Skip to main content

Kappa Opioid Receptor Mediated Differential Regulation of Serotonin and Dopamine Transporters in Mood and Substance Use Disorder

  • Chapter
  • First Online:
The Kappa Opioid Receptor

Abstract

Dynorphin (DYN) is an endogenous neurosecretory peptide which exerts its activity by binding to the family of G protein-coupled receptors, namely the kappa opioid receptor (KOR). Opioids are associated with pain, analgesia, and drug abuse, which play a central role in mood disorders with monoamine neurotransmitter interactions. Growing evidence demonstrates the cellular signaling cascades linked to KOR-mediated monoamine transporters regulation in cell models and native brain tissues. This chapter will review DYN/KOR role in mood and addiction in relevance to dopaminergic and serotonergic neurotransmissions. Also, we discuss the recent findings on KOR-mediated differential regulation of serotonin and dopamine transporters (SERT and DAT). These findings led to a better understanding of the role of DYN/KOR system in aminergic neurotransmission via its modulatory effect on both amine release and clearance. Detailed knowledge of these processes at the molecular level enables designing novel pharmacological reagents to target transporter motifs to treat mood and addiction and reduce unwanted side effects such as aversion, dysphoria, sedation, and psychomimesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arvidsson U, Riedl M, Chakrabarti S, Vulchanova L, Lee JH, Nakano AH, Lin X, Loh HH, Law PY, Wessendorf MW et al (1995) The kappa-opioid receptor is primarily postsynaptic: combined immunohistochemical localization of the receptor and endogenous opioids. Proc Natl Acad Sci U S A 92:5062–5066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballenger JC (1999) Current treatments of the anxiety disorders in adults. Biol Psychiatry 46:1579–1594

    Article  CAS  PubMed  Google Scholar 

  • Beardsley PM, Howard JL, Shelton KL, Carroll FI (2005) Differential effects of the novel kappa opioid receptor antagonist, JDTic, on reinstatement of cocaine-seeking induced by footshock stressors vs cocaine primes and its antidepressant-like effects in rats. Psychopharmacology (Berl) 183:118–126

    Article  CAS  Google Scholar 

  • Bengel D, Murphy DL, Andrews AM, Wichems CH, Feltner D, Heils A, Mossner R, Westphal H, Lesch KP (1998) Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymetamphetamine (“ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 53:649–655

    Article  CAS  PubMed  Google Scholar 

  • Berger B, Rothmaier AK, Wedekind F, Zentner J, Feuerstein TJ, Jackisch R (2006) Presynaptic opioid receptors on noradrenergic and serotonergic neurons in the human as compared to the rat neocortex. Br J Pharmacol 148:795–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermingham DP, Blakely RD (2016) Kinase-dependent regulation of monoamine neurotransmitter transporters. Pharmacol Rev 68:888–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohn LM, Aube J (2017) Seeking (and finding) biased ligands of the kappa opioid receptor. ACS Med Chem Lett 8:694–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohn LM, Belcheva MM, Coscia CJ (2000) Mitogenic signaling via endogenous kappa-opioid receptors in C6 glioma cells: evidence for the involvement of protein kinase C and the mitogen-activated protein kinase signaling cascade. J Neurochem 74:564–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodnik ZD, Xu W, Batra A, Lewandowski SI, Ruiz CM, Mortensen OV, Kortagere S, Mahler SV, Espana RA (2020) Chemogenetic manipulation of dopamine neurons dictates cocaine potency at distal dopamine transporters. J Neurosci 40:8767–8779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne CA, Lucki I (2019) Targeting opioid dysregulation in depression for the development of novel therapeutics. Pharmacol Ther 201:51–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruchas MR, Chavkin C (2010) Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology (Berl) 210:137–147

    Article  CAS  Google Scholar 

  • Bruchas MR, Land BB, Lemos JC, Chavkin C (2009) CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior. PLoS One 4:e8528

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruchas MR, Land BB, Chavkin C (2010) The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 1314:44–55

    Article  CAS  PubMed  Google Scholar 

  • Bruchas MR, Schindler AG, Shankar H, Messinger DI, Miyatake M, Land BB, Lemos JC, Hagan CE, Neumaier JF, Quintana A, Palmiter RD, Chavkin C (2011) Selective p38α MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction. Neuron 71:498–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruijnzeel AW (2009) Kappa-opioid receptor signaling and brain reward function. Brain Res Rev 62:127–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brust TF, Morgenweck J, Kim SA, Rose JH, Locke JL, Schmid CL, Zhou L, Stahl EL, Cameron MD, Scarry SM, Aube J, Jones SR, Martin TJ, Bohn LM (2016) Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci Signal 9:ra117

