Skip to main content

Lipids and Membrane Microdomains: The Glycerolipid and Alkylphosphocholine Class of Cancer Chemotherapeutic Drugs

  • Chapter
  • First Online:
Lipid Signaling in Human Diseases

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 259))

Abstract

Synthetic antitumor lipids are metabolically stable lysophosphatidylcholine derivatives, encompassing a class of non-mutagenic drugs that selectively target cancerous cells. In this chapter we review the literature as relates to the clinical efficacy of these antitumor lipid drugs and how our understanding of their mode of action has evolved alongside key advances in our knowledge of membrane structure, organization, and function. First, the history of the development of this class of drugs is described, providing a summary of clinical outcomes of key members including edelfosine, miltefosine, perifosine, erufosine, and erucylphosphocholine. A detailed description of the biophysical properties of these drugs and specific drug–lipid interactions which may contribute to the selectivity of the antitumor lipids for cancer cells follows. An updated model on the mode of action of these lipid drugs as membrane disorganizing agents is presented. Membrane domain organization as opposed to targeting specific proteins on membranes is discussed. By altering membranes, these antitumor lipids inhibit many survival pathways while activating pro-apoptotic signals leading to cell demise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam RM, Mukhopadhyay NK, Kim J, Di Vizio D, Cinar B, Boucher K et al (2007) Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res 67(13):6238–6246

    Article  CAS  PubMed  Google Scholar 

  • Alam MM, Joh EH, Kim Y, Oh YI, Hong J, Kim B et al (2012) Synthesis and biological evaluation of cyclopentane-linked alkyl phosphocholines as potential anticancer agents that act by inhibiting Akt phosphorylation. Eur J Med Chem 47:485–492

    Article  CAS  PubMed  Google Scholar 

  • Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8:128–140

    Article  CAS  PubMed  Google Scholar 

  • Andreesen R, Modolell M, Weltzien HU, Eibl H, Common HH, Löhr GW, Munder PG (1978) Selective destruction of human leukemic cells by alkyl-lysophospholipids. Cancer Res 38(11 Pt 1):3894–3899

    CAS  PubMed  Google Scholar 

  • Andreesen R, Modolell M, Munder PG (1979) Selective sensitivity of chronic myelogenous leukemia cell populations to alkyl-lysophospholipids. Blood 54:519–523

    Article  CAS  PubMed  Google Scholar 

  • Arnold D, Weltzien HU, Westphal O (1967) Concerning the synthesis of lysolecithin and its ether analogs. Justus Liebigs Ann Chem 709:234–239

    Article  CAS  PubMed  Google Scholar 

  • Arnold B, Reuther R, Weltzien HU (1978) Distribution and metabolism of synthetic alkyl analogs of lysophosphatidylcholine in mice. Biochim Biophys Acta 530:47–55

    Article  CAS  PubMed  Google Scholar 

  • Arthur G, Bittman R (1998) The inhibition of cell signaling pathways by antitumor ether lipids. Biochim Biophys Acta 1390(1):85–102

    Article  CAS  PubMed  Google Scholar 

  • Ashagbley A, Samadder P, Bittman R, Erukulla RK, Byun HS, Arthur G (1996) Synthesis of ether-linked analogues of lysophosphatidate and their effect on the proliferation of human epithelial cancer cells in vitro. Anticancer Res 16(4A):1813–1818

    CAS  PubMed  Google Scholar 

  • Aznar MÁ, Lasa-Saracíbar B, Blanco-Prieto MJ (2014) Edelfosine lipid nanoparticles overcome multidrug resistance in K-562 leukemia cells by a caspase-independent mechanism. Mol Pharm 11:2650–2658

    Article  CAS  PubMed  Google Scholar 

  • Baburina I, Jackowski S (1998) Apoptosis triggered by 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of CTP:phosphocholine cytidylyltransferase. J Biol Chem 273(4):2169–2173

    Article  CAS  PubMed  Google Scholar 

  • Bailey HH, Mahoney MR, Ettinger DS, Maples WJ, Fracasso PM, Traynor AM et al (2006) Phase II study of daily oral perifosine in patients with advanced soft tissue sarcoma. Cancer 107(10):2462–2467

    Article  CAS  PubMed  Google Scholar 

  • Becher OJ, Millard NE, Modak S, Kushner BH, Haque S, Spasojevic I et al (2017) A phase I study of single-agent perifosine for recurrent or refractory pediatric CNS and solid tumors. PLoS One 12(6):e0178593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benvegnu DJ, McConnell HM (1992) Line tension between liquid domains in lipid monolayers. J Phys Chem 96:6820–6824

    Article  CAS  Google Scholar 

  • Berdel WE (1982) Antineoplastic activity of synthetic lysophospholipid analogs. Blut 44:71–78

    Article  CAS  PubMed  Google Scholar 

  • Berdel WE, Bausert WR, Fink U, Rastetter J, Munder PG (1981a) Anti-tumor action of alkyl-lysophospholipids (review). Anticancer Res 1(6):345–352

    CAS  PubMed  Google Scholar 

  • Berdel WE, Fink U, Egger B, Reichert A, Munder PG, Rastetter J (1981b) Inhibition by alkyl-lysophospholipids of tritiated thymidine uptake in cells of human malignant urologic tumors. J Natl Cancer Inst 66(5):813–817

