Skip to main content

The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonists as New Psychoactive Substances: Origins

  • Chapter
  • First Online:
New Psychoactive Substances

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 252))

Abstract

Synthetic cannabinoid receptor agonists (SCRAs) have proliferated as new psychoactive substances (NPS) over the past decade. Relative to other classes of NPS, SCRAs are structurally heterogeneous; however, most SCRAs act as potent, high-efficacy agonists of cannabinoid type 1 and type 2 receptors (CB1 and CB2, respectively). Characterization of the pharmacology and toxicology of these substances is hindered by the dynamic nature of the SCRA marketplace. Beyond basic pharmacological profiling at CB1 and CB2 receptors, very little is known about the acute or chronic effects of SCRAs. Many of the effects of SCRAs are qualitatively similar to those of the Δ9-tetrahydrocannabinol (Δ9-THC) found in cannabis. However, unlike Δ9-THC, SCRAs are frequently associated with serious adverse effects, including cardiotoxicity, nephrotoxicity, and death. This chapter will provide an overview of the structure and function of the primary target for SCRAs, the CB1 receptor, and survey the structure-activity relationships of the historical SCRAs that served as templates for the earliest generations of NPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5F-AB-001:

(Adamantan-1-yl)[1-(5-fluoropentyl)-1H-indol-3-yl]methanone

A-796,260:

[1-(2-Morpholin-4-ylethyl)-1H-indol-3-yl]-(2,2,3,3-tetramethylcyclopropyl)methanone

AB-001:

(Adamantan-1-yl)(1-pentyl-1H-indol-3-yl)methanone

AB-005:

{1-[(1-Methylpiperidin-2-yl)methyl]-1H-indol-3-yl}(2,2,3,3-tetramethylcyclopropyl)methanone

AB-FUBINACA:

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide

2-AG:

2-Arachidonoylglycerol

AEA:

Arachidonylethanolamide

AM-679:

(2-Iodophenyl)(1-pentyl-1H-indol-3-yl)methanone

AM-1241:

(2-Iodo-5-nitrophenyl){1-[(1-methylpiperidin-2-yl)methyl]-1H-indol-3-yl}methanone

AM-1248:

[1-(1-Methylpiperidin-2-yl)-1H-indol-3-yl](adamant-1-yl)methanone

AM-2201:

[1-(5-Fluoropentyl)-1H-indol-3-yl](naphthalen-1-yl)methanone

AM-2232:

[1-(4-Cyanobutyl)-1H-indol-3-yl](naphthalen-1-yl)methanone

AM-2233:

(2-Iodophenyl){1-[(1-methyl-2-piperidinyl)methyl]-1H-indol-3-yl}methanone

BB-22:

8-Quinolinyl-1-(cyclohexylmethyl)-1H-indole-3-carboxylate

CBD:

Cannabidiol

CBN:

Cannabinol

CBND:

Cannabinodiol

CCH:

Cannabicyclohexanol

CP 47,497:

2-[(1R,3S)-3-Hydroxycyclohexyl]-5-(2-methyloctan-2-yl)phenol

CP 47,497-C8:

2-[(1R,3S)-3-Hydroxycyclohexyl]-5-(2-methylnonan-2-yl)phenol

CP 55,940:

2-[(1R,2R,5R)-5-Hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol

CPE:

Cannabipiperidiethanone

DMHP:

Dimethylheptylpyran

EAM-2201:

(4-Ethylnaphthalen-1-yl)[1-(5-fluoropentyl)indol-3-yl]methanone

HHC:

9-nor-9β-Hydroxyhexahydrocannabinol

HU-210:

(6aR,10aR)-9-(Hydroxymethyl)-6,6-dimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydrobenzo[c]chromen-1-ol

JWH-018:

Naphthalen-1-yl(1-pentyl-1H-indol-3-yl)methanone

JWH-019:

(1-Hexyl-1H-indol-3-yl)(naphthalen-1-yl)methanone

JWH-020:

(1-Heptyl-1H-indol-3-yl)(naphthalen-1-yl)methanone

JWH-030:

(1-Hexylpyrrol-3-yl)-naphthalen-1-ylmethanone

JWH-073:

(1-Butyl-1H-indol-3-yl)(naphthalen-1-yl)methanone

JWH-081:

(4-Methoxynaphthalen-1-yl)(1-pentyl-1H-indol-3-yl)methanone

JWH-122:

(4-Methylnaphthalen-1-yl)(1-pentyl-1H-indol-3-yl)methanone

JWH-145:

Naphthalen-1-yl(1-pentyl-5-phenyl-1H-pyrrol-3-yl)methanone

JWH-147:

(1-Hexyl-5-phenyl-1H-pyrrol-3-yl)-naphthalen-1-ylmethanone

JWH-182:

(1-Pentyl-1H-indol-3-yl)(4-propylnaphthalen-1-yl)methanone

JWH-203:

