Skip to main content

Tandem Multicomponent Reactions for Diverse Heterocycles Synthesis Under 3d-Transition Metal Catalysis

  • Chapter
  • First Online:
Dehydrogenation Reactions with 3d Metals

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 73))

  • 118 Accesses

Abstract

The synthesis of heterocycles from renewable starting materials is a desirable goal for chemical research, as heterocycles have many applications in pharmaceuticals, material chemistry, and natural products. Recently, there has been a notable focus on utilizing earth-abundant 3d-transition-metal catalysts in contemporary catalysis, serving as a viable alternative to noble metals. This chapter provides an in-depth discussion of the recent advancements in 3d-transition metal-catalyzed acceptorless dehydrogenative coupling (ADC) reactions for the construction of diverse heterocyclic compounds. These reactions offer an efficient and environmentally friendly approach to the synthesis of valuable heterocyclic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amin A, Qadir T, Sharma PK et al (2022) A review on the medicinal and industrial applications of N-containing heterocycles. Open Med Chem J 16

    Google Scholar 

  2. Gomtsyan A (2012) Heterocycles in drugs and drug discovery. Chem Heterocycl Compd 48:7–10

    Article  Google Scholar 

  3. Katritzky A, Ramsden C, Scriven E, Taylor R (2008) Comprehensive heterocyclic chemistry III, vol 7, pp 217–308

    Google Scholar 

  4. Kerru N, Gummidi L, Maddila S et al (2020) A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 25:1909

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nepali K, Lee H-Y, Liou J-P (2019) Nitro-group-containing drugs. J Med Chem 62:2851–2893

    Article  PubMed  Google Scholar 

  6. Stockman R (2002) Heterocyclic chemistry. Annu Rep Prog Chem Sect B Org Chem 98(103):107–124

    Google Scholar 

  7. Joule JA, Mills K (2010) Heterocyclic chemistry. Wiley

    Google Scholar 

  8. Barta K, Ford PC (2014) Catalytic conversion of nonfood Woody biomass solids to organic liquids. Acc Chem Res 47:1503–1512

    Article  PubMed  Google Scholar 

  9. Faisca Phillips AM, Pombeiro A, Kopylovich M (2016) Recent advances in Cascade reactions initiated by alcohol oxidation. ChemCatChem 9:217–246

    Article  Google Scholar 

  10. Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:1827–1870

    Article  PubMed  Google Scholar 

  11. Afanasyev OI, Kuchuk E, Usanov DL, Chusov D (2019) Reductive amination in the synthesis of pharmaceuticals. Chem Rev 119:11857–11911

    Article  PubMed  Google Scholar 

  12. Murugesan K, Senthamarai T, Chandrashekhar VG et al (2020) Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chem Soc Rev 49:6273–6328

    Article  PubMed  Google Scholar 

  13. Sheikh Abdul Hamid MH, Slatford P, Williams J (2007) Borrowing hydrogen in the activation of alcohols. Adv Synth Catal 349:1555–1575

    Article  Google Scholar 

  14. Dobereiner GE, Crabtree RH (2010) Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem Rev 110:681–703

    Article  PubMed  Google Scholar 

  15. Choi J, MacArthur AHR, Brookhart M, Goldman AS (2011) Dehydrogenation and related reactions catalyzed by iridium pincer complexes. Chem Rev 111:1761–1779

    Article  PubMed  Google Scholar 

  16. Gunanathan C, Milstein D (2013) Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 341:1229712

    Article  PubMed  Google Scholar 

  17. Watson A, Williams J (2010) The give and take of alcohol activation. Science 329:635–636

    Article  PubMed  Google Scholar 

  18. Guillena G, J Ramón D, Yus M (2010) Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chem Rev 110:1611–1641

    Google Scholar 

  19. Bower JF, Krische MJ (2011) Formation of C-C bonds via iridium-catalyzed hydrogenation and transfer hydrogenation. Top Organomet Chem 34:107–138