    CAS  PubMed  Google Scholar 

  • Berdel WE, Fromm M, Fink U, Pahlke W, Bicker U, Reichert A, Rastetter J (1983a) Cytotoxicity of thioether-lysophospholipids in leukemias and tumors of human origin. Cancer Res 43(11):5538–5543

    CAS  PubMed  Google Scholar 

  • Berdel WE, Greiner E, Fink U, Stavrou D, Reichert A, Rastetter J et al (1983b) Cytotoxicity of alkyl-lysophospholipid derivatives and low-alkyl-cleavage enzyme activities in rat brain tumor cells. Cancer Res 43(2):541–545

    CAS  PubMed  Google Scholar 

  • Berdel WE, Fink U, Rastetter J (1987) Clinical phase I pilot study of the alkyl lysophospholipid derivative ET-18-OCH3 1. Lipids 22(11):967–969

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SK et al (2007) Phase 4 trial of miltefosine for the treatment of Indian visceral leish maniasis. J Infect Dis 196:591–598

    Article  CAS  PubMed  Google Scholar 

  • Boggs KP, Rock CO, Jackowski S (1995) Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP:phosphocholine cytidylyltransferase step. J Biol Chem 270(13):7757–7764

    Article  CAS  PubMed  Google Scholar 

  • Brachwitz H, Langen P, Hintsche R, Schildt J (1982) Halo lipids. V. Synthesis, nuclear magnetic resonance spectra and cytostatic properties of halo analogues of alkyllysophospholipids. Chem Phys Lipids 31:33–52

    Article  CAS  PubMed  Google Scholar 

  • Brancucci NMB, Gerdt JP, Wang C, De Niz M, Philip N, Adapa SR et al (2017) Lysophosphatidylcholine regulates sexual stage differentiation in the human malaria parasite Plasmodium falciparum. Cell 171(7):1532–1544.e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DA, London E (1998a) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998b) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    Article  CAS  PubMed  Google Scholar 

  • Busto JV, Sot J, Goni FM, Mollinedo F, Alonso A (2007) Surface-active properties of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine). Biochim Biophys Acta 1768:1855–1860

    Article  CAS  PubMed  Google Scholar 

  • Busto JV, del Canto-Jañez E, Goñi F, Mollinedo F, Alonso A (2008) Combination of the anti-tumour cell ether lipid edelfosine with sterols abolishes haemolytic side effects of the drug. J Chem Biol 1:89–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakrabandhu K, Hérincs Z, Huault S, Dost B, Peng L, Conchonaud F et al (2007) Palmitoylation is required for efficient Fas cell death signaling. EMBO J 26(1):209–220

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Brady E, McIntyre TM (2011) Human TMEM30a promotes uptake of antitumor and bioactive choline phospholipids into mammalian cells. J Immunol 186(5):3215–3225

    Article  CAS  PubMed  Google Scholar 

  • Chignard M, Le Couedic JP, Tence M, Vargaftig BB, Benveniste J (1979) The role of platelet-activating factor in platelet aggregation. Nature 279(5716):799–800

    Article  CAS  PubMed  Google Scholar 

  • Clayman RV, Gonzalez R, Elliott AY, Gleason DE, Dempsey ME (1983) Cholesterol accumulation in heterotransplanted renal cell cancer. J Urol 129(3):621–624

    Article  CAS  PubMed  Google Scholar 

  • Croft SL, Neal RA, Pendergast W, Chan JH (1987) The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol 36(16):2633–2636

    Article  CAS  PubMed  Google Scholar 

  • Crul M et al (2002) Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur J Cancer 38:1615–1621

    Article  CAS  PubMed  Google Scholar 

  • Cuesta-Marbán Á, Botet J, Czyz O, Cacharro LM, Gajate C, Hornillos V et al (2013) Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast. J Biol Chem 288(12):8405–8418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czyz O, Bitew T, Cuesta-Marbán A, McMaster CR, Mollinedo F, Zaremberg V (2013) Alteration of plasma membrane organization by an anticancer lysophosphatidylcholine analogue induces intracellular acidification and internalization of plasma membrane transporters in yeast. J Biol Chem 288(12):8419–8432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorlo TPC, Balasegaram M, Beijnen JH, de Vries PJ (2012) Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67(11):2576–2597

    Article  CAS  PubMed  Google Scholar 

  • dos Santos GA, Thome CH, Ferreira GA, Yoneda JS, Nobre TM, Daghastanli KR et al (2010) Interaction of 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate with mimetic membranes and cytotoxic effect on leukemic cells. Biochim Biophys Acta 1798:1714–1723

    Article  PubMed  CAS  Google Scholar 

  • Drings P, Günther I, Gatzemeier U, Ulbrich F, Khanavkar B, Schreml W et al (1992) Final evaluation of a phase II study on the effect of edelfosine (an ether lipid) in advanced non-small-cell bronchogenic carcinoma. Oncol Res Treat 15(5):375–382

    Article  Google Scholar 

  • Duclos RI Jr, Makriyannis A (1992) Syntheses of all four stereoisomers which are conformationally constrained 1, 4-dioxanyl analogs of the antineoplastic ether lipid ET-18-OCH3. J Org Chem 57:6156–6163