    Article  PubMed  PubMed Central  Google Scholar 

  • Butelman ER, Yuferov V, Kreek MJ (2012) Kappa-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction. Trends Neurosci 35:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calipari ES, Juarez B, Morel C, Walker DM, Cahill ME, Ribeiro E, Roman-Ortiz C, Ramakrishnan C, Deisseroth K, Han MH, Nestler EJ (2017) Dopaminergic dynamics underlying sex-specific cocaine reward. Nat Commun 8:13877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlezon WA Jr, Beguin C, DiNieri JA, Baumann MH, Richards MR, Todtenkopf MS, Rothman RB, Ma Z, Lee DY, Cohen BM (2006) Depressive-like effects of the kappa-opioid receptor agonist Salvinorin A on behavior and neurochemistry in rats. J Pharmacol Exp Ther 316:440–447

    Article  CAS  PubMed  Google Scholar 

  • Chartoff EH, Potter D, Damez-Werno D, Cohen BM, Carlezon WA Jr (2008) Exposure to the selective kappa-opioid receptor agonist Salvinorin A modulates the behavioral and molecular effects of cocaine in rats. Neuropsychopharmacology 33:2676–2687

    Article  CAS  PubMed  Google Scholar 

  • Chavkin C, Goldstein A (1981) Specific receptor for the opioid peptide dynorphin: structure–activity relationships. Proc Natl Acad Sci U S A 78:6543–6547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavkin C, Koob GF (2016) Dynorphin, dysphoria, and dependence: the stress of addiction. Neuropsychopharmacology 41:373–374

    Article  CAS  PubMed  Google Scholar 

  • Chefer VI, Backman CM, Gigante ED, Shippenberg TS (2013) Kappa opioid receptors on dopaminergic neurons are necessary for kappa-mediated place aversion. Neuropsychopharmacology 38:2623–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Tilley MR, Wei H, Zhou F, Zhou FM, Ching S, Quan N, Stephens RL, Hill ER, Nottoli T, Han DD, Gu HH (2006) Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proc Natl Acad Sci U S A 103:9333–9338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Addario C, Di Benedetto M, Izenwasser S, Candeletti S, Romualdi P (2007) Role of serotonin in the regulation of the dynorphinergic system by a kappa-opioid agonist and cocaine treatment in rat CNS. Neuroscience 144:157–164

    Article  PubMed  Google Scholar 

  • Daunais JB, McGinty JF (1995) Cocaine binges differentially alter striatal preprodynorphin and zif/268 mRNAs. Brain Res Mol Brain Res 29:201–210

    Article  CAS  PubMed  Google Scholar 

  • Di Benedetto M, D’Addario C, Collins S, Izenwasser S, Candeletti S, Romualdi P (2004) Role of serotonin on cocaine-mediated effects on prodynorphin gene expression in the rat brain. J Mol Neurosci 22:213–222

    Article  PubMed  Google Scholar 

  • Dogra S, Yadav PN (2015) Biased agonism at kappa opioid receptors: implication in pain and mood disorders. Eur J Pharmacol 763:184–190

    Article  CAS  PubMed  Google Scholar 

  • Drake CT, Patterson TA, Simmons ML, Chavkin C, Milner TA (1996) Kappa opioid receptor-like immunoreactivity in guinea pig brain: ultrastructural localization in presynaptic terminals in hippocampal formation. J Comp Neurol 370:377–395

    Article  CAS  PubMed  Google Scholar 

  • Dubol M, Trichard C, Leroy C, Sandu AL, Rahim M, Granger B, Tzavara ET, Karila L, Martinot JL, Artiges E (2018) Dopamine transporter and reward anticipation in a dimensional perspective: a multimodal brain imaging study. Neuropsychopharmacology 43:820–827

    Article  CAS  PubMed  Google Scholar 

  • Ehrich JM, Messinger DI, Knakal CR, Kuhar JR, Schattauer SS, Bruchas MR, Zweifel LS, Kieffer BL, Phillips PE, Chavkin C (2015) Kappa opioid receptor-induced aversion requires p38 MAPK activation in VTA dopamine neurons. J Neurosci 35:12917–12931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshleman AJ, Nagarajan S, Wolfrum KM, Reed JF, Swanson TL, Nilsen A, Janowsky A (2019) Structure-activity relationships of bath salt components: substituted cathinones and benzofurans at biogenic amine transporters. Psychopharmacology (Berl) 236:939–952