    PubMed  PubMed Central  Google Scholar 

  20. Baehn S, Imm S, Neubert LK et al (2011) The catalytic amination of alcohols. ChemCatChem 3:1853–1864

    Article  Google Scholar 

  21. Yang Q, Wang Q, Yu Z (2015) ChemInform abstract: substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chem Soc Rev 44:2305–2329

    Article  PubMed  Google Scholar 

  22. Bower JF, Skucas E, Patman RL, Krische MJ (2007) Catalytic C-C coupling via transfer hydrogenation: reverse prenylation, crotylation, and allylation from the alcohol or aldehyde oxidation level. J Am Chem Soc 129(49):15134–15135

    Article  PubMed  Google Scholar 

  23. Guillena G, Ramón D, Yus M (2007) Alcohols as electrophiles in C-C bond-forming reactions: the hydrogen autotransfer process. Angew Chem Int Ed 46:2358–2364

    Article  Google Scholar 

  24. Corma A, Navas J, Sabater MJ (2018) Advances in one-pot synthesis through borrowing hydrogen catalysis. Chem Rev 118:1410–1459

    Article  PubMed  Google Scholar 

  25. Irrgang T, Kempe R (2020) Transition-metal-catalyzed reductive amination employing hydrogen. Chem Rev 120:9583–9674

    Article  PubMed  Google Scholar 

  26. Reed-Berendt BG, Latham DE, Dambatta MB, Morrill LC (2021) Borrowing hydrogen for organic synthesis. ACS Cent Sci 7:570–585

    Article  PubMed  PubMed Central  Google Scholar 

  27. Podyacheva E, Afanasyev O, Vasilyev D, Chusov D (2022) Borrowing hydrogen amination reactions: a complex analysis of trends and correlations of the various reaction parameters. ACS Catal 12:7142–7198

    Article  Google Scholar 

  28. Yamaguchi R, Fujita K, Zhu M (2010) Recent progress of new catalytic synthetic methods for nitrogen heterocycles based on hydrogen transfer reactions. ChemInform 81:1093–1140

    Google Scholar 

  29. Michlik S, Kempe R (2013) Regioselektiv funktionalisierte Pyridine aus nachhaltigen Ressourcen. Angew Chemie 52:6326–6329

    Article  Google Scholar 

  30. Schranck J, Tlili A, Beller M (2013) More sustainable formation of C-N and C-C bonds for the synthesis of N-heterocycles. Angew Chem Int Ed Engl 52:7642–7644

    Article  PubMed  Google Scholar 

  31. Chelucci G (2017) Metal-catalyzed dehydrogenative synthesis of pyrroles and indoles from alcohols. Coord Chem Rev 331:37–53

    Article  Google Scholar 

  32. Daw P, Ben-David Y, Milstein D (2018) Acceptorless dehydrogenative coupling using ammonia: direct synthesis of N-heteroaromatics from diols catalyzed by ruthenium. J Am Chem Soc 140:11931–11934

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guo W, Zhao M, Tan W et al (2019) Developments towards synthesis of N-heterocycles from amidines via C–N/C–C bond formation. Org Chem Front 6:2120–2141

    Article  Google Scholar 

  34. Maji M, Panja D, Borthakur I, Kundu S (2021) Recent advancement on sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols. Org Chem Front 8:2673–2709

    Article  Google Scholar 

  35. Nandakumar A, Midya SP, Landge VG, Balaraman E (2015) Transition-metal-catalyzed hydrogen-transfer annulations: access to heterocyclic scaffolds. Angew Chem Int Ed Engl 54:11022–11034

    Article  PubMed  Google Scholar 

  36. Werkmeister S, Neumann J, Junge K, Beller M (2015) Pincer-type complexes for catalytic (De)hydrogenation and transfer (De)hydrogenation reactions: recent progress. Chemistry 21:12226–12250

