Skip to main content

Engineered Biomaterials for Chronic Wound Healing

  • Chapter
  • First Online:
Chronic Wounds, Wound Dressings and Wound Healing

Abstract

Efficient wound healing requires the coordinated integration of associated biological and chemical events in the wound bed. Chronic wounds fail to follow this ordered remodeling cascade, requiring long-term, active intervention usually in the form of high-cost wound dressings. Studies show that no treatment significantly outperforms the others, leading researchers to focus on developing innovative and more efficacious wound healing technologies. This chapter will provide a brief overview of chronic wound healing with a focus on recent engineering approaches that regenerate skin. We discuss various design challenges plaguing chronic wound healing, explore the mechanisms of action for products currently in clinical use, and describe design strategies used in recent developments, such as the use of novel polymers, growth factor release, and cell loading. As healthcare moves toward precision medicine-based strategies, the potential and therapeutic implications of synthetic biomaterials as tunable treatment modalities for chronic wounds will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shultz G, Sibbald R, Falanga V, Ayello E, Dowsett C, Harding K, Romanelli M, Stacey M, Teot L, Vanscheidt W (2003) Wound bed preparation: a systematic approach to wound management. Wound Repair Regen 11(Suppl 1):S1–S28

    Article  Google Scholar 

  2. Mustoe TA, O’Shaughnessy K, Kloeters O (2006) Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 117:35s–41s

    Article  CAS  PubMed  Google Scholar 

  3. Sen CK, Gordillo GM, Roy S, Kirsner RS, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771

    Article  PubMed  PubMed Central  Google Scholar 

  4. Werdin F, Tennenhaus M, Schaller H-E, Rennekampff H-O (2009) Evidence-based management strategies for treatment of chronic wounds. Eplasty 9:e19

    PubMed  PubMed Central  Google Scholar 

  5. Blakytny R, Jude E (2006) The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med 23(6):594–608

    Article  CAS  PubMed  Google Scholar 

  6. Singer AJ, Clark RAF (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746

    Article  CAS  PubMed  Google Scholar 

  7. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  PubMed  Google Scholar 

  8. Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 17(2):153–162

    Article  PubMed  Google Scholar 

  9. Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13(5):377–383

    Article  CAS  PubMed  Google Scholar 

  10. Tracy LE, Minasian RA, Caterson EJ (2016) Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care 5(3):119–136

    Article  Google Scholar 

  11. Bainbridge P (2013) Wound healing and the role of fibroblasts. J Wound Care 22(8):407

    Article  CAS  PubMed  Google Scholar 

  12. Lerman O, Galiano R, Armour M, Levine J, Gurtner G (2003) Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol 162(1):303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vaalamo M, Weckroth M, Puolakkainen P, Kere J, Saarinen P, Lauharanta J, Saarialho-Kere U (1996) Patterns of matrix metalloproteinase and TIMP-1 expression in chronic and normally healing human cutaneous wounds. Br J Dermatol 135(1):52–59

    Article  CAS  PubMed  Google Scholar 

  14. McCarty S, Percival S (2013) Proteases and delayed wound healing. Adv Wound Care 2(8):438–447

    Article  Google Scholar 

  15. Eming S, Krieg T, Davidson J (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–523

    Article  CAS  PubMed  Google Scholar 

  16. Lauer G, Sollberg S, Cole M, Kreig T, Eming S (2000) Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J Invest Dermatol 115(1):12–18

    Article  CAS  PubMed  Google Scholar 

  17. Shultz G, Davidson J, Kirsner RS, Bornstein P, Herman I (2012) Dynamic reciprocity in the wound microenvironment. Wound Repair Regen 19(2):134–148

    Article  Google Scholar 

  18. Santoro M, Gaudino G (2005) Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res 304(1):274–286

    Article  CAS  PubMed  Google Scholar 

  19. Pastar I, Stojadinovic O, Tomic-Canic M (2008) Role of keratinocytes in healing of chronic wounds. Surg Technol Int 17:105–112

    PubMed  Google Scholar 

  20. Hakkinen L, Koivisto L, Gardner H, Saarialho-Kere U, Carroll J, Lakso M, Rauvala H, Laato M, Heino J, Larjava H (2004) Increased expression of beta6-integrin in skin leads to spontaneous development of chronic wounds. Am J Pathol 164:229–242