2-(2-Chlorophenyl)-1-(2-methyl-1-pentyl-1H-indol-3-yl)ethanone

JWH-210:

(4-Ethyl-1-naphthalenyl)(1-pentyl-1H-indol-3-yl)-methanone

JWH-250:

2-(2-Methoxyphenyl)-1-(1-pentyl-1H-indol-3-yl)ethanone

JWH-251:

2-(3-Methylphenyl)-1-(1-pentyl-1H-indol-3-yl)ethanone

JWH-307:

[5-(2-Fluorophenyl)-1-pentyl-1H-pyrrol-3-yl](naphthalene-1-yl)methanone

JWH-398:

(4-Chloronaphthalen-1-yl)(1-pentyl-1H-indole-3-yl)methanone

JWH-412:

(4-Fluoronaphthalen-1-yl)(1-pentyl-1H-indol-3-yl)methanone

MAM-2201:

[1-(5-Fluoropentyl)-1H-indol-3-yl](4-methylnaphthalen-1-yl)methanone

RCS-2:

(2-Methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone

RCS-4:

(4-Methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone

RCS-8:

1-[1-(2-Cyclohexylethyl)-1H-indol-3-yl]-2-(2-methoxyphenyl)ethanone

Δ8-THC:

(−)-trans8-Tetrahydrocannabinol

Δ9-THC:

(−)-trans9-Tetrahydrocannabinol

UR-144:

(1-Pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone

WIN 55,212-2:

(R)-(+)-[2,3-Dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone

XLR-11:

[1-(5-Fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone

XLR-12:

(2,2,3,3-Tetramethylcyclopropyl)[1-(4,4,4-trifluorobutyl)-1H-indol-3-yl]methanone

References

  • Adams R, Baker BR, Wearn RB (1940a) Structure of cannabinol. III. Synthesis of cannabinol, 1-hydroxy-3-n-amyl-6,6,9-trimethyl-6-dibenzopyran1. J Am Chem Soc 62:2204–2207

    Article  CAS  Google Scholar 

  • Adams R, Loewe S, Pease DC, Cain CK, Wearn RB, Baker RB, Wolff H (1940b) Structure of cannabidiol. VIII. Position of the double bonds in cannabidiol. Marihuana activity of tetrahydrocannabinols. J Am Chem Soc 62:2566–2567

    Article  Google Scholar 

  • Adams R, Mackenzie S, Loewe S (1948) Tetrahydrocannabinol homologs with doubly branched alkyl groups in the 3-position. XVIII1. J Am Chem Soc 70:664–668

    Article  CAS  PubMed  Google Scholar 

  • Adams R, Harfenis M, Loewe S (1949) New analogs of tetrahydrocannabinol. XIX. J Am Chem Soc 71:1624–1628

    Article  CAS  Google Scholar 

  • Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K (2016) Medicinal chemistry, pharmacology, and potential therapeutic benefits of cannabinoid CB2 receptor agonists. Chem Rev 116:519–560

    Article  CAS  PubMed  Google Scholar 

  • Angerer V, Moosmann B, Franz F, Auwärter V (2015) 5F-cumyl-PINACA in ‘e-liquids’ for electronic cigarettes – a new type of synthetic cannabinoid in a trendy product. In: 53rd Annual meeting of the International Association of Forensic Toxicologists (TIAFT), Firenze, Italy

    Google Scholar 

  • Aung MM, Griffin G, Huffman JW, Wu MJ, Keel C, Yang B, Showalter VM, Abood ME, Martin BR (2000) Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB1 and CB2 receptor binding. Drug Alcohol Depend 60:133–140

    Article  CAS  PubMed  Google Scholar 

  • Auwärter V, Dresen S, Weinmann W, Muller M, Putz M, Ferreiros N (2009) ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 44:832–837

    Article  PubMed  CAS  Google Scholar 

  • Banister SD, Wilkinson SM, Longworth M, Stuart J, Apetz N, English K, Brooker L, Goebel C, Hibbs DE, Glass M, Connor M, Mcgregor IS, Kassiou M (2013) The synthesis and pharmacological evaluation of adamantane-derived indoles: cannabimimetic drugs of abuse. ACS Chem Neurosci 4:1081–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banister SD, Stuart J, Conroy T, Longworth M, Manohar M, Beinat C, Wilkinson SM, Kevin RC, Hibbs DE, Glass M, Connor M, Mcgregor IS, Kassiou M (2015a) Structure–activity relationships of synthetic cannabinoid designer drug RCS-4 and its regioisomers and C4 homologues. Forensic Toxicol 33:355–366

    Article  CAS  Google Scholar 

  • Banister SD, Stuart J, Kevin RC, Edington A, Longworth M, Wilkinson SM, Beinat C, Buchanan AS, Hibbs DE, Glass M, Connor M, Mcgregor IS, Kassiou M (2015b) Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem Neurosci 6:1445–1458

