake Erie? J Soil Water Conserv 70(2):27A–29A

    Article  Google Scholar 

  49. Forsythe KW, Marvin CH (2005) Analyzing the spatial distribution of sediment contamination in the lower Great Lakes. Water Qual Res J Canada 40(4):389–401

    Article  CAS  Google Scholar 

  50. LAMP (2018) Environment and Climate Change Canada and the U.S. Environmental Protection Agency. Lake Erie Lakewide Action and Management Plan, 2018–2022

    Google Scholar 

  51. Thomas RL, Kemp AL, Lewis CFM (1972) Distribution, composition and characteristics of the surficial sediments of Lake Ontario. J Sediment Petrol 42(1):66–84

    CAS  Google Scholar 

  52. Marvin CH, Charlton MN, Stern GA, Braekevelt E, Reiner EJ, Painter S (2003) Spatial and temporal trends in sediment contamination in Lake Ontario. J Great Lakes Res 29(2):317–331

    Article  CAS  Google Scholar 

  53. Mudroch A, Williams D (1989) Suspended sediments and the distribution of bottom sediments in the Niagara River. J Great Lakes Res 15(3):427–436

    Article  CAS  Google Scholar 

  54. Jackson TA (2013) Mass-dependent and mass-independent variations in the isotope composition of mercury in a sediment core from Lake Ontario as related to pollution history and biogeochemical processes. Chem Geol 355:88–102

    Article  CAS  Google Scholar 

  55. Milani D, Grapentine L, Burniston DA, Graham M, Marvin C (2017) Trends in sediment quality in Hamilton Harbour, Lake Ontario. Aquat Ecosyst Health Manag 20(3):295–307

    Article  Google Scholar 

  56. Adriaens P, Batterman S, Blum J, Hayes K, Meyers P, Weber W (2002) Great Lakes sediments: contamination, toxicity and beneficial re-use. White paper commissioned by Michigan Sea Grant and the School for Natural Resources and the Environment (SNRE). https://www.csu.edu/cerc/researchreports/documents/GreatLakesSedimentsContaminationToxicityBeneficialReUse.pdf. Accessed 26 July 2019

  57. Yuan F, Chaffin JD, Xue B, Wattrus N, Zhu Y, Sun Y (2018) Contrasting sources and mobility of trace metals in recent sediments of western Lake Erie. J Great Lakes Res 44:1026–1034

    Article  CAS  Google Scholar 

  58. Luoma S, Rainbow P (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, New York

    Google Scholar 

  59. de Paiva Magalhaes D, Regina da Costa Marques M, Fernandes Baptista D, Forsin Buss D (2015) Metal bioavailability and toxicity in freshwaters. Environ Chem Lett 13:69–87

    Google Scholar 

  60. Vaananena K, Leppanen MT, Chen X, Akkanen J (2018) Metal bioavailability in ecological risk assessment of freshwater ecosystems: from science to environmental management. Ecotoxicol Environ Saf 147:430–446

    Article  CAS  Google Scholar 

  61. Chen CY, Stemberger RS, Klaue B, Blum JD, Pickhardt PC, Fol CL (2000) Accumulation of heavy metals in food web components across a gradient of lakes. Limnol Oceanogr 45(7):1525–1536

    Article  CAS  Google Scholar 

  62. Ali H, Khan E (2018) Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ Chem Lett 16:903–917

    Article  CAS  Google Scholar 

  63. Gewurtz SB, Backus SM, Bhavsar SP, McGoldrick DJ, de Solla SR, Murphy EW (2011) Contaminant biomonitoring programs in the Great Lakes region: review of approaches and critical factors. Environ Rev 19:162–184

    Article  CAS  Google Scholar 

  64. Murphy CS, Bhavsar SP, Gandhi N (2012) Contaminants in Great Lakes fish: historic, current, and emerging concerns. In: Taylor WW et al (eds) Great Lakes fisheries policy and management: a binational perspective. Michigan State University Press, East Lansing. Project MUSE database. http://muse.jhu.edu. Accessed 31 July 2019

  65. Madon SP, Schneider DW, Stoeckel JA, Sparks RE (1998) Effects of inorganic sediment and food concentrations on energetic processes of the zebra mussel, Dreisena polymorpha: implications for growth in turbid rivers. Can J Fish Aquat Sci 55:401–413

    Article  Google Scholar 

  66. Lowe TP, Day DD (2002) Metal concentrations in zebra mussels and sediments from embayments and riverine environments of eastern Lake Erie, southern Lake Ontario, and the Niagara River. Arch Environ Contam Toxicol 43:301–308