    Article  PubMed  PubMed Central  Google Scholar 

  21. Braun K, Prowse D (2006) Distinct epidermal stem cell compartments are maintained by independent niche microenvironments. Stem Cell Rev 2(3):221–231

    Article  CAS  PubMed  Google Scholar 

  22. Cha J, Falanga V (2007) Stem cells in cutaneous wound healing. Clin Dermatol 25:73–78

    Article  PubMed  Google Scholar 

  23. Stojadinovic O, Pastar I, Nusbaum AG, Vukelic S, Krzyzanowska A, Tomic-Canic M (2014) Deregulation of epidermal stem cell niche contributes to pathogenesis of non-healing venous ulcers. Wound Repair Regen 22(2):220–227

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rennert RC, Rodrigues M, Wong VW, Duscher D, Hu M, Maan Z, Sorkin M, Gurtner GC, Longaker MT (2013) Biological therapies for the treatment of cutaneous wounds: phase III and launched therapies. Expert Opin Biol Ther 13(11):1523–1541

    Article  CAS  PubMed  Google Scholar 

  25. Valle M, Maruthur N, Wilson L, Malas M, Qazi U, Haberl E, Bass E, Zenilman J, Lazarus G (2014) Comparative effectiveness of advanced wound dressings for patients with chronic venous leg ulcers: a systematic review. Wound Repair Regen 22(2):193–204

    Article  PubMed  Google Scholar 

  26. Gould LJ (2015) Topical collagen-based biomaterials for chronic wounds: rationale and clinical application. Adv Wound Care 5(1):19–31

    Article  Google Scholar 

  27. Zaulyanov L, Kirsner RS (2007) A review of a bi-layered living cell treatment (Apligraf (®)) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging 2(1):93–98

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hu S, Kirsner RS, Falanga V, Phillips T, Eaglstein WH (2006) Evaluation of Apligraf® persistence and basement membrane restoration in donor site wounds: a pilot study. Wound Repair Regen 14(4):427–433

    Article  PubMed  Google Scholar 

  29. Falanga V, Isaacs C, Paquette D, Downing G, Kouttab N, Butmarc J, Badiavas E, Hardin-Young J (2002) Wounding of bioengineered skin: cellular and molecular aspects after injury. J Invest Dermatol 119(3):653–660

    Article  CAS  PubMed  Google Scholar 

  30. Veves A, Falanga V, Armstrong DG, Sabolinski ML (2001) Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 24(2):290–295

    Article  CAS  PubMed  Google Scholar 

  31. Edmonds M, Group E and AADFUS (2009) Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Low Extrem Wounds 8(1):11–18

    Article  PubMed  Google Scholar 

  32. Naughton G, Mansbridge J, Gentzkow G (1997) A metabolically active human dermal replacement for the treatment of diabetic foot ulcers. Artif Organs 21(11):1203–1210

    Article  CAS  PubMed  Google Scholar 

  33. Marston WA, Hanft J, Norwood P, Pollak R (2003) The efficacy and safety of dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26(6):1701–1705

    Article  PubMed  Google Scholar 

  34. Landsman A, Cook J, Landsman A, Garrett P, Yoon J, Kirkwood A, Desman E (2011) A retrospective clinical study of 188 consecutive patients to examine the effectiveness of a biologically active cryopreserved human skin allograft (Theraskin) on the treatment of diabetic foot ulcers and venous leg ulcers. Foot Ankle Spec 4(1):29–41

    Article  PubMed  Google Scholar 

  35. DiDomenico L, Emch KJ, Landsman AR, Landsman A (2011) A prospective comparison of diabetic foot ulcers treated with either cryopreserved skin allograft or bioengineered skin substitute. Wounds 23(7):184–189

    PubMed  Google Scholar 

  36. Landsman A, Rosines E, Houck A, Murchison A, Jones A, Qin X, Chen S, Landsman AR (2016) Characterization of a cryopreserved split-thickness human skin allograft-TheraSkin. Adv Skin Wound Care 29(9):399–406

