Skip to main content
Log in

Identification and quantitation of a benzoylindole (2-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone and a naphthoylindole 1-(5-fluoropentyl-1H-indol-3-yl)-(naphthalene-1-yl)methanone (AM-2201) found in illegal products obtained via the Internet and their cannabimimetic effects evaluated by in vitro [35S]GTPγS binding assays

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

During our careful surveillance of unregulated drugs in January to February 2011, we found two new compounds used as adulterants in herbal products obtained via the Internet. These compounds were identified by liquid chromatography–mass spectrometry, gas chromatography-mass spectrometry, accurate mass spectrometry, and nuclear magnetic resonance spectroscopy. The first compound identified was a benzoylindole (2-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone (1), which is a positional isomer of (4-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone (RCS-4, 4). The second compound was 1-(5-fluoropentyl-1H-indol-3-yl)-(naphthalene-1-yl)methanone (AM-2201, 2). The compound 2 has been reported to be a cannabinoid receptor agonist. Because the cannabimimetic effects of compounds 1 and 4 have not been reported to date, their biological activities were evaluated by measuring the activation of [35S] guanosine-5′-O-(3-thio)-triphosphate binding to guanine nucleotide-binding proteins, together with those of other synthetic cannabimimetic compounds. For quantitation of the above two compounds (1 and 2) and previously identified compounds (AM-694, 3; JWH-122, 5; RCS-4, 4), each product was extracted with methanol under ultrasonication to prepare a sample solution for analysis by liquid chromatography with ultraviolet detection. Each of four commercial products contained some of cannabimimetic indoles 15; their contents ranged from 14.8 to 185 mg per pack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Uchiyama N, Kikura-Hanajiri R, Kawahara N, Haishima Y, Goda Y (2009) Identification of a cannabinoid analog as a new type of designer drug in a herbal product. Chem Pharm Bull 57:439–441

    Article  PubMed  CAS  Google Scholar 

  2. Uchiyama N, Kikura-Hanajiri R, Kawahara N, Goda Y (2009) Identification of a cannabimimetic indole as a designer drug in a herbal product. Forensic Toxicol 27:61–66

    Article  CAS  Google Scholar 

  3. Kikura-Hanajiri R, Kawamura M, Maruyama T, Kitajima M, Takayama M, Goda Y (2009) Simultaneous analysis of mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant “kratom”(Mitragyna speciosa) by LC–ESI–MS. Forensic Toxicol 27:67–74

    Article  CAS  Google Scholar 

  4. Kikuchi H, Uchiyama N, Ogata J, Kikura-Hanajiri R, Goda Y (2010) Chemical constituents and DNA sequence analysis of a psychotropic herbal product. Forensic Toxicol 28:77–83

    Article  CAS  Google Scholar 

  5. Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2011) Identification and quantitation of two cannabimimetic phenylacetylindoles JWH-251 and JWH-250, and four cannabimimetic naphthoylindoles JWH-081, JWH-015, JWH-200, and JWH-073 as designer drugs in illegal products. Forensic Toxicol 29:25–37

    Article  CAS  Google Scholar 

  6. Nakajima J, Takahashi M, Seto T, Suzuki J (2011) Identification and quantitation of cannabimimetic compound JWH-250 as an adulterant in products obtained via the Internet. Forensic Toxicol 29:51–55

    Article  CAS  Google Scholar 

  7. Nakajima J, Takahashi M, Seto T, Kanai C, Suzuki J, Yoshida M, Hamano T (2011) Identification and quantitation of two benzoylindoles AM-694 and (4-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone, and three cannabimimetic naphthoylindoles JWH-210, JWH-122, and JWH-019 as adulterants in illegal products obtained via the Internet. Forensic Toxicol. doi:10.1007/s11419-011-0108-3

  8. Ministry of Health, Labour and Welfare of Japan (2011) http://search.e-gov.go.jp/servlet/Public?CLASSNAME=PCMMSTDETAIL&id=495100324&Mode=0. Accessed 3 May 2011

  9. Reggio PH (2009) The cannabinoid receptors. Humana Press, New York

    Book  Google Scholar 

  10. Palomäki VA, Lehtonen M, Savinainen JR, Laitinen JT (2007) Visualization of 2-arachidonoylglycerol accumulation and cannabinoid CB1 receptor activity in rat brain cryosections by functional autoradiography. J Neurochem 101:972–981