    Article  CAS  Google Scholar 

  • Fagergren P, Smith HR, Daunais JB, Nader MA, Porrino LJ, Hurd YL (2003) Temporal upregulation of prodynorphin mRNA in the primate striatum after cocaine self-administration. Eur J Neurosci 17:2212–2218

    Article  CAS  PubMed  Google Scholar 

  • Fozzard J (1989) Peripheral actions of 5-hydroxytryptamine. Oxford University Press, New York

    Google Scholar 

  • Frankel PS, Alburges ME, Bush L, Hanson GR, Kish SJ (2008) Striatal and ventral pallidum dynorphin concentrations are markedly increased in human chronic cocaine users. Neuropharmacology 55:41–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 43:261–284

    Article  CAS  PubMed  Google Scholar 

  • Giros B, Caron MG (1993) Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 14:43–49

    Article  CAS  PubMed  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  CAS  PubMed  Google Scholar 

  • Goldstein A, Fischli W, Lowney LI, Hunkapiller M, Hood L (1981) Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci U S A 78:7219–7223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn MK, Blakely RD (2007) The functional impact of SLC6 transporter genetic variation. Annu Rev Pharmacol Toxicol 47:401–441

    Article  CAS  PubMed  Google Scholar 

  • Hnasko TS, Sotak BN, Palmiter RD (2007) Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin. J Neurosci 27:12484–12488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell LL, Cunningham KA (2015) Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev 67:176–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Howes O, McCutcheon R, Stone J (2015) Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol 29:97–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs B, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi LD, Ramamoorthy S, Mahesh VB, Leibach FH, Ganapathy V (1994) Calmodulin-dependent regulation of the catalytic function of the human serotonin transporter in placental choriocarcinoma cells. J Biol Chem 269:14424–14429

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi LD, Samuvel DJ, Blakely RD, Ramamoorthy S (2005) Evidence for biphasic effects of protein kinase C on serotonin transporter function, endocytosis, and phosphorylation. Mol Pharmacol 67:2077–2087

    Article  CAS  PubMed  Google Scholar 

  • Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine beta-neo-endorphin/dynorphin precursor. Nature 298:245–249

    Article  CAS  PubMed  Google Scholar 

  • Karkhanis A, Holleran KM, Jones SR (2017) Dynorphin/kappa opioid receptor signaling in preclinical models of alcohol, drug, and food addiction. Int Rev Neurobiol 136:53–88

    Article  CAS  PubMed  Google Scholar 

  • Kent JM, Coplan JD, Gorman JM (1998) Clinical utility of the selective serotonin reuptake inhibitors in the spectrum of anxiety. Biol Psychiatry 44:812–824

    Article  CAS  PubMed  Google Scholar 

  • Kilty JE, Lorang D, Amara SG (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578–580

    Article  CAS  PubMed  Google Scholar 

  • Kivell B, Uzelac Z, Sundaramurthy S, Rajamanickam J, Ewald A, Chefer V, Jaligam V, Bolan E, Simonson B, Annamalai B, Mannangatti P, Prisinzano TE, Gomes I, Devi LA, Jayanthi LD, Sitte HH, Ramamoorthy S, Shippenberg TS (2014a) Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism. Neuropharmacology 86:228–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kivell BM, Ewald AW, Prisinzano TE (2014b) Salvinorin A analogs and other kappa-opioid receptor compounds as treatments for cocaine abuse. Adv Pharmacol 69:481–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8:1442–1444

    Article  CAS  PubMed  Google Scholar 

  • Kurian MA, Zhen J, Cheng SY, Li Y, Mordekar SR, Jardine P, Morgan NV, Meyer E, Tee L, Pasha S, Wassmer E, Heales SJ, Gissen P, Reith ME, Maher ER (2009) Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest 119:1595–1603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C (2008) The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci 28:407–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Land BB, Bruchas MR, Schattauer S, Giardino WJ, Aita M, Messinger D, Hnasko TS, Palmiter RD, Chavkin C (2009) Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking. Proc Natl Acad Sci U S A 106:19168–19173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mague SD, Pliakas AM, Todtenkopf MS, Tomasiewicz HC, Zhang Y, Stevens WC Jr, Jones RM, Portoghese PS, Carlezon WA Jr (2003) Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther 305:323–330

