Skip to main content

Amphiphilic Self-Assembly in the Synthesis and Processing of Nanomaterials

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Abstract

In recent years, the self-assembly of amphiphiles has been exploited to create nanostructures with controlled architecture and morphology. Maneuvering the intermolecular interactions between organic molecules offers attractive routes to tune the morphology of self-assembled structures. These structures can act as templates or nanoreactors for the creation of different inorganic materials. Amphiphiles have a significant role in regulating the nucleation and growth process of nanomaterials during liquid-phase synthesis. Dynamic equilibrium structures of micelles are employed in fine-tuning the colloidal stability, size distribution, and morphology of a variety of inorganic materials, polymers, etc. The synthesis of inorganic materials in the presence of organic additives offers nanostructured composites with superior properties. Microemulsions are employed as nanoreactors for the synthesis of size-controlled nanoparticles of lipids, polymers, metals, etc. The application of block copolymers in the production and ordering of nanomaterials is gaining increasing attention. Molecular self-assembly has become a key tool in the fabrication of a variety of materials with potential applications in biomaterials development, as carriers for drug delivery and templates for ordered nanostructures. Thus, this chapter focuses on the principles of the self-assembly process, its role in controlling the structure of materials and its applications in the emerging areas of materials development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alivisatos AP (1998) From molecules to materials: Current trends and future directions. Adv Mater 10:1297–1336

    Article  Google Scholar 

  2. Barick KC, Bahadur D (2010) Self-assembly of colloidal nanoscale particles: Fabrication, properties and applications. J Nanosci Nanotechnol 10:668–689

    Article  CAS  Google Scholar 

  3. Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6:557–562

    Article  Google Scholar 

  4. Israelachvili JN (1985) Thermodynamic and geometric aspects of amphiphile aggregation into micelles, vesicles and bilayers, and the interactions between them. In: Degiorgio V, Corti M (eds) Physics of amphiphiles: micelles, vesicles and microemulsions. North-Holland, Amsterdam, The Netherlands, pp 24–58

    Google Scholar 

  5. Domb C, Lebowitz JL, Gompper G, Schick M (1994) Self-assembling amphiphilic systems. Academic Press, London, UK, Phase Transitions and Critical Phenomena

    Google Scholar 

  6. Wang C, Wang Z, Zhang X (2012) Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Acc Chem Res 45:608–618

    Article  CAS  Google Scholar 

  7. Feynman RP (1960) There’s Plenty of Room at the Bottom. Eng Sci 23:22–36

    Google Scholar 

  8. Lombardo D, Kiselev MA, Magazù S, Calandra P (2015) Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Adv Cond Matter Phys 2015:151683

    Google Scholar 

  9. Rosen MJ (1989) Surfactants and interfacial phenomena, 2nd edn. Wiley, New York, NY, USA

    Google Scholar 

  10. Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic Press, New York, USA

    Google Scholar 

  11. Hunter RJ (1986) Foundations of Colloid  Science,  Vol.  I,   Oxford University Press,  Oxford

    Google Scholar 

  12. Belloni L (2000) Colloidal interactions. J Phys Cond Matter 12:549–587

    Article  Google Scholar 

  13. Tanford C (1980) In The hydrophobic effect: formation of micelles and biological membranes, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  14. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2 72:1525–1568

    Google Scholar 

  15. Helfrich W (1985) Effect of thermal undulations on the rigidity of fluid membranes and interfaces. J Phys (Paris) 46:1263–1268

    Article  CAS  Google Scholar 

  16. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170

    Article  CAS  Google Scholar 

  17. Otsuka H, Nagasaki Y, Kataoka K (2001) Self-assembly of block copolymers. Mater Today 4:30–36

    Article  CAS  Google Scholar 

  18. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862

    Article  CAS  Google Scholar 

  19. Hawker CJ, Russell TP (2005) Block Copolymer Lithography: Merging Bottom-Up with Top-Down Processes. MRS Bull 30:952–966

    Article  CAS  Google Scholar 

  20. Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985

    Article  CAS  Google Scholar 

  21. Alexandridis P, Olsson U, Lindman B (1998) A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 14:2627–2638

    Article  CAS  Google Scholar 

  22. Alexandridis P, Holzwarth JF, Hatton TA (1994) micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27:2414–2425

    Article  CAS  Google Scholar 

  23. Khimani M, Ganguly R, Aswal VK, Nath S, Bahadur P (2012) Solubilization of parabens in aqueous pluronic solutions: Investigating the micellar growth and interaction as a function of paraben composition. J Phys Chem B 116:14943–14950

    Article  CAS  Google Scholar 

  24. Ganguly R, Choudhury N, Aswal VK, Hassan PA (2009) Pluronic L64 micelles near cloud point: investigating the role of micellar growth and interaction in critical concentration fluctuation and percolation. J Phys Chem B 113:668–675