    Article  CAS  PubMed  Google Scholar 

  • Bell, MR (1986) 3-Arylcarbonyl- and 3-cycloalkylcarbonyl-1-aminoalkyl-1H-indoles, compositions and use. US Patent 4,581,354

    Google Scholar 

  • Bell MR, D’ambra TE, Kumar V, Eissenstat MA, Herrmann JL Jr, Wetzel JR, Rosi D, Philion RE, Daum SJ, Hlasta DJ, Kullnig RK, Ackerman JH, Haubrich DR, Luttinger DA, Baizman ER, Miller MS, Ward SJ (1991) Antinociceptive (aminoalkyl)indoles. J Med Chem 34:1099–1110

    Article  CAS  PubMed  Google Scholar 

  • Bloom AS, Dewey WL, Harris LS, Brosius KK (1977) 9-Nor-9beta-hydroxyhexahydrocannabinol, a cannabinoid with potent antinociceptive activity: comparisons with morphine. J Pharmacol Exp Ther 200:263–270

    CAS  PubMed  Google Scholar 

  • Busquets GA, Soria-Gomez E, Bellocchio L, Marsicano G (2016) Cannabinoid receptor type-1: breaking the dogmas [version 1; referees: 3 approved]. F1000Research 5:990

    Article  CAS  Google Scholar 

  • Chung H, Choi H, Heo S, Kim E, Lee J (2014) Synthetic cannabinoids abused in South Korea: drug identifications by the National Forensic Service from 2009 to June 2013. Forensic Toxicol 32:82–88

    Article  CAS  Google Scholar 

  • Compton DR, Gold LH, Ward SJ, Balster RL, Martin BR (1992a) Aminoalkylindole analogs: cannabimimetic activity of a class of compounds structurally distinct from delta 9-tetrahydrocannabinol. J Pharmacol Exp Ther 263:1118–1126

    CAS  PubMed  Google Scholar 

  • Compton DR, Johnson MR, Melvin LS, Martin BR (1992b) Pharmacological profile of a series of bicyclic cannabinoid analogs: classification as cannabimimetic agents. J Pharmacol Exp Ther 260:201–209

    CAS  PubMed  Google Scholar 

  • Compton DR, Rice KC, De Costa BR, Razdan RK, Melvin LS, Johnson MR, Martin BR (1993) Cannabinoid structure-activity relationships: correlation of receptor binding and in vivo activities. J Pharmacol Exp Ther 265: 218–226

    CAS  PubMed  Google Scholar 

  • Couch RF, Madhavaram H (2012) Phenazepam and cannabinomimetics sold as herbal highs in New Zealand. Drug Test Anal 4:409–414

    Article  CAS  PubMed  Google Scholar 

  • D’ambra TE, Bacon ER, Bell MR, Carabateas PM, Eissenstat MA, Kumar V, Mallamo JP, Ward SJ (1991) 3-Arylcarbonyl-1-(c-attached-n-heteryl)-1h-indoles. US Patent 5,068,234

    Google Scholar 

  • D’ambra TE, Eissenstat MA, Abt J, Ackerman JH, Bacon ER, Bell MR, Carabateas PM, Josef KA, Kumar V, Weaver JD, Arnold R, Casiano FM, Chippari SM, Haycock DA, Kuster JE, Luttinger DA, Stevenson JI, Ward SJ, Hill WA, Khanolkar A, Makriyannis A (1996) C-attached aminoalkylindoles: potent cannabinoid mimetics. Bioorg Med Chem Lett 6:17–22

    Article  Google Scholar 

  • Deng H (2000) Design and synthesis of selective cannabinoid receptor ligands: aminoalkylindole and other heterocyclic analogs. PhD dissertation, University of Connecticut

    Google Scholar 

  • Deng H, Gifford AN, Zvonok AM, Cui G, Li X, Fan P, Deschamps JR, Flippen-Anderson JL, Gatley SJ, Makriyannis A (2005) Potent cannabinergic indole analogues as radioiodinatable brain imaging agents for the CB1 cannabinoid receptor. J Med Chem 48:6386–6392

    Article  CAS  PubMed  Google Scholar 

  • Denooz R, Vanheugen JC, Frederich M, De Tullio P, Charlier C (2013) Identification and structural elucidation of four cannabimimetic compounds (RCS-4, AM-2201, JWH-203 and JWH-210) in seized products. J Anal Toxicol 37:56–63

    Article  CAS  PubMed  Google Scholar 

  • Devane W, Hanus L, Breuer A, Pertwee R, Stevenson L, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  CAS  PubMed  Google Scholar 

  • Di Marzo V (2008) Endocannabinoids: synthesis and degradation. Rev Physiol Biochem Pharmacol 160:1–24

    PubMed  Google Scholar 

  • Di Marzo V, De Petrocellis L (2012) Why do cannabinoid receptors have more than one endogenous ligand? Philos Trans R Soc Lond Ser B Biol Sci 367:3216–3228

