Skip to main content

Rhodium-Catalysed Hydrogenations Using Monodentate Ligands

  • Chapter
  • First Online:
Rhodium Catalysis

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 61))

Abstract

The use of monodentate phosphorus ligands, such as phosphonites, phosphites and phosphoramidites, in the rhodium-catalysed asymmetric hydrogenation of a range of mostly alkene type substrates was reported for the first time in 2000. Not only are these ligands cheap and easy to prepare in one or two steps, their use has also created new opportunities, such as their robotic parallel synthesis and the use of complexes containing two different monodentate ligands, which tremendously increases the available diversity. This review covers the period between 2006 and 2016. Many new ligands have been made during this time; not only new variants on the three ligand types that were earlier reported, but also monodentate phosphines and secondary phosphine oxides. These were mostly tested on the usual N-acetyl-dehydroamino acids, itaconic esters and enamide type substrates. Other more novel substrates were N-formyl-dehydroamino acids, all the variants of the beta-dehydroamino acid family, enol esters, 2-methylidene-1,2,3,4-tetrahydro-β-carbolines, alkenes containing phosphonate or thioether substituents, several substituted acrylic acids as well as substituted cinnamic acids. The mechanism of the rhodium-catalysed hydrogenation with phosphites, phosphonites, phosphoramidites as well as phosphepines has been reported. A common theme in these mechanisms is the formation of a dimeric bimetallic complex after subjecting the [RhL2(cod)]X or [RhL2(nbd)]X (X = BF4,PF6, SbF6) complexes to hydrogen. Since these hydrogenations are usually carried out in non-polar solvents, the formation of the expected RhL2(Solvent)2 complexes does not occur after the removal of the diene and instead each rhodium atom in these dimeric complexes coordinates not only to two monodentate ligands, but also in η6 fashion to an aromatic ring of one of the ligands that is bound to the other rhodium atom. These complexes can react with the substrate to form the substrate complex that is hydrogenated. Other studies also found that it is possible to form rhodium hydride complexes first, which react with the substrate to form product. There is one well-described industrial application on large scale in which a substituted 2-isopropyl-cinnamic acid is hydrogenated using a rhodium complex with a mixture of 2 eq. of 3,3’-dimethyl-PipPhos and 1 eq. of triphenylphosphine. The addition of the non-chiral triarylphosphine not only accelerated the reaction 50-fold, also the enantioselectivity was much improved. The product was used as a building block for AliskirenTM, a blood-pressure lowering agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knowles WS, Sabacky MJ (1968) J Chem Soc Chem Commun 1445

    Google Scholar 

  2. Knowles WS (1983) Acc Chem Res 16:106

    Article  CAS  Google Scholar 

  3. Horner L, Siegel H, Büthe H (1968) Angew Chem Int Ed Engl 7:942

    Article  CAS  Google Scholar 

  4. Vineyard BD, Knowles WS, Sabacky MJ, Bachman GL, Weinkauff DJ (1977) J Am Chem Soc 99:5946

    Article  CAS  Google Scholar 

  5. Dang TP, Kagan HB (1971) J Chem Soc Chem Commun 481

    Google Scholar 

  6. Kagan HB, Dang TP (1972) J Am Chem Soc 94:6429

    Article  CAS  Google Scholar 

  7. Knowles WS, Sabacky MJ, Vineyard BD (1972) J Chem Soc Chem Commun 10

    Google Scholar 

  8. Claver C, Fernandez E, Gillon A, Heslop K, Hyett DJ, Martorell A, Orpen AG, Pringle PG (2000) Chem Commun 961

    Google Scholar 

  9. Reetz MT, Sell T (2000) Tetrahedron Lett 41:6333

    Article  CAS  Google Scholar 

  10. Reetz MT, Mehler G (2000) Angew Chem Int Ed 39:3889

    Article  CAS  Google Scholar 

  11. van den Berg M, Minnaard AJ, Schudde EP, van Esch J, de Vries AHM, de Vries JG, Feringa BL (2000) J Am Chem Soc 122:11539

    Article  Google Scholar 

  12. Minnaard AJ, Feringa BL, Lefort L, de Vries JG (2007) Acc Chem Res 40:1267

    Article  CAS  Google Scholar 

  13. Reetz MT, Sell T, Meiswinkel A, Mehler G (2003) Angew Chem Int Ed 42:790

    Article  CAS  Google Scholar 

  14. Reetz MT, Mehler G (2003) Tetrahedron Lett 44:4593

    Article  CAS  Google Scholar 

  15. Pena D, Minnaard AJ, Boogers JAF, de Vries AHM, de Vries JG, Feringa BL (2003) Org Biomol Chem 1:1087

    Article  CAS  Google Scholar 

  16. Hoen R, Boogers JAF, Bernsmann H, Minnaard AJ, Meetsma A, Tiemersma-Wegman TD, de Vries AHM, de Vries JG, Feringa BL (2005) Angew Chem Int Ed 44:4209