    Article  PubMed  Google Scholar 

  37. Berlet, Christopher JKS (2023) MineralPrices.com. http://mineralprices.com/default.aspx#rar, http://www.infomine.com/investment/metalprices/. Accessed 9 Aug 2023

  38. Medici S, Peana M, Zoroddu M (2018) Noble metals in pharmaceuticals: applications and limitations-biomedical applications of metals. Springer, Cham, pp 3–48

    Book  Google Scholar 

  39. Balaraman E, Nandakumar A, Jaiswal G, Sahoo MK (2017) Iron-catalyzed dehydrogenation reactions and their applications in sustainable energy and catalysis. Cat Sci Technol 7:3177–3195

    Article  Google Scholar 

  40. Filonenko GA, van Putten R, Hensen EJM, Pidko EA (2018) Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field. Chem Soc Rev 47:1459–1483

    Article  PubMed  Google Scholar 

  41. Kallmeier F, Kempe R (2018) Manganese complexes for (De)hydrogenation catalysis: a comparison to cobalt and iron catalysts. Angew Chemie 57(1):46–60

    Article  Google Scholar 

  42. Reed-Berendt BG, Polidano K, Morrill LC (2019) Recent advances in homogeneous borrowing hydrogen catalysis using earth-abundant first row transition metals. Org Biomol Chem 17:1595–1607

    Article  PubMed  Google Scholar 

  43. Subaramanian M, Sivakumar G, Balaraman E (2021b) Recent advances in nickel-catalyzed C–C and C–N bond formation via HA and ADC reactions. Org Biomol Chem 19:4213–4227

    Article  PubMed  Google Scholar 

  44. Subaramanian M, Sivakumar G, Balaraman E (2021a) First-row transition-metal catalyzed acceptorless dehydrogenation and related reactions: a personal account. Chem Rec 21:3839–3871

    Article  PubMed  Google Scholar 

  45. Bullock RM (2011) Catalysis without precious metals. Wiley

    Google Scholar 

  46. Zell T, Langer R (2018) From ruthenium to iron and manganese – a mechanistic view on challenges and design principles of base-metal hydrogenation catalysts. ChemCatChem 10:1930–1940

    Article  Google Scholar 

  47. Cai Y, Li F, Li Y-Q et al (2018) Base metal-catalyzed alcohol C-C couplings under hydrogen transfer conditions. Tetrahedron Lett 59:1073–1079

    Article  Google Scholar 

  48. Mukherjee A, Milstein D (2018) Homogeneous catalysis by cobalt and manganese pincer complexes. ACS Catal 8:11435–11469

    Article  Google Scholar 

  49. Irrgang T, Kempe R (2019) 3d-metal catalyzed N- and C-alkylation reactions via borrowing hydrogen or hydrogen autotransfer. Chem Rev 119:2524–2549

    Article  PubMed  Google Scholar 

  50. Mastalir M, Glatz M, Pittenauer E et al (2016) Sustainable synthesis of quinolines and pyrimidines catalyzed by manganese PNP pincer complexes. J Am Chem Soc 138:15543–15546

    Article  PubMed  Google Scholar 

  51. Deibl N, Kempe R (2017) Manganese-catalyzed multicomponent synthesis of pyrimidines from alcohols and amidines. Angew Chem Int Ed 56:1663–1666

    Article  Google Scholar 

  52. Daw P, Kumar A, Espinosa-Jalapa NA et al (2018) Synthesis of pyrazines and quinoxalines via acceptorless dehydrogenative coupling routes catalyzed by manganese pincer complexes. ACS Catal 8:7734–7741

    Article  PubMed  PubMed Central  Google Scholar 

  53. Das K, Mondal A, Srimani D (2018) Phosphine free Mn-complex catalysed dehydrogenative C–C and C–heteroatom bond formation: a sustainable approach to synthesize quinoxaline, pyrazine, benzothiazole and quinoline derivatives. Chem Commun 54:10582–10585