    Article  CAS  Google Scholar 

  • Dresen S, Ferreiros N, Putz M, Westphal F, Zimmermann R, Auwarter V (2010) Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds. J Mass Spectrom 45:1186–1194

    Article  CAS  PubMed  Google Scholar 

  • Eissenstat MA, Bell MR, D’ambra TE, Alexander EJ, Daum SJ, Ackerman JH, Gruett MD, Kumar V, Estep KG (1995) Aminoalkylindoles: structure-activity relationships of novel cannabinoid mimetics. J Med Chem 38:3094–3105

    Article  CAS  PubMed  Google Scholar 

  • Elsohly MA, Radwan MM, Gul W, Chandra S, Galal A (2017) Phytochemistry of Cannabis sativa L. In: King AD, Falk H, Gibbons S, Kobayashi JI (eds) Phytocannabinoids: unraveling the complex chemistry and pharmacology of Cannabis sativa. Springer, Cham

    Google Scholar 

  • EMCDDA (2017) Synthetic cannabinoids in Europe. Perspectives on Drugs. Lisbon, Portugal. https://doi.org/10.2810/32306. http://www.emcdda.europa.eu/topics/pods/synthetic-cannabinoids_en. Accessed 19 Nov 2017

  • Frost JM, Dart MJ, Tietje KR, Garrison TR, Grayson GK, Daza AV, El-Kouhen OF, Miller LN, Li L, Yao BB, Hsieh GC, Pai M, Zhu CZ, Chandran P, Meyer MD (2008) Indol-3-yl-tetramethylcyclopropyl ketones: effects of indole ring substitution on CB2 cannabinoid receptor activity. J Med Chem 51:1904–1912

    Article  CAS  PubMed  Google Scholar 

  • Frost JM, Dart MJ, Tietje KR, Garrison TR, Grayson GK, Daza AV, El-Kouhen OF, Yao BB, Hsieh GC, Pai M, Zhu CZ, Chandran P, Meyer MD (2010) Indol-3-ylcycloalkyl ketones: effects of N1 substituted indole side chain variations on CB(2) cannabinoid receptor activity. J Med Chem 53:295–315

    Article  CAS  PubMed  Google Scholar 

  • Galiègue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    Article  PubMed  Google Scholar 

  • Gamage TF, Farquhar CE, Lefever TW, Marusich JA, Kevin RC, McGregor IS, Wiley JL, Thomas BF (2018) Molecular and behavioral pharmacological characterization of abused synthetic cannabinoids MMB- and MDMB-FUBINACA, MN-18, NNEI, CUMYL-PICA, and 5-Fluoro-CUMYL-PICA. J Pharmacol Exp Ther 365:437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    Article  CAS  Google Scholar 

  • Gérard CM, Mollereau C, Vassart G, Parmentier M (1991) Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J 279:129–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Gertsch J, Pertwee RG, Di Marzo V (2010) Phytocannabinoids beyond the cannabis plant – do they exist? Br J Pharmacol 160:523–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015) Applications of fluorine in medicinal chemistry. J Med Chem 58:8315–8359

    Article  CAS  PubMed  Google Scholar 

  • Glass M, Northup JK (1999) Agonist selective regulation of G proteins by cannabinoid CB1 and CB2 receptors. Mol Pharmacol 56:1362–1369

    Article  CAS  PubMed  Google Scholar 

  • Griffin G, Atkinson PJ, Showalter VM, Martin BR, Abood ME (1998) Evaluation of cannabinoid receptor agonists and antagonists using the guanosine-5′-O-(3-[35S]thio)-triphosphate binding assay in rat cerebellar membranes. J Pharmacol Exp Ther 285:553–560

    CAS  PubMed  Google Scholar 

  • Harbert CA, Johnson MR, Melvin LS (1981) 3-[2-Hydroxy-4-(substituted)phenyl]-cycloalkanol analgesic agents. US Patent 4,306,097

    Google Scholar 

  • Haubrich DR, Ward SJ, Baizman E, Bell MR, Bradford J, Ferrari R, Miller M, Perrone M, Pierson AK, Saelens JK (1990) Pharmacology of pravadoline: a new analgesic agent. J Pharmacol Exp Ther 255:511–522

    CAS  PubMed  Google Scholar 

  • Herkenham M, Lynn A, Johnson M, Melvin L, De Costa B, Rice K (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermanns-Clausen M, Kneisel S, Szabo B, Auwärter V (2013) Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 108:534–544

    Article  PubMed  Google Scholar 

  • Hess C, Schoeder CT, Pillaiyar T, Madea B, Muller CE (2016) Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicol 34:329–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    Article  CAS  PubMed  Google Scholar 

  • Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y, Zhao S, Shui W, Li S, Korde A, Laprairie RB, Stahl EL, Ho JH, Zvonok N, Zhou H, Kufareva I, Wu B, Zhao Q, Hanson MA, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ (2016) Crystal structure of the human cannabinoid receptor CB1. Cell 167:750–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho JH, Han GW, Ding K, Li X, Liu H, Hanson MA, Zhao S, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ (2017) Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547:468–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffman JW, Padgett LW (2005) Recent developments in the medicinal chemistry of cannabimimetic indoles, pyrroles and indenes. Curr Med Chem 12:1395–1411

    Article  CAS  PubMed  Google Scholar 

  • Huffman JW, Dai D, Martin BR, Compton DR (1994) Design, synthesis and pharmacology of cannabimimetic indoles. Bioorg Med Chem Lett 4:563–566

    Article  Google Scholar 

  • Huffman JW, Duncan SG, Wiley JL, Martin BR (1997a) Synthesis and pharmacology of the 1′,2′-dimethylheptyl-Δ8-THC isomers: exceptionally potent cannabinoids. Bioorg Med Chem Lett 7:2799–2804

    Article  CAS  Google Scholar 

  • Huffman JW, Lainton JH, Kenneth Banner W, Duncan SG, Jordan RD, Yu S, Dai D, Martin BR, Wiley JL, Compton DR (1997b) Side chain methyl analogues of Δ8-THC. Tetrahedron 53:1557–1576

    Article  CAS  Google Scholar 

  • Huffman JW, Mabon R, Wu M-J, Lu J, Hart R, Hurst DP, Reggio PH, Wiley JL, Martin BR (2003a) 3-Indolyl-1-naphthylmethanes: new cannabimimetic indoles provide evidence for aromatic stacking interactions with the CB1 cannabinoid receptor. Bioorg Med Chem 11:539–549

    Article  CAS  PubMed  Google Scholar 

  • Huffman JW, Miller JRA, Liddle J, Yu S, Thomas BF, Wiley JL, Martin BR (2003b) Structure–activity relationships for 1′,1′-dimethylalkyl-Δ8-tetrahydrocannabinols. Bioorg Med Chem 11:1397–1410

    Article  CAS  PubMed  Google Scholar 

  • Huffman JW, Szklennik PV, Almond A, Bushell K, Selley DE, He H, Cassidy MP, Wiley JL, Martin BR (2005a) 1-Pentyl-3-phenylacetylindoles, a new class of cannabimimetic indoles. Bioorg Med Chem Lett 15:4110–4113

    Article  CAS  PubMed  Google Scholar 

  • Huffman JW, Zengin G, Wu M-J, Lu J, Hynd G, Bushell K, Thompson ALS, Bushell S, Tartal C, Hurst DP, Reggio PH, Selley DE, Cassidy MP, Wiley JL, Martin BR (2005b) Structure–activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB1 and CB2 receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB2 receptor agonists. Bioorg Med Chem 13:89–112

    Article  CAS  PubMed  Google Scholar 

  • Huffman JW, Padgett LW, Isherwood ML, Wiley JL, Martin BR (2006) 1-Alkyl-2-aryl-4-(1-naphthoyl)pyrroles: new high affinity ligands for the cannabinoid CB1 and CB2 receptors. Bioorg Med Chem Lett 16:5432–5435

    Article  CAS  PubMed  Google Scholar 

  • Ibsen MS, Connor M, Glass M (2017) Cannabinoid CB1 and CB2 receptor signaling and bias. Cannabis Cannabinoid Res 2:48–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jankovics P, Váradi A, Tölgyesi L, Lohner S, Németh-Palotás J, Balla J (2012) Detection and identification of the new potential synthetic cannabinoids 1-pentyl-3-(2-iodobenzoyl)indole and 1-pentyl-3-(1-adamantoyl)indole in seized bulk powders in Hungary. Forensic Sci Int 214:27–32

    Article  CAS  PubMed  Google Scholar 

  • Järbe TU, Hiltunen AJ, Mechoulam R (1989) Stereospecificity of the discriminative stimulus functions of the dimethylheptyl homologs of 11-hydroxy-delta 8-tetrahydrocannabinol in rats and pigeons. J Pharmacol Exp Ther 250:1000–1005

    PubMed  Google Scholar 

  • Johnson MR, Melvin LS (1983) 2-Hydroxy-4-(substituted) phenyl cycloalkanes and derivatives. US Patent 4,371,720

    Google Scholar 

  • Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of synthetic cannabinoids and cathinone derivatives in Japan until early 2012. Forensic Toxicol 31:44–53

    Article  Google Scholar 

  • Kikura-Hanajiri R, Kawamura NU, Goda Y (2014) Changes in the prevalence of new psychoactive substances before and after the introduction of the generic scheduling of synthetic cannabinoids in Japan. Drug Test Anal 6:832–839

    Article  CAS  PubMed  Google Scholar 

  • King LA (2014) Legal controls on cannabimimetics: an international dilemma? Drug Test Anal 6:80–87