    Article  CAS  Google Scholar 

  25. Ivanova R, Lindman B, Alexandridis P (2000) Effect of glycols on the self-assembly of amphiphilic block copolymers in water. 1. Phase diagrams and structure identification. Langmuir 16:3660–3675

    Google Scholar 

  26. Patist A, Oh SG, Leung R, Shah DO (2001) Kinetics of micellization: its significance to technological processes. Colloids Surf A: Physicochem Eng Asp 176:3–16

    Article  CAS  Google Scholar 

  27. Hadgiivanova R, Diamant H, Andelman D (2011) Kinetics of surfactant micellization: A free energy approach. J Phys Chem B 115:7268–7280

    Article  CAS  Google Scholar 

  28. Desai PR, Jain NJ, Sharma RK, Bahadur P (2001) Effect of additives on the micellization of PEO/PPO/PEO block copolymer F127 in aqueous solution. Colloids Surf A: Physicochem Eng Asp 178:57–69

    Article  CAS  Google Scholar 

  29. Kositza MJ, Bohne C, Alexandridis P, Hatton TA, Holzwarth JF (1999) Dynamics of micro- and macrophase separation of amphiphilic block-copolymers in aqueous solution. Macromol 32:5539–5551

    Article  CAS  Google Scholar 

  30. Ganguly R, Kumbhakar M, Aswal VK (2009) Time dependent growth of the block copolymer p123 micelles near cloud point: employing heat cycling as a tool to form kinetically stable wormlike micelles. J Phys Chem B 113:9441–9446

    Article  CAS  Google Scholar 

  31. Jones W, Rao CNR (2002) Supramolecular organization and materials design. Cambridge University Press, Cambridge, UK

    Google Scholar 

  32. Lieber CM (2003) Nanoscale science and technology: building a big future from small things. MRS Bull 28:486–491

    Article  CAS  Google Scholar 

  33. Hecht S (2003) Welding, organizing, and planting organic molecules on substrate surfaces-promising approaches towards nanoarchitectonics from the bottom up. Angew Chem Int Ed 42:24–26

    Article  CAS  Google Scholar 

  34. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  Google Scholar 

  35. de Wild M, Berner S, Suzuki H, Rarnoino L, Baratoff A, Jung TA (2003) Molecular assembly and self-assembly: molecular nanoscience for future technologies. Chimia 56:500–505

    Article  Google Scholar 

  36. Zhang S (2003) Building from the bottom up. Mater Today 6:20–27

    Article  CAS  Google Scholar 

  37. Walt DR (2002) Nanomaterials: Top-to-bottom functional design. Nat Mater 1:17–18

    Article  CAS  Google Scholar 

  38. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(9):2064–2110

    Article  CAS  Google Scholar 

  39. Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interf Sci 128-130:5–15

    Google Scholar 

  40. Wani IA (2014) Nanomaterials, novel preparation routes and characterizations. In: Shah MA, Bhat MA, Davim JP (eds) Nanotechnology applications for improvements in energy efficiency and environment management, Chapter 1. IGI Global Publisher, Hershey, PA, pp 1–40

    Google Scholar 

  41. Kashchiev D (2000) Nucleation: basic theory with applications. Butterworth-Heinemann, Oxford

    Google Scholar 

  42. Karpinski PH, Wey JS (2002) Precipitation processes. In: Myerson AS (ed) Handbook of industrial crystallization, 2nd ed. Chapter 6, Butterworth-Heinemann: Stoneham, MA, pp. 141–160

    Google Scholar 

  43. Kwon SG, Hyeon T (2011) Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7:2685–2702

    Article  CAS  Google Scholar 

  44. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630

    Article  CAS  Google Scholar 

  45. Kashchiev D, van Rosmalen GM (2003) Review: Nucleation in solutions revisited. Cryst Res Technol 38:555–574

    Article  CAS  Google Scholar 

  46. Livingston JD (1959) Critical particle size for precipitation hardening. Trans Metall Soc A I M E 215:566–571

    CAS  Google Scholar 

  47. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  48. Sugimoto T, Shiba F, Sekiguchi T, Itoh H (2000) Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution I: Silver chloride. Colloids Surf A 164:183–203

    Article  CAS  Google Scholar 

  49. Sugimoto T, Shiba F (2000) Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution II: Silver bromide. Colloids Surf A 164:205–215

    Article  CAS  Google Scholar 

  50. Ostwald W (1900) Über die vermeintliche isomerie des roten und gelben quecksilberoxyds und die oberflächenspannung fester körper. Z Phys Chem 34:495–503

    Article  Google Scholar 

  51. Lifshitz I, Slyozov V (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50

    Article  Google Scholar 

  52. Wagner C (1961) Theorie der Alterung von Niederschlagen durch Umlösen (Ostwald-Reifung). Ber Bunsenges Phys Chem 65:581–591