    Article  PubMed  Google Scholar 

  11. Martel JC, Ormière AM, Leduc N, Assié MB, Cussac D, Newman-Tancredi A (2007) Native rat hippocampal 5-HT1A receptors show constitutive activity. Mol Pharmacol 71:638–643

    Article  PubMed  CAS  Google Scholar 

  12. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  13. Mato S, Vidal R, Castro E, Diaz A, Pazos A, Valdizán EM (2010) Long-term fluoxetine treatment modulates cannabinoid type 1 receptor-mediated inhibition of adenylyl cyclase in the rat prefrontal cortex through 5-hydroxytryptamine 1A receptor-dependent mechanisms. Mol Pharmacol 77:424–434

    Article  PubMed  CAS  Google Scholar 

  14. Nonaka R, Nagai F, Ogata A, Satoh K (2007) In vitro screening of psychoactive drugs by [35S]GTPγS binding in rat brain membranes. Biol Pharm Bull 30:2328–2333

    Article  PubMed  CAS  Google Scholar 

  15. Makriyannis A, Deng H (2005) Cannabimimetic indole derivatives. United States Patent, US 7,241,799 B2

  16. Willis PG, Katoch-Rouse R, Horti AG (2003) Regioselective F-18 radiolabeling of AM694, a CB1 cannabinoid receptor ligand. J Label Compd Radiopharm 46:799–804

    Article  CAS  Google Scholar 

  17. Huffman JW, Zengin G, Wu MJ, Lu J, Hynd G, Bushell K, Thompson ALS, Bushell S, Tartal C, Hurst DP, Reggio PH, Selley DE, Cassidy MP, Wiley JL, Martin BR (2005) Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB1 and CB2 receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB2 receptor agonists. Bioorg Med Chem 13:89–112

    Article  PubMed  CAS  Google Scholar 

  18. Aung MM, Griffin G, Huffman JW, Wu MJ, Keel C, Yang B, Showalter VM, Abood ME, Martin BR (2000) Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB1 and CB2 receptor binding. Drug Alcohol Depend 60:133–140

    Article  PubMed  CAS  Google Scholar 

  19. Huffman JW, Mabon R, Wu MJ, Lu J, Hart R, Hurst DP, Reggio PH, Wiley JL, Martin BR (2003) 3-Indoyl-1-naphthylmethanes: new cannabimimetic indoles provide evidence for aromatic stacking interactions with the CB1 cannabinoid receptor. Bioorg Med Chem 11:539–549

    Article  PubMed  CAS  Google Scholar 

  20. Wiley JL, Compton DR, Dai D, Lainton JA, Phillips M, Huffman JW, Martin BR (1998) Structure-activity relationships of indole and pyrrole-derived cannabinoids. J Pharmacol Exp Ther 285:995–1004

    PubMed  CAS  Google Scholar 

  21. Huffman JW (1999) Cannabimimetic indoles, pyrroles and indenes. Curr Med Chem 6:705–720

    PubMed  CAS  Google Scholar 

  22. EMCDDA (2009) Thematic papers: understanding the “Spice” phenomenon. http://www.emcdda.europa.eu/attachements.cfm/att_80086_EN_Spice%20Thematic%20paper%20%E2%80%94%20final%20version.pdf. Accessed 20 Jan 2011

  23. ACMD (2009) Consideration of the major cannabinoid agonists. http://www.homeoffice.gov.uk/publications/drugs/acmd1/acmd-report-agonists?view=Binary. Accessed January 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun’ichi Nakajima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, J., Takahashi, M., Nonaka, R. et al. Identification and quantitation of a benzoylindole (2-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone and a naphthoylindole 1-(5-fluoropentyl-1H-indol-3-yl)-(naphthalene-1-yl)methanone (AM-2201) found in illegal products obtained via the Internet and their cannabimimetic effects evaluated by in vitro [35S]GTPγS binding assays. Forensic Toxicol 29, 132–141 (2011). https://doi.org/10.1007/s11419-011-0114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-011-0114-5

Keywords

Navigation