    Article  CAS  Google Scholar 

  • Dummer R, Krasovec M, Röger J, Sindermann H, Burg G (1993) Topical administration of hexadecylphosphocholine in patients with cutaneous lymphomas: results of a phase I/II study. J Am Acad Dermatol 29(6):963–970

    Article  CAS  PubMed  Google Scholar 

  • Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Bio mol Struct 32:257–283

    Article  CAS  PubMed  Google Scholar 

  • Epand RM (1990) Relationship of phospholipid hexagonal phases to biological phenomena. Biochem Cell Biol 68:17–23

    Article  CAS  PubMed  Google Scholar 

  • Erdlenbruch B, Jendrossek V, Marx M, Hunold A, Eibl H, Lakomek M (1998) Antitumor effects of erucylphosphocholine on brain tumor cells in vitro and in vivo. Anticancer Res 18(4A):2551–2557

    CAS  PubMed  Google Scholar 

  • Fiegl M, Lindner LH, Juergens M, Eibl H, Hiddemann W, Braess J (2008) Erufosine, a novel alkyl phosphocholine, in acute myeloid leukemia: single activity and combination with other antileukemic drugs. Cancer Chemother Pharmacol 62(2):321–329

    Article  CAS  PubMed  Google Scholar 

  • Figg WD, Monga M, Headlee D, Shah A, Chau CH, Peer C et al (2014) A phase I and pharmacokinetic study of oral perifosine with different loading schedules in patients with refractory neo plasms. Cancer Chemother Pharmacol 74(5):955–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folmer DE, Mok KS, de Wee SW, Duijst S, Hiralall JK, Seppen J et al (2012) Cellular localization and biochemical analysis of mammalian CDC50A, a glycosylated β-subunit for P4 ATPases. J Histochem Cytochem 60(3):205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisz JF, Lou K, Klitzing HA, Hanafin WP, Lizunov V, Wilson RL, Carpenter KJ, Kim R, Hutcheon ID, Zimmerberg J et al (2013) Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proc Natl Acad Sci U S A 110:E613–E622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara K, Modest EJ, Welander CE, Wallen CA (1989) Cytotoxic interactions of heat and an ether lipid analogue in human ovarian carcinoma cells. Cancer Res 49(22):6285–6289

    CAS  PubMed  Google Scholar 

  • Gajate C, Mollinedo F (2001) The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98(13):3860–3863

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Mollinedo F (2002) Biological activities, mechanisms of action and biomedical prospect of the antitumor ether phospholipid ET-18-OCH(3) (edelfosine), a proapoptotic agent in tumor cells. Curr Drug Metab 3(5):491–525

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109(2):711–719

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Fonteriz RI, Cabaner C, Alvarez-Noves G, Alvarez-Rodriguez Y, Modolell M, Mollinedo F (2000a) Intracellular triggering of Fas, independently of FasL, as a new mechanism of anti tumor ether lipid-induced apoptosis. Int J Cancer 85(5):674–682

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Santos-Beneit AM, Macho A, Lazaro M d C, Hernandez-De Rojas A, Modolell M et al (2000b) Involvement of mitochondria and caspase-3 in ET-18-OCH3-induced apoptosis of human leukemic cells. Int J Cancer 86(2):208–218

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, del Canto-Jañez E, Acuña AU, Amat-Guerri F, Geijo E, Santos-Beneit AM et al (2004) Intracellular triggering of fas aggregation and recruitment of apoptotic molecules into fas-enriched rafts in selective tumor cell apoptosis. J Exp Med 200(3):353–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajate C, Gonzalez-Camacho F, Mollinedo F (2009) Involvement of raft aggregates enriched in Fas/CD95 death-inducing signaling complex in the antileukemic action of edelfosine in Jurkat cells. PLoS One 4(4):e5044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Saez AJ, Chiantia S, Schwille P (2007) Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 282:33537–33544

    Article  CAS  PubMed  Google Scholar 

  • George KS, Wu S (2012) Lipid raft: a floating island of death or survival. Toxicol Appl Pharmacol 259:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghobrial IM et al (2010) Clinical and translational studies of a phase II trial of the novel oral Akt inhibitor perifosine in relapsed or relapsed/refractory Waldenstrom’s macroglobulinemia. Clin Cancer Res 16:1033–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil C, Molina E, Plana M, Carabaza A, Cabré F, Mauleón D et al (1996) Differential effect of alkyl chain-modified ether lipids on protein kinase C autophosphorylation and histone phosphorylation. Biochem Pharmacol 52(12):1843–1847

    Article  CAS  PubMed  Google Scholar 

  • Gills JJ, Dennis PA (2009) Perifosine: update on a novel Akt inhibitor. Curr Oncol Rep 11(2):102–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomide AB, Thome CH, dos Santos GA, Ferreira GA, Faca VM, Rego EM et al (2013) Disrupting membrane raft domains by alkylphospholipids. Biochim Biophys Acta 1828:1384–1389

    Article  CAS  PubMed  Google Scholar 

  • Gorter E, Grendel F (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41:439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hąc-Wydro K, Dynarowicz-Łątka P (2010a) Searching for the role of membrane sphingolipids in selectivity of antitumor ether lipid–edelfosine. Colloids Surf B: Biointerfaces 81:492–497