    Article  CAS  PubMed  Google Scholar 

  • Lainton JH, Huffman JW, Martin BR, Compton DR (1995) 1-Alkyl-3-(1-naphthoyl)pyrroles: a new class of cannabinoid. Tetrahedron Lett 36:1401–1404

    Article  CAS  Google Scholar 

  • Langer N, Lindigkeit R, Schiebel HM, Ernst L, Beuerle T (2014) Identification and quantification of synthetic cannabinoids in ‘spice-like’ herbal mixtures: a snapshot of the German situation in the autumn of 2012. Drug Test Anal 6:59–71

    Article  CAS  PubMed  Google Scholar 

  • Langer N, Lindigkeit R, Schiebel H-M, Papke U, Ernst L, Beuerle T (2016a) Identification and quantification of synthetic cannabinoids in “spice-like” herbal mixtures: update of the German situation for the spring of 2015. Forensic Toxicol 34:94–107

    Article  CAS  Google Scholar 

  • Langer N, Lindigkeit R, Schiebel HM, Papke U, Ernst L, Beuerle T (2016b) Identification and quantification of synthetic cannabinoids in “spice-like” herbal mixtures: update of the German situation for the spring of 2016. Forensic Sci Int 269:31–41

    Article  CAS  PubMed  Google Scholar 

  • Laprairie RB, Bagher AM, Kelly MEM, Dupré DJ, Denovan-Wright EM (2014) Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons. J Biol Chem 289:24845–24862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauckner JE, Hille B, Mackie K (2005) The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci U S A 102:19144–19149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leggett JD, Aspley S, Beckett SRG, D’antona AM, Kendall DA, Kendall DA (2004) Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors. Br J Pharmacol 141:253–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemberger L, Crabtree RE, Rowe HM (1972) 11-Hydroxy-Δ9-tetrahydrocannabinol: pharmacology, disposition, and metabolism of a major metabolite of marihuana in man. Science 177:62–64

    Article  CAS  PubMed  Google Scholar 

  • Lichtman AH, Martin BR (2005) Cannabinoid tolerance and dependence. In: Pertwee RG (ed) Cannabinoids. Springer, Berlin, Heidelberg

    Google Scholar 

  • Little PJ, Compton DR, Mechoulam R, Martin BR (1989) Stereochemical effects of 11-OH-Δ8-THC-dimethylheptyl in mice and dogs. Pharmacol Biochem Behav 32:661–666

    Article  CAS  PubMed  Google Scholar 

  • Logan BK, Reinhold LE, Xu A, Diamond FX (2012) Identification of synthetic cannabinoids in herbal incense blends in the United States. J Forensic Sci 57:1168–1180

    Article  CAS  PubMed  Google Scholar 

  • Lovinger DM (2008) Presynaptic modulation by endocannabinoids. Handb Exp Pharmacol 184:435–477

    Article  CAS  Google Scholar 

  • Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. In: Pertwee RG (ed) Cannabinoids. Springer, Berlin, Heidelberg

    Google Scholar 

  • Mackie K (2008) Cannabinoid receptors: where they are and what they do. J Neuroendocrinol 20:10–14

    Article  CAS  PubMed  Google Scholar 

  • Makriyannis A, Deng H (2001) Preparation of cannabimimetic indole derivatives with cannabinoid CB1 or CB2 receptor binding affinity. World Patent 2,001,028,557

    Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Gaoni Y (1965) A total synthesis of dl-Δ1-tetrahydrocannabinol, the active constituent of hashish1. J Am Chem Soc 87:3273–3275

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Hanus L (2000) A historical overview of chemical research on cannabinoids. Chem Phys Lipids 108:1–13

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Shvo Y (1963) Hashish. I. The structure of cannabidiol. Tetrahedron 19:2073–2078

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Feigenbaum JJ, Lander N, Segal M, Järbe TUC, Hiltunen AJ, Consroe P (1988) Enantiomeric cannabinoids: stereospecificity of psychotropic activity. Experientia 44:762–764

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Reggio PH (2017) An update on non-CB1, non-CB2 cannabinoid related G-protein-coupled receptors. Cannabis Cannabinoid Res 2:265–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  CAS  PubMed  Google Scholar 

  • Nakajima J-I, Takahashi M, Seto T, Kanai C, Suzuki J, Yoshida M, Hamano T (2011a) Identification and quantitation of two benzoylindoles AM-694 and (4-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone, and three cannabimimetic naphthoylindoles JWH-210, JWH-122, and JWH-019 as adulterants in illegal products obtained via the internet. Forensic Toxicol 29:95–110

    Article  CAS  Google Scholar 

  • Nakajima JI, Takahashi M, Nonaka R, Seto T, Suzuki J, Yoshida M, Kanai C, Hamano T (2011b) Identification and quantitation of a benzoylindole (2-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone and a naphthoylindole 1-(5-fluoropentyl-1H-indol-3-yl)-(naphthalene-1-yl)methanone (AM-2201) found in illegal products obtained via the internet and their cannabimimetic effects evaluated by in vitro [35S]GTPγS binding assays. Forensic Toxicol 29:132–141