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin JP, Marton-Popovici M, Chavkin C (2003) Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci 23:5674–5683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin JP, Land BB, Li S, Pintar JE, Chavkin C (2006) Prior activation of kappa opioid receptors by U50,488 mimics repeated forced swim stress to potentiate cocaine place preference conditioning. Neuropsychopharmacology 31:787–794

    Article  CAS  PubMed  Google Scholar 

  • Miller KJ, Hoffman BJ (1994) Adenosine A3 receptors regulate serotonin transport via nitric oxide and cGMP. J Biol Chem 269:27351–27356

    Article  CAS  PubMed  Google Scholar 

  • Mores KL, Cummins BR, Cassell RJ, van Rijn RM (2019) A review of the therapeutic potential of recently developed G protein-biased kappa agonists. Front Pharmacol 10:407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mucha RF, Herz A (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology (Berl) 86:274–280

    Article  CAS  Google Scholar 

  • Murphy DL, Lerner A, Rudnick G, Lesch KP (2004) Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol Interv 4:109–123

    Article  CAS  PubMed  Google Scholar 

  • Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PR (2015) The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 16:305–312

    Article  CAS  PubMed  Google Scholar 

  • Olivier B (2015) Serotonin: a never-ending story. Eur J Pharmacol 753:2–18

    Article  CAS  PubMed  Google Scholar 

  • Pan ZZ (2003) Kappa-opioid receptor-mediated enhancement of the hyperpolarization-activated current (I(h)) through mobilization of intracellular calcium in rat nucleus raphe magnus. J Physiol 548:765–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paton KF, Atigari DV, Kaska S, Prisinzano T, Kivell BM (2020) Strategies for developing kappa opioid receptor agonists for the treatment of pain with fewer side effects. J Pharmacol Exp Ther 375:332–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell KR, Picker MJ, Dykstra LA (1994) Serotonin involvement in the discriminative stimulus effects of mu and kappa opioids in rats. Behav Pharmacol 5:255–264

    CAS  PubMed  Google Scholar 

  • Prevatt-Smith KM, Lovell KM, Simpson DS, Day VW, Douglas JT, Bosch P, Dersch CM, Rothman RB, Kivell B, Prisinzano TE (2011) Potential drug abuse therapeutics derived from the hallucinogenic natural product Salvinorin A. MedChemComm 2:1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Galli A, Ramamoorthy S, Risso S, DeFelice LJ, Blakely RD (1997) Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression. J Neurosci 17:45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragu Varman D, Jayanthi LD, Ramamoorthy S (2020) Glycogen synthase kinase-3ß supports serotonin transporter function and trafficking in a phosphorylation-dependent manner. J Neurochem 156(4):445–464

    Article  PubMed  Google Scholar 

  • Ragu Varman D, Subler MA, Windle JJ, Jayanthi LD, Ramamoorthy S (2021) Novelty-induced hyperactivity and suppressed cocaine induced locomotor activation in mice lacking threonine 53 phosphorylation of dopamine transporter. Behav Brain Res:113267

    Google Scholar 

  • Rajamanickam J, Annamalai B, Rahbek-Clemmensen T, Sundaramurthy S, Gether U, Jayanthi LD, Ramamoorthy S (2015) Akt-mediated regulation of antidepressant-sensitive serotonin transporter function, cell-surface expression and phosphorylation. Biochem J 468:177–190

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD (1993) Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci U S A 90:2542–2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramamoorthy S, Samuvel DJ, Buck ER, Rudnick G, Jayanthi LD (2007) Phosphorylation of threonine residue 276 is required for acute regulation of serotonin transporter by cyclic GMP. J Biol Chem 282:11639–11647

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Shippenberg TS, Jayanthi LD (2011) Regulation of monoamine transporters: role of transporter phosphorylation. Pharmacol Ther 129:220–238

    Article  CAS  PubMed  Google Scholar 

  • Robles CF, McMackin MZ, Campi KL, Doig IE, Takahashi EY, Pride MC, Trainor BC (2014) Effects of kappa opioid receptors on conditioned place aversion and social interaction in males and females. Behav Brain Res 262:84–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB (2002) Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc Natl Acad Sci U S A 99:11934–11939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman RB, Baumann MH (2006) Balance between dopamine and serotonin release modulates behavioral effects of amphetamine-type drugs. Ann N Y Acad Sci 1074:245–260