    Article  PubMed  CAS  Google Scholar 

  • Hąc-Wydro K, Dynarowicz-Łątka P (2010b) The relationship between the concentration of ganglioside GM1 and antitumor activity of edelfosine—the Langmuir monolayer study. Colloids Surf B: Biointerfaces 81:385–388

    Article  PubMed  CAS  Google Scholar 

  • Hąc-Wydro K, Flasiński M, Wydro P, Dynarowicz-Łątka P (2012) Towards the understanding of the behavior of single-chained ether phospholipids in model biomembranes: interactions with phosphatidylethanolamines in Langmuir monolayers. Colloids Surf B: Biointerfaces 97:162–170

    Article  PubMed  CAS  Google Scholar 

  • Hanson PK, Malone L, Birchmore JL, Nichols JW (2003) Lem3p is essential for the uptake and potency of alkylphosphocholine drugs, edelfosine and miltefosine. J Biol Chem 278(38):36041–36050

    Article  CAS  PubMed  Google Scholar 

  • Head BP, Patel HH, Insel PA (2014) Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta 1838:532–545

    Article  CAS  PubMed  Google Scholar 

  • Helfman DM, Barnes KC, Kinkade JM, Vogler WR, Shoji M, Kuo JF (1983) Phospholipid-sensitive Ca2+-dependent protein phosphorylation system in various types of leukemic cells from human patients and in human leukemic cell lines HL60 and K562, and its inhibition by alkyl-lysophospholipid. Cancer Res 43(6):2955–2961

    CAS  PubMed  Google Scholar 

  • Henke G, Lindner LH, Vogeser M, Eibl H-J, Wörner J, Müller AC et al (2009) Pharmacokinetics and biodistribution of erufosine in nude mice--implications for combination with radiotherapy. Radiat Oncol 4:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrmann DB, Neumann HA (1987) Cytotoxic activity of the thioether phospholipid analogue BM 41.440 in primary human tumor cultures. Lipids 22(11):955–957

    Article  CAS  PubMed  Google Scholar 

  • Hilgard P, Klenner T, Stekar J, Unger C (1993) Alkylphosphocholines: a new class of membrane-active anticancer agents. Cancer Chemother Pharmacol 32(2):90–95

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RD, Kligerman M, Sundt TM, Anderson ND, Shin HS (1982) Stereospecific chemoattraction of lymphoblastic cells by gradients of lysophosphatidylcholine. Proc Natl Acad Sci 79(10):3285–3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman DR, Hajdu J, Snyder F (1984) Cytotoxicity of platelet activating factor and related alkyl-phospholipid analogs in human leukemia cells, polymorphonuclear neutrophils, and skin fibroblasts. Blood 63(3):545–552

    Article  CAS  PubMed  Google Scholar 

  • Horowitz LF, Hirdes W, Suh B-C, Hilgemann DW, Mackie K, Hille B (2005) Phospholipase C in living cells. J Gen Physiol 126(3):243–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houlihan WJ, Lee ML, Munder PG, Nemecek GM, Handley DA, Winslow CM et al (1987) Antitumor activity of SRI 62-834, a cyclic ether analog of ET-18-OCH3. Lipids 22(11):884–890

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Feigenson GW (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J 76:2142–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Mason JT, Stephenson FA, Levin IW (1984) Raman and phosphorus-31 NMR spectroscopic identification of a highly ordered lamellar phase in aqueous dispersions of 1-stearoyl-2-acetyl-sn-glycero-3-phosphorylcholine. J Phys Chem 88:6454–6458

    Article  CAS  Google Scholar 

  • Huang C, Mason JT, Stephenson FA, Levin IW (1986) Polymorphic phase behavior of platelet-activating factor. Biophys J 49:587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui SW, Huang CH (1986) X-ray diffraction evidence for fully interdigitated bilayers of 1-stearoyllysophosphatidylcholine. Biochemistry 25:1330–1335

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili JN (1977) Refinement of the fluid-mosaic model of membrane structure. Biochim Biophys Acta 469:221–225

    Article  CAS  PubMed  Google Scholar 

  • Jaffrès P-A, Gajate C, Bouchet AM, Couthon-Gourvès H, Chantôme A, Potier-Cartereau M et al (2016) Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol Ther 165:114–131

    Article  PubMed  CAS  Google Scholar 

  • Jain MK, Crecely RW, Hille JDR, de Haas GH, Gruner SM (1985) Phase properties of the aqueous dispersions of n-octadecylphosphocholine. Biochim Biophys Acta 813:68–76

    Article  CAS  PubMed  Google Scholar 

  • Jendrossek V, Hammersen K, Erdlenbruch B, Kugler W, Krügener R, Eibl H, Lakomek M (2002) Structure-activity relationships of alkylphosphocholine derivatives: antineoplastic action on brain tumor cell lines in vitro. Cancer Chemother Pharmacol 50(1):71–79

    Article  CAS  PubMed  Google Scholar 

  • Jha TK et al (1999) Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N Engl J Med 341:1795–1800

    Article  CAS  PubMed  Google Scholar 

  • Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, White EP et al (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci 110(22):8882–8887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD (1982) The concept of lipid domains in membranes. J Cell Biol 94:1–6