    Article  PubMed  Google Scholar 

  37. Kirsner RS, Sabolinski ML, Parsons NB, Skornicki M, Marston WA (2015) Comparative effectiveness of a bioengineered living cellular construct vs. a dehydrated human amniotic membrane allograft for the treatment of diabetic foot ulcers in a real world setting. Wound Repair Regen 23(5):737–744

    Article  PubMed  Google Scholar 

  38. Zelen C, Serena T, Gould L, Le L, Carter M, Keller J, Li W (2016) Treatment of chronic diabetic lower extremity ulcers with advanced therapies: a prospective, randomised, controlled, multi-centre comparative study examining clinical efficacy and cost. Int Wound J 13(2):272–282

    Article  PubMed  Google Scholar 

  39. Carter M, Waycaster C, Schaum K, Gilligan A (2014) Cost-effectiveness of three adjunct cellular/tissue derived products used in the management of chronic venous leg ulcers. Value Health 17:801–813

    Article  PubMed  Google Scholar 

  40. Whelan M, Senger D (2003) Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic amp and protein kinase a. J Biol Chem 278(1):327–334

    Article  CAS  PubMed  Google Scholar 

  41. Heino J (2000) The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol 19(4):319–323

    Article  CAS  PubMed  Google Scholar 

  42. Gelse K, Poschl E, Aigner T (2003) Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546

    Article  CAS  PubMed  Google Scholar 

  43. Wiegand C, Schönfelder U, Abel M, Ruth P, Kaatz M, Hipler U (2010) Protease and pro-inflammatory cytokine concentrations are elevated in chronic compared to acute wounds and can be modulated by collagen type I in vitro. Arch Dermatol Res 302(6):419–428

    Article  CAS  PubMed  Google Scholar 

  44. Nihsen E, Johnson C, Hiles M (2008) Bioactivity of small intestinal submucosa and oxidized regenerated cellulose/collagen. Adv Ski Wound Care 21(10):479–486

    Article  Google Scholar 

  45. Hodde J, Record R, Liang H, Badylak SF (2001) Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium 8(1):11–24

    Article  CAS  PubMed  Google Scholar 

  46. Hodde J, Badylak S, Brightman A, Voytik-Harbin S (1996) Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. Tissue Eng 2(3):209–217

    Article  CAS  PubMed  Google Scholar 

  47. Shi L, Ronfard V (2013) Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review. Int J Burn Trauma 3(4):173–179

    Google Scholar 

  48. Shi L, Ramsay S, Ermis R, Carson D (2012) In vitro and in vivo studies on matrix metalloproteinases interacting with small intestine submucosa wound matrix. Int Wound J 9:44–53

    Article  PubMed  Google Scholar 

  49. Turner N, Badylak S (2015) The use of biologic scaffolds in the treatment of chronic nonhealing wounds. Adv Wound Care 4(8):490–500

    Article  Google Scholar 

  50. Moore M, Samsell B, Wallis G, Triplett S, Chen S, Linthurst Jones A, Qin X (2015) Decellularization of human dermis using non-denaturing anionic detergent and endonuclease: a review. Cell Tissue Bank 16(2):249–259

    Article  PubMed  Google Scholar 

  51. Reyzelman A, Crews R, Moore J, Moore L, Mukker J, Offutt S, Tallis A, Turner W, Vayser D, Winters C, Armstrong D (2009) Clinical effectiveness of an acellular dermal regenerative tissue matrix compared to standard wound management in healing diabetic foot ulcers: a prospective, randomised, multicentre study. Int Wound J 6(5):196–208

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yonehiro L, Burleson G, Sauer V (2013) Use of a new Acellular dermal matrix for treatment of nonhealing wounds in the lower extremities of patients with diabetes. Wounds 25(12):340–344

    PubMed  Google Scholar 

  53. Walters J, Cazzell S, Pham H, Vayser D, Reyzelman A (2015) Healing rates in a multicenter assessment of a sterile, room temperature, Acellular dermal matrix versus conventional care wound management and an active comparator in the treatment of full-thickness diabetic foot ulcers. Eplasty 16:e10

    Google Scholar 

  54. Silini A, Cargnoni A, Magatti M, Pianta S, Parolini O (2015) The long path of human placenta, and its derivatives, in regenerative medicine. Front Physiol 3:162

