Skip to main content

Posttranslational Modification of Sodium Channels

  • Chapter
  • First Online:
Voltage-gated Sodium Channels: Structure, Function and Channelopathies

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 246))

Abstract

Voltage-gated sodium channels (VGSCs) are critical determinants of excitability. The properties of VGSCs are thought to be tightly controlled. However, VGSCs are also subjected to extensive modifications. Multiple posttranslational modifications that covalently modify VGSCs in neurons and muscle have been identified. These include, but are not limited to, phosphorylation, ubiquitination, palmitoylation, nitrosylation, glycosylation, and SUMOylation. Posttranslational modifications of VGSCs can have profound impact on cellular excitability, contributing to normal and abnormal physiology. Despite four decades of research, the complexity of VGSC modulation is still being determined. While some modifications have similar effects on the various VGSC isoforms, others have isoform-specific interactions. In addition, while much has been learned about how individual modifications can impact VGSC function, there is still more to be learned about how different modifications can interact. Here we review what is known about VGSC posttranslational modifications with a focus on the breadth and complexity of the regulatory mechanisms that impact VGSC properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore R. Cummins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pei, Z., Pan, Y., Cummins, T.R. (2017). Posttranslational Modification of Sodium Channels. In: Chahine, M. (eds) Voltage-gated Sodium Channels: Structure, Function and Channelopathies. Handbook of Experimental Pharmacology, vol 246. Springer, Cham. https://doi.org/10.1007/164_2017_69

Download citation

Publish with us

Policies and ethics