    Article  CAS  PubMed  Google Scholar 

  • Kelley EE, Modest EJ, Burns CP (1993) Unidirectional membrane uptake of the ether lipid antineoplastic agent edelfosine by L1210 cells. Biochem Pharmacol 45(12):2435–2439

    Article  CAS  PubMed  Google Scholar 

  • Koenigsmann MP, Notter M, Knauf WU, Papadimitriou CA, Oberberg D, Reufi B et al (1996) Chemopurging of peripheral blood-derived progenitor cells by alkyl-lysophospholipid and its effect on haematopoietic rescue after high-dose therapy. Bone Marrow Transplant 18(3):549–557

    CAS  PubMed  Google Scholar 

  • Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2(11):1093–1103

    CAS  PubMed  Google Scholar 

  • Kosano H, Takatani O (1988) Reduction of epidermal growth factor binding in human breast cancer cell lines by an alkyl-lysophospholipid. Cancer Res 48(21):6033–6036

    CAS  PubMed  Google Scholar 

  • Krycer JR, Brown AJ (2013) Cholesterol accumulation in prostate cancer: a classic observation from a modern perspective. Biochim Biophys Acta 1835(2):219–229

    CAS  PubMed  Google Scholar 

  • Kuhlencord A, Maniera T, Eibl H, Unger C (1992) Hexadecylphosphocholine: oral treatment of visceral leishmaniasis in mice. Antimicrob Agents Chemother 36(8):1630–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusumi A, Fujiwara TK, Morone N, Yoshida KJ, Chadda R, Xie M et al (2012) Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin Cell Dev Biol 23(2):126–144

    Article  CAS  PubMed  Google Scholar 

  • Lasa-Saracíbar B, Aznar MÁ, Lana H, Aizpún I, Gil AG, Blanco-Prieto MJ (2014) Lipid nanoparticles protect from edelfosine toxicity in vivo. Int J Pharm 474:1–5

    Article  PubMed  CAS  Google Scholar 

  • Lauber K, Bohn E, Kröber SM, Xiao Y, Blumenthal SG, Lindemann RK et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113(6):717–730

    Article  CAS  PubMed  Google Scholar 

  • Lee AG, Birdsall NJM, Metcalfe JC, Toon PA, Warren GB (1974) Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes. Biochemistry 13:3699–3705

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Park MJ, Ye S-K, Kim C-W, Kim Y-N (2006) Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol 168(4):1107–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Arthur G (1992) Perturbations of cellular acylation processes by the synthetic alkyl-lysophospholipid 1-O-octadecyl-2-O-methylglycero-3-phosphocholine do not correlate with inhibition of proliferation of MCF7 and T84 cell lines. Cancer Res 52(10):2806–2812

    CAS  PubMed  Google Scholar 

  • Lu SM, Fairn GD (2018) Mesoscale organization of domains in the plasma membrane – beyond the lipid raft. Crit Rev Biochem Mol Biol 53(2):192–207

    Article  CAS  PubMed  Google Scholar 

  • Marsh R d W et al (2007) A phase II trial of perifosine in locally advanced, unresectable, or metastatic pancreatic adenocarcinoma. Am J Clin Oncol 30:26–31

    Article  CAS  Google Scholar 

  • Maurer N, Prenner E, Paltauf F, Glatter O (1994) Phase behavior of the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine. Biochim Biophys Acta 1192:167–176

    Article  CAS  PubMed  Google Scholar 

  • McConnell HM, De Koker R (1996) Equilibrium thermodynamics of lipid monolayer domains. Langmuir 12:4897–4904

    Article  CAS  Google Scholar 

  • Modolell M, Andreesen R, Pahlke W, Brugger U, Munder PG (1979) Disturbance of phospholipid metabolism during the selective destruction of tumor cells induced by alkyl-lysophospholipids. Cancer Res 39:4681–4686

    CAS  PubMed  Google Scholar 

  • Mollinedo F, Fernández-Luna JL, Gajate C, Martín-Martín B, Benito A, Martínez-Dalmau R, Modolell M (1997) Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-X(L). Cancer Res 57(7):1320–1328

    CAS  PubMed  Google Scholar 

  • Mollinedo F, Gajate C, Martín-Santamaría S, Gago F (2004) ET-18-OCH3 (edelfosine): a selective antitumour lipid targeting apoptosis through intracellular activation of Fas/CD95 death receptor. Curr Med Chem 11(24):3163–3184

    Article  CAS  PubMed  Google Scholar 

  • Mueller RB, Sheriff A, Gaipl US, Wesselborg S, Lauber K (2007) Attraction of phagocytes by apoptotic cells is mediated by lysophosphatidylcholine. Autoimmunity 40(4):342–344

    Article  CAS  PubMed  Google Scholar 

  • Munder PG, Modolell M (1973) Adjuvant induced formation of lysophosphatides and their role in the immune response. Int Arch Allergy Appl Immunol 45(1):133–135

    Article  CAS  PubMed  Google Scholar 

  • Munder PG, Ferber E, Modolell M, Fischer H (1969) The influence of various adjuvants on the metabolism of phospholipids in macrophages. Int Arch Allergy Appl Immunol 36(1):117–128