    CAS  Google Scholar 

  53. Lee W, Kim MG, Choi J, Park J, Ko SJ, Oh SJ, Cheon J (2005) Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. J Am Chem Soc 127:16090–16097

    Article  CAS  Google Scholar 

  54. Watzky MA, Finke RG (1997) Nanocluster size-control and “magic number” investigations. experimental tests of the “living-metal polymer” concept and of mechanism-based size-control predictions leading to the syntheses of iridium (0) nanoclusters centering about four sequential magic numbers. Chem Mater 9:3083–3095

    Google Scholar 

  55. Watzky MA, Finney EE, Finke RG (2008) Transition-metal nanocluster size vs formation time and the catalytically effective nucleus number: A mechanism-based treatment. J Am Chem Soc 130:11959–11969

    Article  CAS  Google Scholar 

  56. Besson C, Finney EE, Finke RG (2005) A mechanism for transition-metal nanoparticle self-assembly. J Am Chem Soc 127:8179–8184

    Article  CAS  Google Scholar 

  57. Yao S, Yuan Y, Xiao C, Li W, Kou Y, Dyson PJ, Yan N, Asakura H, Teramura K, Tanaka TJ (2012) Insights into the formation mechanism of rhodium nanocubes. Phys Chem C 116:15076–15086

    Article  CAS  Google Scholar 

  58. Bramley AS, Hounslow MJ, Ryall RL (1996) Aggregation during precipitation from solution: A method for extracting rates from experimental data. J Coll Interf Sci 183:155–165

    Article  CAS  Google Scholar 

  59. Reetz MT, Helbig W, Quaiser SA, Stimming U, Breuer N, Vogel R (1995) Visualization of surfactants on nanostructured palladium clusters by a combination of STM and high-resolution TEM. Science 267:367–369

    Article  CAS  Google Scholar 

  60. Pileni M-P (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2:145–150

    Article  CAS  Google Scholar 

  61. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 617–618

    Google Scholar 

  62. Kovalenco MV, Bodnarchuk MI, Lechner RT, Heeser G, Schaffler F, Heiss W (2007) Fatty acid salts as stabilizers in size and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J Am Chem Soc 129:6352–6353

    Article  Google Scholar 

  63. Liu L, Wei T, Guan X, Zi X, He H, Dai H (2009) Size and morphology adjustment of PVP-stabilized silver and gold nanocrystals synthesized by hydrodynamic assisted self-assembly. J Chem C 113:8595–8600

    CAS  Google Scholar 

  64. Garg G, Hassan PA, Aswal VK, Kulshreshtha SK (2005) Tuning the structure of SDS micelles by substituted anilinium ions. J Phys Chem B 109:1340–1346

    Article  CAS  Google Scholar 

  65. Aswal VK, Goyal PS (2000) Counterions in the growth of ionic micelles in aqueous electrolyte solutions: A small-angle neutron scattering study. Phys Rev E 61:2947–2953

    Article  CAS  Google Scholar 

  66. Bhattacharjee J, Verma G, Aswal VK, Date AA, Nagarsenker MS, Hassan PA (2010) Tween 80-sodium deoxycholate mixed micelles: Structural characterization and application in doxorubicin delivery. J Phys Chem B 114:16414–16421

    Article  CAS  Google Scholar 

  67. Kadama Y, Bharatiya B, Hassan PA, Verma G, Aswal VK, Bahadur P (2010) Effect of an amphiphilic diol (Surfynol®) on the micellar characteristics of PEO–PPO–PEO block copolymers in aqueous solutions. Colloid Surf A: Physicochem Eng Asp 363:110–118

    Article  Google Scholar 

  68. Verma G, Paliwal P, Kumar S, Aswal VK, Hassan PA (2015) Effect of di-(2-ethylhexyl)phosphoric acid on microstructure, cloud point and uranyl ion binding competence of Triton X-100 micelles. Colloid Surf A: Physicochem Eng Asp 468:262–270

    Article  CAS  Google Scholar 

  69. Garg G, Hassan PA, Kulshreshtha SK (2006) Dynamic light scattering studies of rod-like micelles in dilute and semi-dilute regime. Colloid Surf A: Physicochem Eng Asp 275:161–167

    Article  CAS  Google Scholar 

  70. Sasidharan M, Nakashima K (2014) Core–shell–corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres. Acc Chem Res 47:157–167

    Article  CAS  Google Scholar 

  71. Eckhardt B, Ortel E, Bernsmeier D, Polte J, Strasser P, Vainio U, Emmerling F, Kraehnert R (2013) Micelle-templated oxides and carbonates of zinc, cobalt, and aluminum and a generalized strategy for their synthesis. Chem Mater 25:2749–2758