    Article  Google Scholar 

  54. Das K, Mondal A, Srimani D (2018) Selective synthesis of 2-substituted and 1,2-disubstituted benzimidazoles directly from aromatic diamines and alcohols catalyzed by molecularly defined nonphosphine manganese(I) complex. J Org Chem 83:9553–9560

    Article  PubMed  Google Scholar 

  55. Das K, Mondal A, Pal D, Srimani D (2019) Sustainable synthesis of quinazoline and 2-aminoquinoline via dehydrogenative coupling of 2-aminobenzyl alcohol and nitrile catalyzed by phosphine-free manganese pincer complex. Org Lett 21:3223–3227

    Article  PubMed  Google Scholar 

  56. Das K, Mondal A, Pal D et al (2019) Phosphine-free well-defined Mn(I) complex-catalyzed synthesis of amine, imine, and 2,3-dihydro-1H-perimidine via hydrogen autotransfer or acceptorless dehydrogenative coupling of amine and alcohol. Organometallics 38:1815–1825

    Article  Google Scholar 

  57. Mondal A, Sahoo MK, Subaramanian M, Balaraman E (2020) Manganese(I)-catalyzed sustainable synthesis of quinoxaline and quinazoline derivatives with the liberation of dihydrogen. J Org Chem 85:7181–7191

    Article  PubMed  Google Scholar 

  58. Balaraman GSA-GSA-MSA-E (2022) Single-molecular Mn(I)-complex-catalyzed tandem double dehydrogenation cross-coupling of (amino)alcohols under solventless conditions with the liberation of H2 and H2O. ACS Sustain Chem Eng 10:7362–7373

    Article  Google Scholar 

  59. Mondal A, Sharma R, Dutta B et al (2022) Well-defined NNS-Mn complex catalyzed selective synthesis of C-3 alkylated indoles and bisindolylmethanes using alcohols. J Org Chem 87:3989–4000

    Article  PubMed  Google Scholar 

  60. Maji A, Gupta S, Maji M, Kundu S (2022) Well-defined phosphine-free manganese(II)-complex-catalyzed synthesis of quinolines, pyrroles, and pyridines. J Org Chem 87:8351–8367

    Article  PubMed  Google Scholar 

  61. Nandi S, Borthakur I, Ganguli K, Kundu S (2023) 2-(2-Benzimidazolyl)pyridine Mn(I) complexes: synthesis and exploration of catalytic activity toward synthesis of pyrimidine and quinoline. Organometallics 14:1793–1802

    Article  Google Scholar 

  62. Fertig R, Leowsky-Künstler F, Irrgang T, Kempe R (2023) Rational design of N-heterocyclic compound classes via regenerative cyclization of diamines. Nat Commun 14:595

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bala M, Verma PK, Sharma U et al (2013) Iron phthalocyanine as an efficient and versatile catalyst for N-alkylation of heterocyclic amines with alcohols: one-pot synthesis of 2-substituted benzimidazoles, benzothiazoles and benzoxazoles. Green Chem 15:1687–1693

    Article  Google Scholar 

  64. Nguyen B, Ermolenko L, Al-mourabit A (2015) ChemInform abstract: sodium sulfide: a sustainable solution for unbalanced redox condensation reaction between o-nitroanilines and alcohols catalyzed by an iron-sulfur system. Synthesis (Stuttg) 47:1741–1748

    Article  Google Scholar 

  65. Emayavaramban B, Sen M, Sundararaju B (2017) Iron-catalyzed sustainable synthesis of pyrrole. Org Lett 19:6–9

    Article  PubMed  Google Scholar 

  66. Mondal R, Sinha S, Das S et al (2020) Iron catalyzed synthesis of pyrimidines under air. Adv Synth Catal 362:594–600

    Article  Google Scholar 

  67. Daw P, Chakraborty S, Garg JA et al (2016) Direct synthesis of pyrroles by dehydrogenative coupling of diols and amines catalyzed by cobalt pincer complexes. Angew Chem 55(46):14373–14377