    Article  CAS  Google Scholar 

  • National Research Council (1984) Possible long-term health effects of short-term exposure to chemical agents, volume 2: cholinesterase reactivators, psychochemicals and irritants and vesicants. National Academic Press, Washington DC

    Google Scholar 

  • Obafemi AI, Kleinschmidt K, Goto C, Fout D (2015) Cluster of acute toxicity from ingestion of synthetic cannabinoid-laced brownies. J Med Toxicol 11:426–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace JM, Tietje K, Dart MJ, Meyer MD (2006) 3-Cycloalkylcarbonylindoles as cannabinoid receptor ligands and their preparation, pharmaceutical compositions and use for treatment of pain. World Patent 2,006,069,196

    Google Scholar 

  • Pacheco M, Childers SR, Arnold R, Casiano F, Ward SJ (1991) Aminoalkylindoles: actions on specific G-protein-linked receptors. J Pharmacol Exp Ther 257:170–183

    CAS  PubMed  Google Scholar 

  • Park Y, Lee C, Lee H, Pyo J, Jo J, Lee J, Choi H, Kim S, Hong R, Park Y, Hwang B, Choe S, Jung J (2013) Identification of a new synthetic cannabinoid in a herbal mixture: 1-butyl-3-(2-methoxybenzoyl)indole. Forensic Toxicol 31:187–196

    Article  CAS  Google Scholar 

  • Peace MR, Krakowiak RI, Wolf CE, Poklis A, Poklis JL (2017) Identification of MDMB-FUBINACA in commercially available e-liquid formulations sold for use in electronic cigarettes. Forensic Sci Int 271:92–97

    Article  CAS  PubMed  Google Scholar 

  • Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884

    Article  CAS  PubMed  Google Scholar 

  • Razdan RK (1986) Structure-activity relationships in cannabinoids. Pharmacol Rev 38:75–149

    CAS  PubMed  Google Scholar 

  • Russell PB, Todd AR, Wilkinson S, Macdonald AD, Woolfe G (1941) 147. Cannabis indica. Part VIII. Further analogues of tetrahydrocannabinol. J Chem Soc:826

    Google Scholar 

  • Russo EB (2016) Beyond cannabis: plants and the endocannabinoid system. Trends Pharmacol Sci 37:594–605

    Article  CAS  PubMed  Google Scholar 

  • Seely KA, Patton AL, Moran CL, Womack ML, Prather PL, Fantegrossi WE, Radominska-Pandya A, Endres GW, Channell KB, Smith NH, Mccain KR, James LP, Moran JH (2013) Forensic investigation of K2, spice, and “bath salt” commercial preparations: a three-year study of new designer drug products containing synthetic cannabinoid, stimulant, and hallucinogenic compounds. Forensic Sci Int 233:416–422

    Article  CAS  PubMed  Google Scholar 

  • Shanks KG, Behonick GS, Dahn T, Terrell A (2013) Identification of novel third-generation synthetic cannabinoids in products by ultra-performance liquid chromatography and time-of-flight mass spectrometry. J Anal Toxicol 37:517–525

    Article  CAS  PubMed  Google Scholar 

  • Shao Z, Yin J, Chapman K, Grzemska M, Clark L, Wang J, Rosenbaum DM (2016) High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature 540:602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simolka K, Lindigkeit R, Schiebel H-M, Papke U, Ernst L, Beuerle T (2012) Analysis of synthetic cannabinoids in “spice-like” herbal highs: snapshot of the German market in summer 2011. Anal Bioanal Chem 404:157–171

    Article  CAS  PubMed  Google Scholar 

  • Smith VJ (2008) Synthesis and pharmacology of N-alkyl-3-(halonaphthoyl)indoles. PhD dissertation, Clemson University

    Google Scholar 

  • Soethoudt M, Grether U, Fingerle J, Grim TW, Fezza F, De Petrocellis L, Ullmer C, Rothenhäusler B, Perret C, Van Gils N, Finlay D, Macdonald C, Chicca A, Gens MD, Stuart J, De Vries H, Mastrangelo N, Xia L, Alachouzos G, Baggelaar MP, Martella A, Mock ED, Deng H, Heitman LH, Connor M, Di Marzo V, Gertsch J, Lichtman AH, Maccarrone M, Pacher P, Glass M, Van Der Stelt M (2017) Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat Commun 8:13958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo B, Schlicker E (2005) Effects of cannabinoids on neurotransmission. In: Pertwee RG (ed) Cannabinoids. Springer, Berlin, Heidelberg

    Google Scholar 

  • Thakur GA, Tichkule R, Bajaj S, Makriyannis A (2009) Latest advances in cannabinoid receptor agonists. Expert Opin Ther Pat 19:1647–1673

    Article  CAS  PubMed  Google Scholar 

  • Trachsel D (2012) Fluorine in psychedelic phenethylamines. Drug Test Anal 4:577–590