    Article  CAS  Google Scholar 

  72. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  73. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63:988–992

    Article  CAS  Google Scholar 

  74. Inagaki S, Fukushima Y, Kuroda K (1993) Synthesis of highly ordered mesoporous materials from a layered polysilicate. J Chem Soc Chem Commun 680–682

    Google Scholar 

  75. Bao Y, Wang T, Kang Q, Shi C, Ma J (2017) Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane. Sci Rep 7:46638

    Article  Google Scholar 

  76. Khanal A, Inoue Y, Yada M, Nakashima K (2007) Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure. J Am Chem Soc 129:1534–1535

    Article  CAS  Google Scholar 

  77. Zhang S, Greenfield MA, Mata A, Palmer LC, Bitton R, Mantei JR, Aparicio C, de la Cruz MO, Stupp SI (2010) A self-assembly pathway to aligned monodomain gels. Nature Mater 9:594–601

    Article  CAS  Google Scholar 

  78. Newcomb CJ, Bitton R, Velichko YS, Snead ML, Stupp SI (2012) The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization. Small 8:2195–2202

    Article  CAS  Google Scholar 

  79. Stupp SI, Braun PV (1997) Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science 277:1242–1248

    Article  CAS  Google Scholar 

  80. Verma G, Barick KC, Manoj N, Sahu AK, Hassan PA (2013) Rod-like micelle templated synthesis of porous hydroxyapatite. Ceram Int 39:8995–9002

    Article  CAS  Google Scholar 

  81. Shanthi PMSL, Mangalaraja RV, Uthirakumar AP, Velmathi S, Balasubramanian T, Ashok M (2010) Synthesis and characterization of porous shell-like nano hydroxyapatite using cetrimide as template. J Colloid Interface Sci 350:39–43

    Article  CAS  Google Scholar 

  82. Shiba K, Motozuka S, Yamaguchi T, Ogawa N, Otsuka Y, Ohnuma K, Kataoka T, Tagaya M (2016) Effect of cationic surfactant micelles on hydroxyapatite nanocrystal formation: An investigation into the inorganic–organic interfacial interactions. Cryst Growth De 16:1463–1471

    Article  CAS  Google Scholar 

  83. Zhang J, Jiang D, Zhang J, Lin Q, Huang Z (2010) Synthesis of organized hydroxyapatite (HA) using Triton X-100. Ceram Int 36:2441–2447

    Article  CAS  Google Scholar 

  84. Yin S, Ren W, Sun J, Zhang Y, Li M, Deng K (2016) Hollow CDHA nanorods with mesopores on surface: Bi-micelle-templating method, dissolvability, cytocompatibility and protein delivery. Adv Powder Technol 27:199–206

    Article  CAS  Google Scholar 

  85. Ye F, Guo H, Zhang H, He X (2010) Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater 6:2212–2218

    Article  CAS  Google Scholar 

  86. Watanabe K, Nishio Y, Makiura R, Nakahira A, Kojima C (2013) Paclitaxel-loaded hydroxyapatite/collagen hybrid gels as drug delivery systems for metastatic cancer cells. Int J Pharma 446:81–86

    Article  CAS  Google Scholar 

  87. Qiao W, Lan X, Tsoi JKH, Chen Z, Su RYX, Yeung KWK, Matinlinna JP (2017) Biomimetic hollow mesoporous hydroxyapatite microsphere with controlled morphology, entrapment efficiency and degradability for cancer therapy. RSC Adv 7:44788–44798

    Article  CAS  Google Scholar 

  88. Calleja G, Serrano DP, Sanz R, Pizarro P, García A (2004) Study on the synthesis of high-surface-area mesoporous TiO2 in the presence of nonionic surfactants. Ind Eng Chem Res 43:2485–2492

    Article  CAS  Google Scholar 

  89. Antonelli DM, Ying JY (1995) Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angew Chem Int Ed 34:2014–2017

    Google Scholar 

  90. Löf D, Schillén K, Torres MF, Müller AJ (2007) Rheological study of the shape transition of block copolymer-nonionic surfactant mixed micelles. Langmuir 23:11000–11006

    Article  Google Scholar 

  91. Antonietti M, Wenz E, Bronstein L, Seregina M (1995) Synthesis and characterization of noble metal colloids in block copolymer micelles. Adv Mater 7:1000–1005

    Article  CAS  Google Scholar 

  92. Kim JK, Yang SY, Lee Y, Kim Y (2010) Functional nanomaterials based on block copolymer self-assembly. Prog Polym Sci 35:1325–1349

    Article  CAS  Google Scholar 

  93. Euliss LE, Grancharov SG, O’Brien S, Deming TJ, Stucky GD, Murray CB, Held GA (2003) Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Lett 3:1489–1493