    Article  Google Scholar 

  68. Midya SP, Landge VG, Sahoo MK et al (2018) Cobalt-catalyzed acceptorless dehydrogenative coupling of aminoalcohols with alcohols: direct access to pyrrole, pyridine and pyrazine derivatives. Chem Commun 54:90–93

    Article  Google Scholar 

  69. Shee S, Ganguli K, Jana K, Kundu S (2018) Cobalt complex catalyzed atom-economical synthesis of quinoxaline, quinoline and 2-alkylaminoquinoline derivatives. Chem Commun (Camb) 54:6883–6886

    Article  PubMed  Google Scholar 

  70. Das S, Mallick S, De Sarkar S (2019) Cobalt-catalyzed sustainable synthesis of benzimidazoles by redox-economical coupling of o-nitroanilines and alcohols. J Org Chem 84:12111–12119

    Article  PubMed  Google Scholar 

  71. Panja D, Paul B, Balasubramaniam B et al (2020) Application of a reusable Co-based nanocatalyst in alcohol dehydrogenative coupling strategy: synthesis of quinoxaline and imine scaffolds. Catal Commun 137:105927

    Article  Google Scholar 

  72. Parua S, Das S, Sikari R et al (2017) One-pot cascade synthesis of quinazolin-4(3H)-ones via nickel-catalyzed dehydrogenative coupling of o-aminobenzamides with alcohols. J Org Chem 82:7165–7175

    Article  PubMed  Google Scholar 

  73. Das J, Singh K, Vellakkaran M, Banerjee D (2018) Nickel-catalyzed hydrogen-borrowing strategy for α-alkylation of ketones with alcohols: a new route to branched gem-bis(alkyl) ketones. Org Lett 20:5587–5591

    Article  PubMed  Google Scholar 

  74. Das S, Maiti D, De Sarkar S (2018) Synthesis of polysubstituted quinolines from α-2-aminoaryl alcohols via nickel-catalyzed dehydrogenative coupling. J Org Chem 83:2309–2316

    Article  PubMed  Google Scholar 

  75. Parua S, Sikari R, Sinha S et al (2018) A nickel catalyzed acceptorless dehydrogenative approach to quinolines. Org Biomol Chem 16:274–284

    Article  PubMed  Google Scholar 

  76. Parua S, Sikari R, Sinha S et al (2018) Accessing polysubstituted quinazolines via nickel catalyzed acceptorless dehydrogenative coupling. J Org Chem 83:11154–11166

    Article  PubMed  Google Scholar 

  77. Chakraborty G, Sikari R, Das S et al (2019) Dehydrogenative synthesis of quinolines, 2-aminoquinolines, and quinazolines using singlet diradical Ni(II)-catalysts. J Org Chem 84:2626–2641

    Article  PubMed  Google Scholar 

  78. Singh K, Vellakkaran M, Banerjee D (2018) A nitrogen-ligated nickel-catalyst enables selective intermolecular cyclisation of β- and γ-amino alcohols with ketones: access to five and six-membered N-heterocycles. Green Chem 20:2250–2256

    Article  Google Scholar 

  79. Singh K, Kabadwal LM, Bera S et al (2018) Nickel-catalyzed synthesis of N-substituted pyrroles using diols with aryl- and alkylamines. J Org Chem 83:15406–15414

    Article  PubMed  Google Scholar 

  80. Alanthadka A, Bera S, Vellakkaran M, Banerjee D (2019) Nickel-catalyzed double dehydrogenative coupling of secondary alcohols and β-amino alcohols to access substituted pyrroles. J Org Chem 84:13557–13564

    Article  PubMed  Google Scholar 

  81. Yang P, Zhang C, Gao W-C et al (2019) Nickel-catalyzed borrowing hydrogen annulations: access to diversified N-heterocycles. Chem Commun 55:7844–7847