    Article  CAS  PubMed  Google Scholar 

  • Rudnick G, Wall SC (1992) The molecular mechanism of “ecstasy” [3,4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc Natl Acad Sci U S A 89:1817–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuvel DJ, Jayanthi LD, Bhat NR, Ramamoorthy S (2005) A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression. J Neurosci 25:29–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk S, Partridge B, Shippenberg TS (2000) Reinstatement of extinguished drug-taking behavior in rats: effect of the kappa-opioid receptor agonist, U69593. Psychopharmacology (Berl) 151:85–90

    Article  CAS  Google Scholar 

  • Schindler AG, Messinger DI, Smith JS, Shankar H, Gustin RM, Schattauer SS, Lemos JC, Chavkin NW, Hagan CE, Neumaier JF, Chavkin C (2012) Stress produces aversion and potentiates cocaine reward by releasing endogenous dynorphins in the ventral striatum to locally stimulate serotonin reuptake. J Neurosci 32:17582–17596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura-Aguilar J, Paris I, Munoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129:898–915

    Article  CAS  PubMed  Google Scholar 

  • Shippenberg TS, Rea W (1997) Sensitization to the behavioral effects of cocaine: modulation by dynorphin and kappa-opioid receptor agonists. Pharmacol Biochem Behav 57:449–455

    Article  CAS  PubMed  Google Scholar 

  • Shippenberg TS, LeFevour A, Heidbreder C (1996) Kappa-opioid receptor agonists prevent sensitization to the conditioned rewarding effects of cocaine. J Pharmacol Exp Ther 276:545–554

    CAS  PubMed  Google Scholar 

  • Shippenberg TS, Chefer VI, Zapata A, Heidbreder CA (2001) Modulation of the behavioral and neurochemical effects of psychostimulants by kappa-opioid receptor systems. Ann N Y Acad Sci 937:50–73

    Article  CAS  PubMed  Google Scholar 

  • Shippenberg TS, Zapata A, Chefer VI (2007) Dynorphin and the pathophysiology of drug addiction. Pharmacol Ther 116:306–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirayama Y, Ishida H, Iwata M, Hazama GI, Kawahara R, Duman RS (2004) Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces antidepressant-like effects. J Neurochem 90:1258–1268

    Article  CAS  PubMed  Google Scholar 

  • Simmler LD, Anacker AMJ, Levin MH, Vaswani NM, Gresch PJ, Nackenoff AG, Anastasio NC, Stutz SJ, Cunningham KA, Wang J, Zhang B, Henry LK, Stewart A, Veenstra-VanderWeele J, Blakely RD (2017) Blockade of the 5-HT transporter contributes to the behavioural, neuronal and molecular effects of cocaine. Br J Pharmacol 174:2716–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spanagel R, Herz A, Shippenberg TS (1990) The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J Neurochem 55:1734–1740

    Article  CAS  PubMed  Google Scholar 

  • Sundaramurthy S, Annamalai B, Samuvel DJ, Shippenberg TS, Jayanthi LD, Ramamoorthy S (2017) Modulation of serotonin transporter function by kappa-opioid receptor ligands. Neuropharmacology 113:281–292

    Article  CAS  PubMed  Google Scholar 

  • Svingos AL, Colago EE, Pickel VM (1999a) Cellular sites for dynorphin activation of kappa-opioid receptors in the rat nucleus accumbens shell. J Neurosci 19:1804–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svingos AL, Clarke CL, Pickel VM (1999b) Localization of the delta-opioid receptor and dopamine transporter in the nucleus accumbens shell: implications for opiate and psychostimulant cross-sensitization. Synapse 34:1–10

    Article  CAS  PubMed  Google Scholar 

  • Svingos AL, Chavkin C, Colago EE, Pickel VM (2001) Major coexpression of kappa-opioid receptors and the dopamine transporter in nucleus accumbens axonal profiles. Synapse 42:185–192

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Auerbach SB (2002) Opioid receptor subtypes differentially modulate serotonin efflux in the rat central nervous system. J Pharmacol Exp Ther 303:549–556

    Article  CAS  PubMed  Google Scholar 

  • Tejeda HA, Shippenberg TS, Henriksson R (2012) The dynorphin/kappa-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 69:857–896