    Article  CAS  PubMed  Google Scholar 

  • Trecki J, Gerona RR, Schwartz MD (2015) Synthetic cannabinoid-related illnesses and deaths. N Engl J Med 373:103–107

    Article  CAS  PubMed  Google Scholar 

  • Turner SE, Williams CM, Iversen L, Whalley BJ (2017) Molecular pharmacology of phytocannabinoids. In: Kinghorn AD, Falk H, Gibbons S, Kobayashi JI (eds) Phytocannabinoids: unraveling the complex chemistry and pharmacology of Cannabis sativa. Springer, Cham

    Google Scholar 

  • Uchiyama N, Kikura-Hanajiri R, Goda Y (2011) Identification of a novel cannabimimetic phenylacetylindole, cannabipiperidiethanone, as a designer drug in a herbal product and its affinity for cannabinoid CB1 and CB2 receptors. Chem Pharm Bull 59:1203–1205

    Article  CAS  Google Scholar 

  • Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125

    Article  CAS  Google Scholar 

  • Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2013a) URB-754: a new class of designer drug and 12 synthetic cannabinoids detected in illegal products. Forensic Sci Int 227:21–32

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama N, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2013b) Two new-type cannabimimetic quinolinyl carboxylates, QUPIC and QUCHIC, two new cannabimimetic carboxamide derivatives, ADB-FUBINACA and ADBICA, and five synthetic cannabinoids detected with a thiophene derivative α-PVT and an opioid receptor agonist AH-7921 identified in illegal products. Forensic Toxicol 31:223–240

    Article  CAS  Google Scholar 

  • United Nations Office on Drugs and Crime, World Drug Report (2017) United Nations publication, Sales No. E.17.XI.6. United Nations Publications, New York

    Google Scholar 

  • US Drug Enforcement Administration, Office of Diversion Control (2014) National Forensic Laboratory Information System Special Report: Synthetic Cannabinoids and Synthetic Cathinones Reported in NFLIS 2010–2013. Springfield, VA

    Google Scholar 

  • Viegas-Junior C, Danuello A, Da Silva Bolzani V, Barreiro EJ, Fraga CA (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 14:1829–1852

    Article  CAS  PubMed  Google Scholar 

  • Ward SJ, Mastriani D, Casiano F, Arnold R (1990) Pravadoline: profile in isolated tissue preparations. J Pharmacol Exp Ther 255:1230–1239

    CAS  PubMed  Google Scholar 

  • Weissman A, Milne GM, Melvin LS (1982) Cannabimimetic activity from CP-47,497, a derivative of 3-phenylcyclohexanol. J Pharmacol Exp Ther 223:516–523

    CAS  PubMed  Google Scholar 

  • Wiley JL, Compton DR, Dai D, Lainton JH, Phillips M, Huffman JW, Martin BR (1998) Structure-activity relationships of indole- and pyrrole-derived cannabinoids. J Pharmacol Exp Ther 285:995–1004

    CAS  PubMed  Google Scholar 

  • Wiley JL, Smith VJ, Chen J, Martin BR, Huffman JW (2012) Synthesis and pharmacology of 1-alkyl-3-(1-naphthoyl)indoles: steric and electronic effects of 4- and 8-halogenated naphthoyl substituents. Bioorg Med Chem 20:2067–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley JL, Marusich JA, Lefever TW, Grabenauer M, Moore KN, Thomas BF (2013) Cannabinoids in disguise: Δ9-tetrahydrocannabinol-like effects of tetramethylcyclopropyl ketone indoles. Neuropharmacology 75:145–154

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SM, Banister SD, Kassiou M (2015) Bioisosteric fluorine in the clandestine design of synthetic cannabinoids. Aust J Chem 68:4–8

    Article  CAS  Google Scholar 

  • Winstock AR, Barratt MJ (2013) Synthetic cannabis: a comparison of patterns of use and effect profile with natural cannabis in a large global sample. Drug Alcohol Depend 136:106–111

    Article  CAS  Google Scholar 

  • Wood TB, Spivey WTN, Easterfield TH (1899) III. – cannabinol. Part I. J Chem Soc Trans 75:20–36

    Article  CAS  Google Scholar 

  • Zuardi AW (2006) History of cannabis as a medicine: a review. Rev Bras Psiquiatr 28:153–157

    Article  PubMed  Google Scholar 

  • Zuba D, Byrska B (2013) Analysis of the prevalence and coexistence of synthetic cannabinoids in “herbal high” products in Poland. Forensic Toxicol 31:21–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel D. Banister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banister, S.D., Connor, M. (2018). The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonists as New Psychoactive Substances: Origins. In: Maurer, H., Brandt, S. (eds) New Psychoactive Substances . Handbook of Experimental Pharmacology, vol 252. Springer, Cham. https://doi.org/10.1007/164_2018_143

Download citation

Publish with us

Policies and ethics