    Article  CAS  Google Scholar 

  67. Opfer SE, Farver JF, Miner JG, Krieger K (2011) Heavy metals in sediments and uptake by burrowing mayflies in western Lake Erie basin. J Great Lakes Res 37:1–8

    Article  CAS  Google Scholar 

  68. Turyk ME, Bhavsar SP, Bowerman W, Boysen E, Clark M, Diamond M, Mergler D, Pantazopoulos P, Schantz S, Carpenter DO (2012) Risks and benefits of consumption of Great Lakes fish. Environ Health Perspect 120:11–18

    Article  CAS  Google Scholar 

  69. OMOECC (2017) Ontario Ministry of the Environment and Climate Change, 2017–2018 Guide to Eating Ontario Fish, Canada. https://wwwontarioca/page/eating-ontario-fish-2017-18#section-9. Accessed 20 Aug 2019

  70. Chasar LC, Scudder BC, Stewart AR, Bell AH, Aiken GR (2009) Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation. Environ Sci Technol 43:2733–2739

    Article  CAS  Google Scholar 

  71. Evers DC, Wiener JG, Basu N, Bodaly RA, Morrison HA, Williams KA (2011) Mercury in the Great Lakes region: bioaccumulation, spatiotemporal patterns, ecological risks, and policy. Ecotoxicology 20:1487–1499

    Article  CAS  Google Scholar 

  72. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293

    Article  CAS  Google Scholar 

  73. Li YB, Cai Y (2013) Progress in the study of mercury methylation and demethylation in aquatic environments. Chin Sci Bull 58:177–185

    Article  CAS  Google Scholar 

  74. Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. AMBIO J Hum Environ 36(1):12–19

    Article  CAS  Google Scholar 

  75. Evers DC, Williams KA, Meyer MW, Scheuhammer AM, Schoch N, Gilbert AT, Siegel L, Taylor RJ, Poppenga P, Perkins CR (2011) Spatial gradients of methylmercury for breeding common loons in the Laurentian Great Lakes region. Ecotoxicology 20:1609–1625

    Article  CAS  Google Scholar 

  76. Martin PA, McDaniel TV, Hughes KD, Hunter B (2011) Mercury and other heavy metals in free-ranging mink of the lower Great Lakes basin, Canada, 1998–2006. Ecotoxicology 20:1701–1712

    Article  CAS  Google Scholar 

  77. Bhavsar SP, Gewurtz SB, McGoldrick DJ, Keir MJ, Backus SM (2010) Changes in mercury levels in Great Lakes fish between 1970s and 2007. Environ Sci Technol 44:3273–3279

    Article  CAS  Google Scholar 

  78. Gandhi N, Bhavsar SP, Tang RWK, Arhonditsis GB (2015) Projecting fish mercury levels in the province of Ontario, Canada and the implications for fish and human health. Environ Sci Technol 49:14494–14502

    Article  CAS  Google Scholar 

  79. Gandhi N, Drouillard KG, Arhonditsis GB, Gewurtz SB, Bhavsar SP (2017) Are fish consumption advisories for the Great Lakes adequately protective against chemical mixtures? Environ Health Perspect 125:586–593

    Article  CAS  Google Scholar 

  80. Cole DC, Kearney J, Sanin LH, Leblanc A, Weber J-P (2004) Blood mercury levels among Ontario anglers and sport-fish eaters. Environ Res 95:305–314

    Article  CAS  Google Scholar 

  81. Connelly NA, Lauber TB, McCann PJ, Niederdeppe J, Knuth BA (2019) Estimated exposure to mercury from fish consumption among women anglers of childbearing age in the Great Lakes region. Environ Res 171:11–17

    Article  CAS  Google Scholar 

  82. Nriagu JO (1986) Metal pollution in the Great Lakes in relation to their carrying capacity. In: Kullenberg G (ed) The role of the oceans as a waste disposal option. NATO ASI Series (Series C: Mathematical and physical sciences), vol 172. Springer, Dordrecht

    Google Scholar 

  83. Hudson LA, Ciborowski JJH (1996) Spatial and taxonomic variation in incidence of mouthpart deformities in midge larvae (Diptera: Chironomidae: Chironomini). Can J Fish Aquat Sci 53:297–304

    Article  Google Scholar 

  84. Hudson LA, Ciborowski JJH (1996) Teratogenic and genotoxic responses of larval Chironomus salinarius group (Diptera: Chironomidae) to contaminated sediment. Environ Toxicol Chem 15(8):1375–1381