    Article  Google Scholar 

  82. Bera A, Sk M, Singh K, Banerjee D (2019) Nickel-catalysed dehydrogenative coupling of aromatic diamines with alcohols: selective synthesis of substituted benzimidazoles and quinoxalines. Chem Commun 55:5958–5961

    Article  Google Scholar 

  83. Zhang M, Li H, Young DJ et al (2019) Reaction condition controlled nickel(ii)-catalyzed C-C cross-coupling of alcohols. Org Biomol Chem 17(14):3567–3574

    Article  PubMed  Google Scholar 

  84. Arora V, Dutta M, Das K et al (2020) Solvent-free N-alkylation and dehydrogenative coupling catalyzed by a highly active pincer-nickel complex. Organometallics 39:2162–2176

    Article  Google Scholar 

  85. Yadav V, Jagtap SG, Balaraman E, Mhaske SB (2022) Nickel-catalyzed direct synthesis of N-substituted indoles from amino alcohols and alcohols. Org Lett 24:9054–9059

    Article  PubMed  Google Scholar 

  86. Cho CS, Ren WX, Yoon N-S (2009) A recyclable copper catalysis in modified Friedländer quinoline synthesis. J Mol Catal A Chem 299:117–120

    Article  Google Scholar 

  87. Chen Z, Chen J, Liu M et al (2013) Unexpected copper-catalyzed cascade synthesis of quinazoline derivatives. J Org Chem 78:11342–11348

    Article  PubMed  Google Scholar 

  88. You Q, Wang F, Wu C et al (2015) Synthesis of 1,3,5-triazines via Cu(OAc)2-catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides. Org Biomol Chem 13:6723–6727

    Article  PubMed  Google Scholar 

  89. Xu Z, Wang D-S, Yu X et al (2017) Tunable triazole-phosphine-copper catalysts for the synthesis of 2-aryl-1H-benzo[d]imidazoles from benzyl alcohols and diamines by acceptorless dehydrogenation and borrowing hydrogen reactions. Adv Synth Catal 359:3332–3340

    Article  Google Scholar 

  90. Xu Z, Yu X, Sang X, Wang D (2018) BINAP-copper supported by hydrotalcite as an efficient catalyst for the borrowing hydrogen reaction and dehydrogenation cyclization under water or solvent-free conditions. Green Chem 20:2571–2577

    Article  Google Scholar 

  91. Shi T, Qin F, Li Q, Zhang W (2018) Copper-catalyzed three-component synthesis of pyrimidines from amidines and alcohols. Org Biomol Chem 16:9487–9491

    Article  PubMed  Google Scholar 

  92. Hu Y, Li S, Li H et al (2019) Copper-catalyzed tandem oxidative synthesis of quinazolinones from 2-aminobenzonitriles and benzyl alcohols. Org Chem Front 6:2744–2748

    Article  Google Scholar 

  93. Das S, Mondal R, Chakraborty G et al (2021) Zinc stabilized azo-anion radical in dehydrogenative synthesis of N-heterocycles. An exclusively ligand centered redox controlled approach. ACS Catal 11:7498–7512

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekambaram Balaraman .

Editor information

Editors and Affiliations

Ethics declarations

This work is supported by CSIR (Project No: 01/(3030)/21/EMR-II). EB is a Swarnajayanti Fellow (Award No: SERB/F/5892/20202021) and gratefully acknowledges support from the Alexander-von-Humboldt (AvH) Foundation. G.S. acknowledges IISER-Tirupati and A.K.S. thanks UGC for their fellowships.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sivakumar, G., Suresh, A.K., Balaraman, E. (2023). Tandem Multicomponent Reactions for Diverse Heterocycles Synthesis Under 3d-Transition Metal Catalysis. In: Sundararaju, B. (eds) Dehydrogenation Reactions with 3d Metals. Topics in Organometallic Chemistry, vol 73. Springer, Cham. https://doi.org/10.1007/3418_2023_108

Download citation

Publish with us

Policies and ethics