    Article  CAS  Google Scholar 

  17. Gennari C, Monti C, Piarulli U, de Vries JG, de Vries AHM, Lefort L (2005) Chem Eur J 11:6701

    Article  Google Scholar 

  18. Reetz MT, Li X (2006) Chem Commun 2159

    Google Scholar 

  19. Lefort L, Boogers JAF, de Vries AHM, de Vries JG (2004) Org Lett 6:1733

    Article  CAS  Google Scholar 

  20. Junge K, Oehme G, Monsees A, Riermeier T, Dingerdissen U, Beller M (2002) Tetrahedron Lett 43:4977

    Article  CAS  Google Scholar 

  21. Enthaler S, Erre G, Junge K, Michalik D, Spannenberg A, Marras F, Gladiali S, Beller M (2007) Tetrahedron Asymmetry 18:1288

    Article  CAS  Google Scholar 

  22. Enthaler S, Erre G, Junge K, Holz J, Börner A, Alberico E, Nieddu I, Gladiali S, Beller M (2007) Org Proc Res Dev 11:568

    Article  CAS  Google Scholar 

  23. Gladiali S, Alberico E, Junge K, Beller M (2011) Chem Soc Rev 40:3744

    Article  CAS  Google Scholar 

  24. Erre G, Enthaler S, Junge K, Gladiali S, Beller M (2008) Coord Chem Rev 252:471

    Article  CAS  Google Scholar 

  25. Hu A-G, Fu Y, Xie J-H, Zhou H, Wang L-X, Zhou Q-L (2002) Angew Chem Int Ed 41:2348

    Article  CAS  Google Scholar 

  26. Fu Y, Xie J-H, Hu A-G, Zhou H, Wang L-X, Zhou Q-L (2002) Chem Commun 480

    Google Scholar 

  27. Zhu S-F, Fu Y, Xie J-H, Liu B, Xing L, Zhou Q-L (2003) Tetrahedron Asymmetry 14:3219

    Article  CAS  Google Scholar 

  28. Jiang X-B, Minnaard AJ, Hessen B, Feringa BL, Duchateau ALL, Andrien JGO, Boogers JAF, de Vries JG (2003) Org Lett 5:1503

    Article  CAS  Google Scholar 

  29. Jiang X-B, van den Berg M, Minnaard AJ, Feringa BL, de Vries JG (2004) Tetrahedron Asymmetry 15:2223

    Article  CAS  Google Scholar 

  30. Jerphagnon T, Renaud J-L, Bruneau C (2004) Tetrahedron Asymmetry 15:2101

    Article  CAS  Google Scholar 

  31. de Vries JG (2005) In: Ager DJ (ed) Handbook of chiral chemicals, 2nd edn. CRC Press, Boca Raton, pp 269–286

    Google Scholar 

  32. van den Berg M, Feringa BL, Minnaard AJ (2007) In: de Vries JG, Elsevier CJ (eds) Handbook of homogeneous hydrogenation, vol 2. Wiley-VCH, Weinheim, p 995

    Google Scholar 

  33. Bondarev OG, Goddard R (2006) Tetrahedron Lett 47:9013

    Article  CAS  Google Scholar 

  34. Eberhardt L, Armspach D, Matt D, Toupet L, Oswald B (2007) Eur J Org Chem 5395

    Google Scholar 

  35. Lyubimov SE, Davankov VA, Valetskii PM, Petrovskii PV, Maksimova MG, Gavrilov KN (2006) Russ Chem Bull Int Ed 55:1448

    Article  CAS  Google Scholar 

  36. Liu Y, Ding K, Am J (2005) Chem Soc 127:10488

    Article  CAS  Google Scholar 

  37. Zhao B, Wang Z, Ding K (2006) Adv Synth Catal 348:1049

    Article  CAS  Google Scholar 

  38. Liu Y, Wang Z, Ding K (2012) Tetrahedron 68:7581

    Article  CAS  Google Scholar 

  39. Eberhardt L, Armspach D, Harrowfield J, Matt D (2008) Chem Soc Rev 37:839

    Article  CAS  Google Scholar 

  40. Eberhardt L, Armspach D, Matt D, Toupet L, Oswald B (2007) Eur J Inorg Chem 4153

    Google Scholar 

  41. Zhu S-F, Liu T, Yang S, Song S, Zhou Q-L (2012) Tetrahedron 68:7685

    Article  CAS  Google Scholar 

  42. Lyubimow SE, Tyutyunov AA, Kalinin VN, Said-Galiev EE, Khokhlov AR, Petrovskii PV, Davankov VA (2007) Tetrahedron Lett 48:8217