    Article  CAS  Google Scholar 

  94. Sakai T, Alexandridis P (2004) Single-step synthesis and stabilization of metal nanoparticles in aqueous Pluronic block copolymer solutions at ambient temperature. Langmuir 20:8426–8430

    Article  CAS  Google Scholar 

  95. Wang L, Yamauchi Y (2009) Block copolymer mediated synthesis of dendritic platinum nanoparticles. J Am Chem Soc 131:9152–9153

    Article  CAS  Google Scholar 

  96. Luyan W, Xiao C, Jie Z, Zhenming S, Jikuan Z, Zhenwen S (2004) Controllable morphology formation of gold nano- and micro-plates in amphiphilic block copolymer-based liquid crystalline phase. Chem Lett 33:720–721

    Article  Google Scholar 

  97. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396:152–155

    Article  CAS  Google Scholar 

  98. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  99. Park M, Harrison C, Chaikin PM, Register RA, Adamson DH (1997) Block copolymer lithography: periodic arrays of ~1011 holes in 1 square centimeter. Science 276:1401–1404

    Article  CAS  Google Scholar 

  100. Schulman JH, Stoekenius W, Prince LM (1959) Mechanism of formation and structure of microemulsions by electron microscopy. J Phys Chem 63:1677–1680

    Article  CAS  Google Scholar 

  101. Pileni MP (ed) (1989) Structure and reactivity in reverse micelles, Amsterdam, Elsevier

    Google Scholar 

  102. Luisi PL, Majid LJ, Fendler JH (1986) Solubilization of enzymes and nucleic acids in hydrocarbon micellar solution. Crit Rev Biochem 20:409–474

    Article  CAS  Google Scholar 

  103. Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interf Sci 128:5–15

    Article  Google Scholar 

  104. Destree C, Debuigne F, George S, Champagne B, Guillaume M, Ghijsen J, Nagy JB (2008) J complexes of retinol formed within the nanoparticles prepared from microemulsions. Colloid Polym Sci 286:1463–1470

    Article  CAS  Google Scholar 

  105. Zhong-min O, Hiroshi Y, Keisaku K (2007) Preparation and optical properties of organic nanoparticles of porphyrin without self-aggregation. J Photochem Photobio A: Chem 189:7–14

    Article  Google Scholar 

  106. Wanzhong Z, Xueliang Q, Jianguo C (2006) Synthesis and characterization of silver nanoparticles in AOT microemulsion system. Chem Phys 330:495–500

    Article  Google Scholar 

  107. Malik MA, Wani MY, Hashim MA (2012) Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arabian J Chem 5:397–417

    Article  CAS  Google Scholar 

  108. Lopez-Quintela MA, Tojo C, Blanco MC, Garcia Rio LG, Leis JR (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interf Sci 9:264–278

    Google Scholar 

  109. Osseo-Asare K, Arriagada FJ (1990) Synthesis of nanosize particles in reverse microemulsion, In: Ceramic Powder Sci. III, Messing GL, Hirano S, Hausner, H (eds), American Ceramic Society, Westerville, OH, pp 3–16

    Google Scholar 

  110. Kurihara K, Kizling J, Stenius P, Fendler JH (1983) Laser and pulse radiolytically induced colloidal gold formation in water-in-oil microemulsions. J Am Chem Soc 105:2574–2579

    Article  CAS  Google Scholar 

  111. Rauscher F, Veit P, Sundmacher K (2005) Analysis of a technical grade w/o-microemulsion and its application for the precipitation of calcium carbonate nanoparticles. Colloid Surf A: Physicochem Eng Asp 254:183–191

    Article  CAS  Google Scholar 

  112. Boutonnet M, Kizling J, Stenius P, Maire G (1982) The preparation of monodisperse colloidal metal particles from microemulsions. Colloid Surf 5:209–225

    Article  CAS  Google Scholar 

  113. Pal A, Shah S, Belochapkine S, Tanner D, Magner E, Devi S (2009) Room temperature synthesis of platinum nanoparticles in water-in-oil microemulsion. Colloid Surf A: Physicochem Eng Asp 337:205–207

    Article  CAS  Google Scholar 

  114. Martı́nez-Rodrı́guez RA, Vidal-Iglesias FJ, Solla-Gullón J, Cabrera CR, Feliu JM (2014) Synthesis of Pt nanoparticles in water-in-oil microemulsion: effect of HCl on their surface structure. J Am Chem Soc 136:1280–1283

    Google Scholar 

  115. Chen DH, Wang CC, Huang TC (1999) Preparation of palladium ultrafine particles in reverse micelles. J Coll Interf Sci 210:123–129