    Article  CAS  PubMed  Google Scholar 

  • Tejeda HA, Counotte DS, Oh E, Ramamoorthy S, Schultz-Kuszak KN, Backman CM, Chefer V, O’Donnell P, Shippenberg TS (2013) Prefrontal cortical kappa-opioid receptor modulation of local neurotransmission and conditioned place aversion. Neuropsychopharmacology 38:1770–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas MJ, Kalivas PW, Shaham Y (2008) Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol 154:327–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson AC, Zapata A, Justice JB Jr, Vaughan RA, Sharpe LG, Shippenberg TS (2000) Kappa-opioid receptor activation modifies dopamine uptake in the nucleus accumbens and opposes the effects of cocaine. J Neurosci 20:9333–9340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen M, Han DD, Gu HH, Caine SB (2009) Lack of cocaine self-administration in mice expressing a cocaine-insensitive dopamine transporter. J Pharmacol Exp Ther 331:204–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tidgewell K, Harding WW, Lozama A, Cobb H, Shah K, Kannan P, Dersch CM, Parrish D, Deschamps JR, Rothman RB, Prisinzano TE (2006) Synthesis of Salvinorin A analogues as opioid receptor probes. J Nat Prod 69:914–918

    Article  CAS  PubMed  Google Scholar 

  • Van Bockstaele EJ, Gracy KN, Pickel VM (1995) Dynorphin-immunoreactive neurons in the rat nucleus accumbens: ultrastructure and synaptic input from terminals containing substance P and/or dynorphin. J Comp Neurol 351:117–133

    Article  CAS  PubMed  Google Scholar 

  • Van’t Veer A, Bechtholt AJ, Onvani S, Potter D, Wang Y, Liu-Chen LY, Schutz G, Chartoff EH, Rudolph U, Cohen BM, Carlezon WA Jr (2013) Ablation of kappa-opioid receptors from brain dopamine neurons has anxiolytic-like effects and enhances cocaine-induced plasticity. Neuropsychopharmacology 38:1585–1597

    Article  Google Scholar 

  • Viggiano D, Vallone D, Sadile A (2004) Dysfunctions in dopamine systems and ADHD: evidence from animals and modeling. Neural Plast 11:97–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Wang GJ, Fischman MW, Foltin RW, Fowler JS, Abumrad NN, Vitkun S, Logan J, Gatley SJ, Pappas N, Hitzemann R, Shea CE (1997) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386:827–830

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F (2007) Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol 64:1575–1579

    Article  PubMed  Google Scholar 

  • Wagner JJ, Terman GW, Chavkin C (1993) Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus. Nature 363:451–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wee S, Koob GF (2010) The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 210:121–135

    Article  CAS  Google Scholar 

  • White KL, Robinson JE, Zhu H, DiBerto JF, Polepally PR, Zjawiony JK, Nichols DE, Malanga CJ, Roth BL (2015) The G protein-biased kappa-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo. J Pharmacol Exp Ther 352:98–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Wylie CJ, Hendricks TJ, Zhang B, Wang L, Lu P, Leahy P, Fox S, Maeno H, Deneris ES (2010) Distinct transcriptomes define rostral and caudal serotonin neurons. J Neurosci 30:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakharova E, Collins SL, Aberg M, Kumar A, Fernandez JB, Izenwasser S (2008) Depletion of serotonin decreases the effects of the kappa-opioid receptor agonist U-69593 on cocaine-stimulated activity. Eur J Pharmacol 586:123–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Butelman ER, Schlussman SD, Ho A, Kreek MJ (2005) Effects of the plant-derived hallucinogen Salvinorin A on basal dopamine levels in the caudate putamen and in a conditioned place aversion assay in mice: agonist actions at kappa opioid receptors. Psychopharmacology (Berl) 179:551–558

    Article  CAS  Google Scholar 

  • Zhu CB, Carneiro AM, Dostmann WR, Hewlett WA, Blakely RD (2005) p38 MAPK activation elevates serotonin transport activity via a trafficking-independent, protein phosphatase 2A-dependent process. J Biol Chem 280:15649–15658

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by National Institutes of Health grants to SR (MH112731) and LDJ (DA045888).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lankupalle D. Jayanthi or Sammanda Ramamoorthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ragu Varman, D., Jayanthi, L.D., Ramamoorthy, S. (2021). Kappa Opioid Receptor Mediated Differential Regulation of Serotonin and Dopamine Transporters in Mood and Substance Use Disorder. In: Liu-Chen, LY., Inan, S. (eds) The Kappa Opioid Receptor. Handbook of Experimental Pharmacology, vol 271. Springer, Cham. https://doi.org/10.1007/164_2021_499

Download citation

Publish with us

Policies and ethics