    Article  CAS  Google Scholar 

  85. Metcalfe TL, Metcalfe CD, Bennett ER, Haffner GD (2000) Distribution of organic contaminants in water and sediments of the Detroit River. J Great Lakes Res 26:55–64

    Article  CAS  Google Scholar 

  86. ECCC (2019) Environment and Climate Change Canada, areas of concern. https://wwwcanadaca/en/environment-climate-change/services/great-lakes-protection/areas-concernhtml. Accessed 27 Aug 2019

  87. EPA (2019) United States Environmental Protection Agency. https://www.epa.gov/great-lakes-legacy-act/about-great-lakes-legacy-act. Accessed 27 Aug 2019

  88. GLRI (2019) Great Lakes Restoration Initiative, U.S. https://www.glri.us/. Accessed 27 Aug 2019

  89. ECCC (2017) Environment and Climate Change Canada, Great Lakes Surveillance Program. http://wwwecgcca/scitech/defaultasp?lang=en&n=3F61CB56-. Accessed 28 Aug 2019

  90. Drouillard KG, Tomczak M, Reitsma S, Haffner GD (2006) A river-wide survey of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and selected organochlorine pesticide residues in sediments of the Detroit River—1999. J Great Lakes Res 32(2):209–226

    Article  CAS  Google Scholar 

  91. Gandhi N, Tang RW, Bhavsar SP, Arhonditsis GB (2014) Fish mercury levels appear to be increasing lately: a report from 40 years of monitoring in the province of Ontario, Canada. Environ Sci Technol 48(10):5404–5414

    Article  CAS  Google Scholar 

  92. Blukacz-Richards EA, Visha A, Graham ML, McGoldrick DL, de Solla SR, Moore DJ, Arhonditsis GB (2017) Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes. Chemosphere 172:476–487

    Article  CAS  Google Scholar 

  93. Zhou C, Cohen MD, Crimmins BA, Zhou H, Johnson TA, Hopke PK, Holsen TM (2017) Mercury temporal trends in top predator fish of the Laurentian Great Lakes from 2004 to 2015: are concentrations still decreasing? Environ Sci Technol 51:7386–7394

    Article  CAS  Google Scholar 

  94. Chen MM, Lopez L, Bhavsar SP, Sharma S (2018) What’s hot about mercury? Examining the influence of climate on mercury levels in Ontario top predator fishes. Environ Res 162:63–73

    Article  CAS  Google Scholar 

  95. Bartolai AM, He L, Hurst AE, Mortsch L, Paehlke R, Scavia D (2015) Climate change as a driver of change in the Great Lakes St. Lawrence River Basin. J Great Lakes Res 41(Suppl 1):45–58

    Google Scholar 

  96. CCCR (2019) Canada’s Changing Climate Report. https://changingclimateca/CCCR2019/. Accessed 30 Aug 2019

  97. Havens K, Jeppesen E (2018) Ecological responses of lakes to climate change. Water 10:917

    Article  CAS  Google Scholar 

  98. Lepak RF, Janssen SE, Yin R, Krabbenhoft DP, Ogorek JM, DeWild JF, Tate MT, Holsen TM, Hurley JP (2018) Factors affecting mercury stable isotopic distribution in piscivorous fish of the Laurentian Great Lakes. Environ Sci Technol 52:2768–2776

    Article  CAS  Google Scholar 

  99. Peng C, Zhang W, Gao H, Li Y, Tong X, Li K, Zhu X, Wang Y, Chen Y (2017) Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nano 7:21

    Google Scholar 

  100. RNNR (2014) Standing Committee on Natural Resources. The rare earth elements industry in Canada – summary of evidence, 2nd session, 41st Parliament, June 2014

    Google Scholar 

  101. Zhou B, Li Z, Chen C (2017) Global potential of rare earth resources and rare earth demand from clean technologies. Fortschr Mineral 7:203

    Article  CAS  Google Scholar 

  102. Balaram V (2019) Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 10:1285–1303

    Article  CAS  Google Scholar 

  103. Jaroni MS, Friedrich B, Letmathe P (2019) Economical feasibility of rare earth mining outside China. Fortschr Mineral 9:576

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Szalinska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szalinska, E. (2020). A Review of Heavy Metals Contamination Within the Laurentian Great Lakes. In: Crossman, J., Weisener, C. (eds) Contaminants of the Great Lakes. The Handbook of Environmental Chemistry, vol 101. Springer, Cham. https://doi.org/10.1007/698_2020_490

Download citation

Publish with us

Policies and ethics