    Article  CAS  PubMed  Google Scholar 

  • Munder PG, Modolell M, Andreesen R, Weltzien HU, Westphal O (1979) Lysophosphatidylcholine (lysolecithin) and its synthetic analogues. Immunemodulating and other biologic effects. Springer Semin Immunopathol 2(2):187–203

    Article  CAS  Google Scholar 

  • Muñoz-Martínez F, Torres C, Castanys S, Gamarro F (2008) The anti-tumor alkylphospholipid perifosine is internalized by an ATP-dependent translocase activity across the plasma membrane of human KB carcinoma cells. Biochim Biophys Acta 1778(2):530–540

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Martínez F, Torres C, Castanys S, Gamarro F (2010) CDC50A plays a key role in the uptake of the anticancer drug perifosine in human carcinoma cells. Biochem Pharmacol 80(6):793–800

    Article  PubMed  CAS  Google Scholar 

  • Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

    Article  CAS  PubMed  Google Scholar 

  • Mushayakarara EC, Mantsch HH (1985) Thermotropic phase behavior of the platelet-activating factor: an infrared spectroscopic study. Can J Biochem Cell Biol 63:1071–1076

    Article  CAS  PubMed  Google Scholar 

  • Na H-K, Surh Y-J (2008) The antitumor ether lipid edelfosine (ET-18-O-CH3) induces apoptosis in H-ras transformed human breast epithelial cells: by blocking ERK1/2 and p38 mitogen-activated protein kinases as potential targets. Asia Pac J Clin Nutr 17(Suppl 1):204–207

    CAS  PubMed  Google Scholar 

  • Nagler A, Ben-Yehuda D, Badros A, Hari P, Hajek R, Spicka I et al (2013) Randomized placebo-controlled phase III study of perifosine combined with bortezomib and dexamethasone in relapsed, refractory multiple myeloma patients previously treated with bortezomib. Blood 122(21):3189

    Article  Google Scholar 

  • Nandi N, Vollhardt D, Brezesinski G (2004) Chiral discrimination effects in Langmuir monolayers of 1-O-hexadecyl glycerol. J Phys Chem B 108:327–335

    Article  CAS  Google Scholar 

  • Nieto-Miguel T, Gajate C, Mollinedo F (2006) Differential targets and subcellular localization of antitumor alkyl-lysophospholipid in leukemic Versus solid tumor cells. J Biol Chem 281(21):14833–14840

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44(4):655–667

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50:S323–S328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porstmann T, Griffiths B, Chung Y-L, Delpuech O, Griffiths JR, Downward J, Schulze A (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24(43):6465–6481

    Article  CAS  PubMed  Google Scholar 

  • Powis G, Seewald MJ, Gratas C, Melder D, Riebow J, Modest EJ (1992) Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Res 52(10):2835–2840

    CAS  PubMed  Google Scholar 

  • Prenner E, Honsek G, Hönig D, Möbius D, Lohner K (2007) Imaging of the domain organization in sphingomyelin and phosphatidylcholine monolayers. Chem Phys Lipids 145:106–118

    Article  CAS  PubMed  Google Scholar 

  • Prescott SM, Zimmerman GA, McIntyre TM (1990) Platelet-activating factor. J Biol Chem 265(29):17381–17384

    Article  CAS  PubMed  Google Scholar 

  • Quinn PJ (2010) A lipid matrix model of membrane raft structure. Prog Lipid Res 49:390–406

    Article  CAS  PubMed  Google Scholar 

  • Rahman M et al (2011) Phase IV trial of miltefosine in adults and children for treatment of visceral leishmaniasis (kala-azar) in Bangladesh. Am J Trop Med Hyg 85:66–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakotomanga M, Loiseau PM, Saint-Pierre-Chazalet M (2004) Hexadecylphosphocholine interaction with lipid monolayers. Biochim Biophys Acta 1661:212–218

    Article  CAS  PubMed  Google Scholar 

  • Rey Gomez-Serranillos I, Minones J, Dynarowicz-Latka P, Minones J, Iribarnegaray E (2004) Miltefosine-cholesterol interactions: a monolayer study. Langmuir 20:928–933

    Article  PubMed  CAS  Google Scholar 

  • Rietveld A, Simons K (1998) The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta 1376:467–479

    Article  CAS  PubMed  Google Scholar 

  • Ruiter GA, Zerp SF, Bartelink H, van Blitterswijk WJ, Verheij M (2003) Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anti-Cancer Drugs 14(2):167–173

    Article  CAS  PubMed  Google Scholar 

  • Salari H, Dryden P, Davenport R, Howard S, Jones K, Bittman R (1992) Inhibition of protein kinase C by ether-linked lipids is not correlated with their antineoplastic activity on WEHI-3B and R6X-B15 cells. Biochim Biophys Acta 1134(1):81–88

    Article  CAS  PubMed  Google Scholar 

  • Samadder P, Richards C, Bittman R, Bhullar RP, Arthur G (2003) The antitumor ether lipid 1-Q-octadecyl-2-O-methyl-rac-glycerophosphocholine (ET-18-OCH3) inhibits the association between Ras and Raf-1. Anticancer Res 23(3B):2291–2295

    CAS  PubMed  Google Scholar 

  • Scheidt HA, Muller P, Herrmann A, Huster D (2003) The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol. J Biol Chem 278(46):45563–45569