    Article  CAS  Google Scholar 

  116. Barnickel P, Wokaum A (1990) Synthesis of metal colloids in inverse microemulsions. Mol Phys 69:1–9

    Article  CAS  Google Scholar 

  117. Qiu S, Dong J, Chen G (1999) Preparation of Cu nanoparticles from water-in-oil microemulsions. J Coll Interf Sci 216:230–234

    Article  CAS  Google Scholar 

  118. Weihua W, Xuelin T, Kai C, Gengyu C (2006) Synthesis and characterization of Pt–Cu bimetallic alloy nanoparticles by reverse micelles method. Colloid Surf A: Physicochem Eng Asp 273:35–42

    Article  Google Scholar 

  119. Li T, Zhou H, Huang J, Yin J, Chen Z, Liu D, Zhang N, Kuang Y (2014) Facile preparation of Pd–Au bimetallic nanoparticles via in-situ self-assembly in reverse microemulsion and their electrocatalytic properties. Colloid Surf A 463:55–62

    Article  CAS  Google Scholar 

  120. Duxin N, Stephan O, Petit C, Bonville P, Colliex C, Pileni MP (1997) Pure α-Fe coated by an Fe1-xBx alloy. Chem Mater 9:2096–2100

    Article  CAS  Google Scholar 

  121. Wilcoxon JP, Provencio PP (1999) Use of surfactant micelles to control the structure phase of nanosize iron clusters. J Phys Chem B 103:9809–9812

    Article  CAS  Google Scholar 

  122. Tanori J, Duxin N, Petit C, Lisiecki I, Veillet P, Pileni MP (1995) Synthesis of nanosize metallic and alloyed particles in ordered phases. Colloid Polym Sci 273:886–892

    Article  CAS  Google Scholar 

  123. Xia L, Hu X, Kang X, Zhao H, Sun M, Cihen X (2010) A one-step facile synthesis of Ag-Ni core-shell nanoparticles in water-in-oil microemulsions. Colloid Surf A: Physicochem Eng Asp 367:96–101

    Article  CAS  Google Scholar 

  124. Inouye K, Endo R, Otsuka Y, Miyashiro K, Kaneko K, Ishikawa T (1982) Oxygenation of ferrous ions in reversed micelle and reversed microemulsion. J Phys Chem 86:1465–1469

    Article  CAS  Google Scholar 

  125. Carpenter EE, Connor CJO, Harris VG (1999) Atomic structure and magnetic properties of MnFe2O4 nanoparticles produced by reverse micelle synthesis. J Appl Phys 85:5175–5177

    Article  CAS  Google Scholar 

  126. Lu T, Wang J, Yin J, Wang A, Wang X, Zhang T (2013) Surfactant effects on the microstructures of Fe3O4 nanoparticles synthesized by microemulsion method. Colloid Surf A: Physicochem Eng Asp 436:675–683

    Article  CAS  Google Scholar 

  127. Liu C, Rondinone AJ, Zhang ZJ (2000) Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties. Pure Appl Chem 72:37–45

    Article  CAS  Google Scholar 

  128. Liu C, Zou BS, Rondinone AJ, Zhang ZJ (2000) Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J Am Chem Soc 122:6263–6267

    Article  CAS  Google Scholar 

  129. Yener DO, Giesche H (2001) Synthesis of pure and manganese nickel and zinc-doped ferrite particles in water-in-oil microemulsions. J Am Ceram Soc 84:1987–1995

    Article  CAS  Google Scholar 

  130. Alejandra L, Reinhard S (2006) Synthesis of manganite perovskite nanoparticles in w/o-microemulsion. Mater Res Bull 41:333–339

    Article  Google Scholar 

  131. Xu P, Han X, Wang M (2007) synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique. J Phys Chem C 111:5866–5870

    Article  CAS  Google Scholar 

  132. Finnie KS, Bertlett JR, Barbe CJA, Kong L (2007) Formation of silica nanoparticles in microemulsions. Langmuir 23:3017–3024

    Article  CAS  Google Scholar 

  133. Esquena J, Tadros TF, Kostareios K, Solans C (1997) Preparation of narrow size distribution silica particles using microemulsions. Langmuir 13:6400–6406

    Article  CAS  Google Scholar 

  134. Lopez-Perez JA, Lopez-Quintela MA, Mira J, Rivas J, Charles SW (1997) Advances in the preparation of magnetic nanoparticles by the microemulsion method. J Phys Chem B 101:8045–8047

    Article  CAS  Google Scholar 

  135. Geng CL, Zhu ZF, Yu WJ (2008) Influence of cosurfactant on the structure and properties of ZrO2 nano-powders prepared in microemulsion system. Key Eng Mater 368–372:729–731

    Article  Google Scholar 

  136. Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27:344–350

    Article  CAS  Google Scholar 

  137. Han DY, Yang HY, Shen CB, Zhou X, Wang FH (2004) Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion. Powder Technol 147:113–116