    Google Scholar 

  55. Fortunato S, Menon R, Lombardi S (1998) Presence of four tissue inhibitors of matrix metalloproteinases (TIMP-1, −2, −3 and −4) in human fetal membranes. Am J Reprod Immunol 40(6):395–400

    Article  CAS  PubMed  Google Scholar 

  56. Koizumi N, Inatomi T, Sotozono C, Fullwood N, Quantock A, Kinoshita S (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20(3):173–177

    Article  CAS  PubMed  Google Scholar 

  57. Lopez-Valladares M, Rodriguez-Ares M, Tourino R, Gude F, Silva M, Couceiro J (2010) Donor age and gestational age influence on growth factor levels in human amniotic membrane. Acta Opthamol 88:211–216

    Article  Google Scholar 

  58. Mamede A, Carvalho M, Abrantes A, Laranjo M, Maia C, Botelho M (2010) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349(2):447–458

    Article  CAS  Google Scholar 

  59. Park C, Kohanim S, Zhu L, Gehlbach P, Chuck R (2008) Immunosuppressive property of dried human amniotic membrane. Ophthalmic Res 41(2):112–113

    Article  PubMed  Google Scholar 

  60. Lockington D, Agarwal P, Young D, Caslake M, Ramaesh K (2014) Antioxidant properties of amniotic membrane: novel observations from a pilot study. Can J Opthalmol 49(5):426–430

    Article  Google Scholar 

  61. Trabucchi E, Pallotta S, Morini M, Corsi F, Franceschini R, Casiraghi A, Pravettoni A, Foschi D, Minghetti P (2002) Low molecular weight hyaluronic acid prevents oxygen free radical damage to granulation tissue during wound healing. Int J Tissue React 24(2):65–71

    CAS  PubMed  Google Scholar 

  62. von Versen-Hoeynck F, Steinfeld A, Becker J, Hermel M, Rath W, Hesselbarth U (2008) Sterilization and preservation influence the biophysical properties of human amnion grafts. Biologicals 36(4):248–255

    Article  CAS  Google Scholar 

  63. Koob T, Rennert R, Zabek N, Massee M, Lim J, Temenoff J, Li W, Gurtner G (2013) Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. Int Wound J 10(5):493–500

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zelen C, Serena T, Denoziere G, Fetterolf D (2013) A prospective randomised comparative parallel study of amniotic membrane wound graft in the management of diabetic foot ulcers. Int Wound J 10(5):502–507

    Article  PubMed  PubMed Central  Google Scholar 

  65. Burke J, Yannas I, Quinby W, Bondoc C, Jung W (1982) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194:413–428

    Article  Google Scholar 

  66. Driver V, Lavery L, Reyzelman A, Dutra T, Dove C, Kotsis S, Kim H, Chung K (2015) A clinical trial of Integra template for diabetic foot ulcer treatment. Wound Repair Regen 23(6):891–900

    Article  PubMed  Google Scholar 

  67. Hart J, Silcock D, Gunnigle S, Cullen B, Light N, Watt P (2002) The role of oxidised regenerated cellulose/collagen in wound repair: effects in vitro on fibroblast biology and in vivo in a model of compromised healing. Int J Biochem Cell Biol 34(12):1557–1570

    Article  CAS  PubMed  Google Scholar 

  68. Cullen B, Smith R, McCullogh E (2002) Mechanism of action of PROMOGRAN, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Repair Regen 10:16–25

    Article  PubMed  Google Scholar 

  69. Ulrich D, Smeets R, Unglaub F, Wöltje M, Pallua N (2011) Effect of oxidized regenerated cellulose/collagen matrix on proteases in wound exudate of patients with diabetic foot ulcers. J Wound Ostomy Cont Nurs 38(5):522–528

    Article  Google Scholar 

  70. Augst A, Kong H, Mooney D (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6(8):623–633

    Article  CAS  PubMed  Google Scholar 

  71. Segal H, Hunt B, Gilding K (1998) The effects of alginate and non-alginate wound dressings on blood coagulation and platelet activation. J Biomater Appl 12:249–257

    Article  CAS  PubMed  Google Scholar 

  72. Pirone L, Bolton L, Monte K, Shannon R (1992) Effect of calcium alginate dressings on partial-thickness wounds in swine. J Investig Surg 5:149–153