    Article  Google Scholar 

  43. Lyubimow SE, Davankov VA, Petrovskii PV, Hey-Hawkins E, Tyutyunov AA, Rys EG, Kalinin VN (2008) J Organomet Chem 693:3689

    Article  Google Scholar 

  44. Lyubimow SE, Kuchurov IV, Tyutyunov AA, Petrovskii PV, Kalinin VN, Zlotin SG, Davankov VA, Hey-Hawkins E (2010) Catal Commun 11:419

    Article  Google Scholar 

  45. Lyubimow SE, Rastorguev EA, Verbitskaya TA, Petrovskii PV, Hey-Hawkins E, Kalinin VN, Davankov VA (2011) Polyhedron 30:1258

    Article  Google Scholar 

  46. Schmitz C, Leitner W, Franciò G (2015) Eur J Org Chem 2889

    Google Scholar 

  47. Iuliano A, Losi D, Facchetti S (2007) J Org Chem 72:8472

    Article  CAS  Google Scholar 

  48. Reetz MT, Li X (2005) Angew Chem Int Ed 44:2959

    Article  CAS  Google Scholar 

  49. Monti C, Gennari C, Piarulli U, de Vries JG, De Vries AHM, Lefort L (2005) Chem Eur J 11:6701

    Article  CAS  Google Scholar 

  50. Frank DJ, Franzke A, Pfaltz A (2013) Chem Eur J 19:2405

    Article  CAS  Google Scholar 

  51. Breit B, Fuchs E (2006) Synthesis 2121

    Google Scholar 

  52. Kokan Z, Kirin SI (2013) Eur J Org Chem 8154

    Google Scholar 

  53. Hopewell J, Jankowski P, McMullin CL, Orpen AG, Pringle PG (2010) Chem Commun 46:100

    Article  CAS  Google Scholar 

  54. Galland A, Dobrota C, Toffano M, Fiaud J-C (2006) Tetrahedron Asymmetry 17:2354

    Article  CAS  Google Scholar 

  55. Dobrota C, Fiaud J-C, Toffano M (2015) ChemCatChem 7:144

    Article  CAS  Google Scholar 

  56. Wang X-B, Goto M, Han L-B (2015) Chem Eur J 20:3631

    Article  Google Scholar 

  57. Bruneau C, Renaud J-L, Jerphagnon T (2008) Coord Chem Rev 252:532

    Article  CAS  Google Scholar 

  58. Hoen R, Tiemersma-Wegman T, Procuranti B, Lefort L, de Vries JG, Minnaard AJ, Feringa BL (2007) Org Biol Chem 5:267

    Article  CAS  Google Scholar 

  59. Hekking KFW, Lefort L, de Vries AHM, van Delft FL, Schoemaker HE, de Vries JG, Rutjes FPJT (2008) Adv Synth Catal 350:85

    Article  CAS  Google Scholar 

  60. Lefort L, Boogers JAF, Kuilman T, Vijn RJ, Janssen J, Straatman H, de Vries JG, De Vries AHM (2010) Org Proc Res Dev 14:568

    Article  CAS  Google Scholar 

  61. Mršić N, Jerphagnon T, Minnaard AJ, Feringa BL, de Vries JG (2010) Tetrahedron Asymmetry 21:7

    Article  Google Scholar 

  62. Meindertsma AF, Pollard MM, Feringa BL, de Vries JG, Minnaard AJ (2007) Tetrahedron Asymmetry 18:2849

    Article  CAS  Google Scholar 

  63. Zhang J, Li Y, Wang Z, Ding K (2011) Angew Chem Int Ed 50:11743

    Article  CAS  Google Scholar 

  64. Dong K, Li Y, Wang Z, Ding K (2013) Angew Chem Int Ed 52:14191

    Article  CAS  Google Scholar 

  65. Dong K, Li Y, Wang Z, Ding K (2014) Org Chem Front 1:155

    Article  CAS  Google Scholar 

  66. Li Y, Wang Z, Ding K (2015) Angew Chem Int Ed 21:16387

    CAS  Google Scholar 

  67. van den Berg M, Minnaard AJ, Haak RM, Leeman M, Schudde EP, Meetsma A, Feringa BL, de Vries AHM, Elizabeth C, Maljaars P, Willans CE, Hyett D, Boogers JAF, Henderickx HJW, de Vries JG (2003) Adv Synth Catal 345:308