    Article  CAS  Google Scholar 

  138. Anyaogu KC, Fedorov AV, Neckers DC (2008) Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir 24:4340–4346

    Article  CAS  Google Scholar 

  139. Li GL, Wang GH (1999) Synthesis of nanometer-sized TiO2 particles by a microemulsion method. Nanostruct Mater 11:663–668

    Article  CAS  Google Scholar 

  140. Li X, Zheng W, He G, Zhao R, Liu D (2014) Morphology Control of TiO2 nanoparticle in microemulsion and its photocatalytic property. ACS Sustain Chem. Eng. 2:288–295

    Article  CAS  Google Scholar 

  141. Zou X, Liu BB, Wu W, Li DM, Li QJ, Li ZP, Liu B, Mao HK (2013) Synthesis of hollow ß-phase GeO2 in microemulsion. Adv Mater Res 669:360–365

    Article  Google Scholar 

  142. Zhang M, Cushing BL, O'Connor CJ (2008) Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles. Nanotechnology 19:085601

    Google Scholar 

  143. Joshi HM, De M, Richter F, He J, Prasad PV, Dravid VP (2012) Effect of silica shell thickness of Fe3O4-SiOx core-shell nanostructures on MRI contrast. Contrast Media Mol Imaging 7:460–468

    Google Scholar 

  144. Agostiano A, Catalano M, Curri ML, Monica MD, Manna L, Vasanelli L (2000) Synthesis and structural characterisation of CdS nanoparticles prepared in a four-components “water-in-oil” microemulsion. Micron 3:253–258

    Article  Google Scholar 

  145. Petit C, Lixon P, Pileni MP (1990) Synthesis of cadmium sulfide in situ in reverse micelles. 2. Influence of the interface on the growth of the particles. J Phys Chem 94:1598–1603

    Google Scholar 

  146. Robinson BH, Towey TF, Zourab S, Visser AJWG, Van Hoek A (1991) Characterization of cadmium sulphide colloids in reverse micelles. Colloid Surf 61:175–188

    Article  CAS  Google Scholar 

  147. Eastoe J, Warne M (1996) Nanoparticles and polymer synthesis in microemulsions. Curr Opin Colloid Interf Sci 1:800–805

    Article  CAS  Google Scholar 

  148. Haram SK, Mahadeshwar AR, Dixit SG (1996) Synthesis and characterization of copper sulphate nanoparticles in triton-X 100 water-in-oil microemulsion. J Phys Chem 100:5868–5873

    Article  CAS  Google Scholar 

  149. Manyar HG, Iliade P, Bertinetti L, Coluccia S, Berlier G (2011) Structural and spectroscopic investigation of ZnS nanoparticles grown in quaternary reverse micelles. J Colloid Interface Sci 354:511–516

    Article  CAS  Google Scholar 

  150. Eastoe J, Cox AR (1995) Formation of PbS nanoclusters using reversed micelles of lead and sodium Aerosol-OT. Colloid Surf A Physicochem Eng Asp 101:63–76

    Article  CAS  Google Scholar 

  151. Ethayaraja M, Ravikumar C, Muthukumaran D, Dutta K, Bandyopadhyaya R (2007) CdS-ZnS core-shell nanoparticle formation: Experiment, mechanism, and simulation. J Phys Chem C 111:3246–3252

    Article  CAS  Google Scholar 

  152. Zhang W, Zhong Q (2009) microemulsions as nanoreactors to produce whey protein nanoparticles with enhanced heat stability by sequential enzymatic cross-linking and thermal pretreatments. J Agric Food Chem 57:9181–9189

    Article  CAS  Google Scholar 

  153. Guo JS, El-Aasser MS, Vanderhoff JW (1989) Microemulsion polymerization of styrene. J Polym Sci Part A: Polym Chem 27:691–710

    Article  CAS  Google Scholar 

  154. Palani RW, Sasthav WR, Cheung HM (1991) Formation of porous polymeric structures by the polymerization of single-phase microemulsions formulated with methyl methacrylate and acrylic acid. Langmuir 7:2586–2591

    Article  Google Scholar 

  155. Destree C, Nagy JB (2006) Mechanism of formation of inorganic and organic nanoparticles from microemulsions. Adv Colloid Interf Sci 123:353–367

    Article  Google Scholar 

  156. Destrée C, Ghijsen J, Nagy JB (2007) Preparation of organic nanoparticles using microemulsions: their potential use in transdermal delivery. Langmuir 23:1965–1973

    Article  Google Scholar 

  157. Margulis-Goshen K, Magdassi S (2012) Organic nanoparticles from microemulsions: Formation and applications. Cur Opin Colloid Interf Sci 17:290–296