    Article  CAS  PubMed  Google Scholar 

  • Scholar EM (1986) Inhibition of the growth of human lung cancer cells by alkyl-lysophospholipid analogs. Cancer Lett 33(2):199–204

    Article  CAS  PubMed  Google Scholar 

  • Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci 91:12130–12134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder F, Gallegos AM, Atshaves BP, Storey SM, McIntosh AL, Petrescu AD et al (2001) Recent advances in membrane microdomains: rafts, caveolae, and intracellular cholesterol traf ficking. Exp Biol Med 226:873–890

    Article  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3(10):a004697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Smets LA, Van Rooij H, Salomons GS (1999) Signalling steps in apoptosis by ether lipids. Apoptosis 4(6):419–427

    Article  CAS  PubMed  Google Scholar 

  • Smorenburg CH, Seynaeve C, Bontenbal M, Planting AS, Sindermann H, Verweij J (2000) Phase II study of miltefosine 6% solution as topical treatment of skin metastases in breast cancer patients. Anti-Cancer Drugs 11(10):825–828

    Article  CAS  PubMed  Google Scholar 

  • Snyder F (1995) Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem J 305(Pt 3):689–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soodsma JF, Piantadosi C, Snyder F (1970) The biocleavage of alkyl glyceryl ethers in Morris hepatomas and other transplantable neoplasms. Cancer Res 30(2):309–311

    CAS  PubMed  Google Scholar 

  • Sundar S, Olliaro PL (2007) Miltefosine in the treatment of leishmaniasis: clinical evidence for informed clinical risk management. Ther Clin Risk Manag 3(5):733–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundar S et al (1999) Oral treatment of visceral leishmaniasis with miltefosine. Ann Trop Med Parasitol 93:589–597

    Article  CAS  PubMed  Google Scholar 

  • Sundar S et al (2000) Short-course of oral miltefosine for treatment of visceral leishmaniasis. Clin Infect Dis 31:1110–1113

    Article  CAS  PubMed  Google Scholar 

  • Tarnowski GS, Mountain IM, Stock CC, Munder PG, Weltzien HU, Westphal O (1978) Effect of lysolecithin and analogs on mouse ascites tumors. Cancer Res 38(2):339–344

    CAS  PubMed  Google Scholar 

  • Terwogt JMM, Mandjes IAM, Sindermann H, Beijnen JH, ten Bokkel Huinink WW (1999) Phase II trial of topically applied miltefosine solution in patients with skin-metastasized breast cancer. Br J Cancer 79(7–8):1158–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thome CH, dos Santos GA, Ferreira GA, Scheucher PS, Izumi C, Leopoldino AM et al (2012) Linker for activation of T-cell family member2 (LAT2) a lipid raft adaptor protein for AKT signaling, is an early mediator of alkylphospholipid anti-leukemic activity. Mol Cell Proteomics 11:1898–1912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson TE, Tillack TW (1985) Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem 14:361–386

    Article  CAS  PubMed  Google Scholar 

  • Tidwell T, Guzman G, Vogler WR (1981) The effects of alkyl-lysophospholipids on leukemic cell lines. I. Differential action on two human leukemic cell lines, HL60 and K562. Blood 57(4):794–797

    Article  CAS  PubMed  Google Scholar 

  • Torrecillas A, Aroca-Aguilar JD, Aranda FJ, Gajate C, Mollinedo F, Corbalán-García S et al (2006) Effects of the anti-neoplastic agent ET-18-OCH3 and some analogs on the biophysical properties of model membranes. Int J Pharm 318:28–40

    Article  CAS  PubMed  Google Scholar 

  • Uberall F, Oberhuber H, Maly K, Zaknun J, Demuth L, Grunicke HH (1991) Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res 51(3):807–812

    CAS  PubMed  Google Scholar 

  • Unger C, Eibl H, Kim DJ, Fleer EA, Kötting J, Bartsch HH et al (1987) Sensitivity of leukemia cell lines to cytotoxic alkyl-lysophospholipids in relation to O-alkyl cleavage enzyme activities. J Natl Cancer Inst 78(2):219–222

    CAS  PubMed  Google Scholar 

  • Unger C, Peukert M, Sindermann H, Hilgard P, Nagel G, Eibl H (1990) Hexadecylphosphocholine in the topical treatment of skin metastases in breast cancer patients. Cancer Treat Rev 17(2–3):243–246

    Article  CAS  PubMed  Google Scholar 

  • Valentino L, Moss T, Olson E, Wang H-J, Elashoff R, Ladisch S (1990) Shed tumor gangliosides and progression of human neuroblastoma. Blood 75:1564–1567

    Article  CAS  PubMed  Google Scholar 

  • van Blitterswijk WJ, Verheij M (2008) Anticancer alkylphospholipids: mechanisms of action, cellular sensitivity and resistance, and clinical prospects. Curr Pharm Des 14:2061–2074

    Article  PubMed  Google Scholar 

  • van der Luit AH, Budde M, Ruurs P, Verheij M, van Blitterswijk WJ (2002) Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem 277(42):39541–39547

    Article  PubMed  CAS  Google Scholar 

  • Van Der Luit AH, Budde M, Verheij M, Van Blitterswijk WJ (2003) Different modes of internalization of apoptotic alkyl-lysophospholipid and cell-rescuing lysophosphatidylcholine. Biochem J 374(Pt 3):747–753