    Article  Google Scholar 

  68. Reetz MT, Meiswinkel A, Mehler G, Angermund K, Graf M, Thiel W, Mynott R, Blackmond DG (2005) J Am Chem Soc 127:10305

    Article  CAS  Google Scholar 

  69. Reetz MT, Fu Y, Meiswinkel A (2006) Angew Chem Int Ed 45:1412

    Article  CAS  Google Scholar 

  70. Gridnev ID, Fan C, Pringle PG (2007) Chem Commun 1319

    Google Scholar 

  71. Alberico E, Baumann W, de Vries JG, Drexler H-J, Gladiali S, Heller D, Henderickx HJW, Lefort L (2011) Chem Eur J 17:12683

    Article  CAS  Google Scholar 

  72. Gridnev ID, Alberico E, Gladiali S (2012) Chem Commun 48:2186

    Article  CAS  Google Scholar 

  73. Schiaffino L, Ercolani G (2011) J Phys Org Chem 24:257

    Article  CAS  Google Scholar 

  74. Liu Y, Sandoval CA, Yamaguchi Y, Zhang X, Wang Z, Kato K, Ding K (2006) J Am Chem Soc 128:14212

    Article  CAS  Google Scholar 

  75. Weis M, Waloch C, Seiche W, Breit B (2006) J Am Chem Soc 128:4188

    Article  CAS  Google Scholar 

  76. Birkholz M-N, Dubrovina NV, Jiao H, Michalik D, Holz J, Paciello R, Breit B, Börner A (2007) Chem Eur J 13:5896

    Article  CAS  Google Scholar 

  77. Patureau FW, Kuil M, Sandee AJ, Reek JNH (2008) Angew Chem Int Ed 47:3180

    Article  CAS  Google Scholar 

  78. Breuil P-AR, Reek JNH (2009) Eur J Org Chem 6225

    Google Scholar 

  79. Breuil P-AR, Patureau FW, Reek JNH (2009) Angew Chem Int Ed 48:2162

    Article  CAS  Google Scholar 

  80. Meeuwissen J, Kuil M, van der Burg AM, Sandee AJ, Reek JNH (2009) Chem Eur J 15:10272

    Article  CAS  Google Scholar 

  81. Terrade FG, Kluwer AM, Detz RJ, Abiri Z, van der Burg AM, Reek JNH (2015) ChemCatChem 7:3368

    Article  CAS  Google Scholar 

  82. Wieland J, Breit B (2010) Nat Chem 2:832

    Article  CAS  Google Scholar 

  83. Pignataro L, Lynikaite B, Cvengroš J, Marchini M, Piarulli U, Gennari C (2009) Eur J Org Chem 2539

    Google Scholar 

  84. Pignataro L, Carboni S, Civera M, Colombo R, Piarulli U, Gennari C (2010) Angew Chem Int Ed 49:6633

    Article  CAS  Google Scholar 

  85. Pignataro L, Boghi M, Civera M, Carboni S, Piarulli U, Gennari C (2012) Chem Eur J 18:1383

    Article  CAS  Google Scholar 

  86. Pignataro L, Bovio C, Civera M, Carboni S, Piarulli U, Gennari C (2012) Chem Eur J 18:10368

    Article  CAS  Google Scholar 

  87. Hattori G, Hori T, Miyake Y, Nishibayashi Y (2007) J Am Chem Soc 129:12930

    Article  CAS  Google Scholar 

  88. Li Y, Feng Y, He YM, Chen F, Pan J, Fan Q-H (2008) Tetrahedron Lett 49:2878

    Article  CAS  Google Scholar 

  89. Raynal M, Portier F, van Leeuwen PWHM, Bouteiller L (2013) J Am Chem Soc 135:17687

    Article  CAS  Google Scholar 

  90. Thacker NC, Moteki SA, Takacs JM (2012) ACS Catal 2:2743–2752

    Article  CAS  Google Scholar 

  91. Boogers JAF, Felfer U, Kotthaus M, Lefort L, Steinbauer G, de Vries AHM, de Vries JG (2007) Org Proc Res Dev 11:585–591

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes G. de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cettolin, M., Puylaert, P., de Vries, J.G. (2017). Rhodium-Catalysed Hydrogenations Using Monodentate Ligands. In: Claver, C. (eds) Rhodium Catalysis. Topics in Organometallic Chemistry, vol 61. Springer, Cham. https://doi.org/10.1007/3418_2017_174

Download citation

Publish with us

Policies and ethics