    Article  CAS  Google Scholar 

  158. Puranajoti P, Patil RT, Sheth PD, Bommareddy G, Dondeti P, Egbaria K (2002) Design and development of topical microemulsion for poorly water-soluble antifungal agents. J Appl Res Clin Exp Ther 2:1

    Google Scholar 

  159. Langmuir I (1917) The constitution and fundamental properties of solids and liquids. II. Liquids. J Am Chem Soc 39:1848–1906

    Google Scholar 

  160. Blodgett KB (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57:1007–1022

    Article  CAS  Google Scholar 

  161. Khun H (1965) Versuche zur herstellung einfacher organisierter systeme von molekülen. Pure Appl Chem 11:345–358

    Article  Google Scholar 

  162. Gains GL (1966) Insoluble monolayers at liquid-gas interface. Wiley, New York

    Google Scholar 

  163. Harkins WD (1952) The physical chemistry of surface films. Reinhold Publishing Co., New York

    Google Scholar 

  164. Ganguly P, Paranjape DV, Patil KR, Chaudhari SK (1992) A new structural model for Langmuir-Blodgett films of metal salts of fatty acids. Langmuir 8:2365–2367

    Article  CAS  Google Scholar 

  165. Roberts G (Ed.) (1990) Langmuir-Blodgett films. Springer, New York

    Book  Google Scholar 

  166. Choudhury S, Bagkar N, Dey GK, Subramanian H, Yakhmi JV (2002) Crystallisation of prussian blue analogues at the air-water interface using octadecyl amine monolayer as a template. Langmuir 18:7409–7414

    Article  CAS  Google Scholar 

  167. Choudhury S, Dey GK, Yakhmi JV (2003) Growth of cubic crystals of cobalt-hexacyanoferrate under the octadecyl amine monolayer. J Cryst Growth 258:197–203

    Article  CAS  Google Scholar 

  168. Bagkar N, Choudhury S, Kim K-H, Chowdhury P, Lee S-I, Yakhmi JV (2006) Crystalline thin films of transition metal hexacyanochromates grown under Langmuir monolayer. Thin Solid Films 513:325–330

    Article  CAS  Google Scholar 

  169. Choudhury S, Betty CA, Girija KG, Kulshreshtha SK (2006) Room temperature gas sensitivity of ultrathin SnO2 films prepared from Langmuir-Blodgett film precursors. Appl Phys Lett 89:071914

    Google Scholar 

  170. Choudhury S, Betty CA, Girija KG (2008) On the preparation of ultra-thin tin dioxide by Langmuir-Blodgett film deposition. Thin Solid Films 517:923–928

    Article  CAS  Google Scholar 

  171. Choudhury S, Betty CA, Girija KG (2010) Room temperature ammonia gas selectivity studies on SnO2 ultra thin film prepared by Langmuir-Blodgett technique. AIP Conf Proc 1313:304–306

    Article  CAS  Google Scholar 

  172. Choudhury S, Sasikala R, Saxena V, Aswal DK, Bhattacharya D (2012) A new route for the fabrication of ultrathin film of PdO-TiO2 composite photocatalyst. Dalton Trans 41:12090–12095

    Article  CAS  Google Scholar 

  173. Choudhury S, Betty CA (2013) A heterostructured SnO2-TiO2 thin film prepared by Langmuir-Blodgett technique. Mat Chem Phys 141:440–444

    Article  CAS  Google Scholar 

  174. Kondalkar VV, Mali SS, Kharade RR, Mane RM, Patil PS, Hong CK, Kim JH, Choudhury S, Bhosale PN (2015) Langmuir-Blodgett self organized nanocrystalline tungsten oxide thin films for electrochromic performance. RSC Adv 5:26923–26931

    Google Scholar 

  175. Choudhury S, Betty CA, Bhattacharyya K, Saxena V, Bhattacharya D (2016) Nanostructured PdO thin film from Langmuir-Blodgett precursor for room temperature H2 gas sensing. ACS Appl Mater Interf 8:16997–17003

    Article  CAS  Google Scholar 

  176. Bagheri S, Hir ZAM, Yousefi AT, Hamid SBA (2015) Progress on mesoporous titanium dioxide: Synthesis, modification and applications. Microporous Mesoporous Mater 218:206–222

    Article  CAS  Google Scholar 

  177. Mihaly M, Fleancu MC, Olteanu NL, Bojin D, Meghea A, Enachescu M (2012) Synthesis of gold nanoparticles by microemulsion assisted photoreduction method. Comptes Rendus Chimie 15:1012–1021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, B., Barick, K.C., Verma, G., Choudhury, S., Ganguly, R., Hassan, P.A. (2022). Amphiphilic Self-Assembly in the Synthesis and Processing of Nanomaterials. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1803-1_12

Download citation

Publish with us

Policies and ethics