    Article  Google Scholar 

  • van der Luit AH, Vink SR, Klarenbeek JB, Perrissoud D, Solary E, Verheij M, van Blitterswijk WJ (2007) A new class of anticancer alkylphospholipids uses lipid rafts as membrane gateways to induce apoptosis in lymphoma cells. Mol Cancer Ther 6(8):2337–2345

    Article  PubMed  Google Scholar 

  • Verweij J, Planting A, van der Burg M, Stoter G (1992) A dose-finding study of miltefosine (hexadecylphosphocholine) in patients with metastatic solid tumours. J Cancer Res Clin Oncol 118(8):606–608

    Article  CAS  PubMed  Google Scholar 

  • Vink SR, van Blitterswijk WJ, Schellens JHM, Verheij M (2007a) Rationale and clinical application of alkylphospholipid analogues in combination with radiotherapy. Cancer Treat Rev 33(2):191–202

    Article  CAS  PubMed  Google Scholar 

  • Vink SR, van der Luit AH, Klarenbeek JB, Verheij M, van Blitterswijk WJ (2007b) Lipid rafts and metabolic energy differentially determine uptake of anti-cancer alkylphospholipids in lymphoma versus carcinoma cells. Biochem Pharmacol 74(10):1456–1465

    Article  CAS  PubMed  Google Scholar 

  • Vogler WR, Berdel WE (1993) Autologous bone marrow transplantation with alkyl-lysophospholipid-purged marrow. J Hematother 2(1):93–102

    Article  CAS  PubMed  Google Scholar 

  • Vogler WR, Olson AC, Okamoto S, Somberg LB, Glasser L (1987) Experimental studies on the role of alkyl lysophospholipids in autologous bone marrow transplantation. Lipids 22(11):919–924

    Article  CAS  PubMed  Google Scholar 

  • Vogler W, Berdel W, Olson A, Winton E, Heffner L, Gordon D (1992) Autologous bone marrow transplantation in acute leukemia with marrow purged with alkyl-lysophospholipid. Blood 80(6):1423

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sweitzer TD, Weinhold PA, Kent C (1993) Nuclear localization of soluble CTP:phosphocholine cytidylyltransferase. J Biol Chem 268(8):5899–5904

    Article  CAS  PubMed  Google Scholar 

  • Watkins JD, Kent C (1991) Regulation of CTP:phosphocholine cytidylyltransferase activity and subcellular location by phosphorylation in Chinese hamster ovary cells. The effect of phospholipase C treatment. J Biol Chem 266(31):21113–21117

    Article  CAS  PubMed  Google Scholar 

  • Wong R, Fabian L, Forer A, Brill JA (2007) Phospholipase C and myosin light chain kinase inhibition define a common step in actin regulation during cytokinesis. BMC Cell Biol 8(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright MM, Howe AG, Zaremberg V (2004) Cell membranes and apoptosis: role of cardiolipin, phosphatidylcholine, and anticancer lipid analogues. Biochem Cell Biol 82:18–26

    Article  CAS  PubMed  Google Scholar 

  • Wu WG, Huang CH, Conley TG, Martin RB, Levin IW (1982) Lamellar-micellar transition of 1-stearoyllysophosphatidylcholine assemblies in excess water. Biochemistry 21:5957–5961

    Article  CAS  PubMed  Google Scholar 

  • Wunderlich F, Ronai A, Speth V, Seelig J, Blume A (1975) Thermotropic lipid clustering in tetra hymena membranes. Biochemistry 14:3730–3735

    Article  CAS  PubMed  Google Scholar 

  • Wunderlich F, Kreutz W, Mahler P, Ronai A, Heppeler G (1978) Thermotropic fluid→ordered “discontinuous” phase separation in microsomal lipids of tetrahymena. An X-ray diffraction study. Biochemistry 17:2005–2010

    Article  CAS  PubMed  Google Scholar 

  • Zaremberg V, Gajate C, Cacharro LM, Mollinedo F, McMaster CR (2005) Cytotoxicity of an anti-cancer lysophospholipid through selective modification of lipid raft composition. J Biol Chem 280(45):38047–38058

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Lu X, Richard C, Xiong W, Litchfield DW, Bittman R, Arthur G (1996) 1-O-octadecyl-2-O-methyl-glycerophosphocholine inhibits the transduction of growth signals via the MAPK cascade in cultured MCF-7 cells. J Clin Investig 98(4):937–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR (2005) Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Investig 115(4):959–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoeller RA, Layne MD, Modest EJ (1995) Animal cell mutants unable to take up biologically active glycerophospholipids. J Lipid Res 36(9):1866–1875

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanina Zaremberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaremberg, V., Ganesan, S., Mahadeo, M. (2019). Lipids and Membrane Microdomains: The Glycerolipid and Alkylphosphocholine Class of Cancer Chemotherapeutic Drugs. In: Gomez-Cambronero, J., Frohman, M. (eds) Lipid Signaling in Human Diseases. Handbook of Experimental Pharmacology, vol 259. Springer, Cham. https://doi.org/10.1007/164_2019_222

Download citation

Publish with us

Policies and ethics