    Article  CAS  Google Scholar 

  73. Sweeney I, Miraftab M, Collyer G (2012) A critical review of modern and emerging absorbent dressings used to treat exuding wounds. Int Wound J 9(6):601–612

    Article  PubMed  PubMed Central  Google Scholar 

  74. O’Meara S, Martyn-St James M, Adderley U (2015) Alginate dressings for venous leg ulcers. Cochrane Database Syst Rev 8:CD010182

    Google Scholar 

  75. Dumville J, Keogh S, Liu Z, Stubbs N, Walker R, Fortnam M (2015) Alginate dressings for treating pressure ulcers. Cochrane Database Syst Rev 5:CD011277

    Google Scholar 

  76. Mayol L, De Stefano D, Campani V, De Falco F, Ferrari E, Cencetti C, Matricardi P, Maiuri L, Carnuccio R, Gallo A, Maiuri M, De Rosa G (2014) Design and characterization of a chitosan physical gel promoting wound healing in mice. J Mater Sci 25(6):1483–1493

    CAS  Google Scholar 

  77. Sandoval M, Albornoz C, Muñoz S, Fica M, García-Huidobro I, Mertens R, Hasson A (2011) Addition of chitosan may improve the treatment efficacy of triple bandage and compression in the treatment of venous leg ulcers. J Drugs Dermatol 10(1):75–79

    PubMed  Google Scholar 

  78. Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, Minami S, Okamoto Y (2015) Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 6:104–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chou T, Fu E, Wu C, Yeh J (2003) Chitosan enhances platelet adhesion and aggregation. Biochem Biophys Res Commun 302(3):480

    Article  CAS  PubMed  Google Scholar 

  80. Okamotoa Y, Yanoa R, Miyatakea K, Tomohirob I, Shigemasac Y, Minamia S (2003) Effects of chitin and chitosan on blood coagulation. Carbohydr Polym 53(3):337–342

    Article  CAS  Google Scholar 

  81. Biagini G, Muzzarelli R, Giardino R, Castaldini C (1992) Biological materials for wound healing. In: Brine BJ, Sandford PA, Zikakis JP (eds) Advances in chitan and chitosan. Elsevier Science Publishers, London, pp 16–24

    Chapter  Google Scholar 

  82. Ueno H, Mori T, Fujinaga T (2001) Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 52(2):105–115

    Article  CAS  PubMed  Google Scholar 

  83. Kojima K, Okamoto Y, Kojima K, Miyatake K, Fujise H, Shigemasa Y, Minami S (2004) Effects of chitin and chitosan on collagen synthesis in wound healing. J Vet Med Sci 66(12):1595–1598

    Article  CAS  PubMed  Google Scholar 

  84. Peluso G, Petillo O, Ranieri M, Santin M, Ambrosio L, Calabró D, Avallone B, Balsamo G (1994) Chitosan-mediated stimulation of macrophage function. Biomaterials 15(15):1215–1220

    Article  CAS  PubMed  Google Scholar 

  85. Dai T, Tanaka M, Huang Y, Hamblin M (2012) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti-Infect Ther 9(7):857–879

    Article  CAS  Google Scholar 

  86. Rabea E, Badawy M, Stevens C, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465

    Article  CAS  PubMed  Google Scholar 

  87. Hankin CS, Knispel J, Lopes M, Bronstone A, Maus E (2012) Clinical and cost efficacy of advanced wound care matrices for venous leg ulcers. J Manag Care Spec Pharm 18(5):375

    Google Scholar 

  88. Kirsner R, Bohn G, Driver V, Mills J, Nanney L, Williams M, Wu S (2015) Human acellular dermal wound matrix: evidence and experience. Int Wound J 12:646–654

    Article  PubMed  Google Scholar 

  89. Kramer DB, Xu S, Kesselheim AS (2012) Regulation of medical devices in the United States and European Union. N Engl J Med 366:848–855

    Article  CAS  PubMed  Google Scholar 

  90. Scherer S, Pietramaggiori G, Matthews J, Perry S, Assmann A, Carothers A, Demcheva M, Muise-Helmericks R, Seth A, Vournakis J, Valeri R, Fischer T, Hechtman H, Orgill D (2009) Poly-N-acetyl glucosamine nanofibers: a new bioactive material to enhance diabetic wound healing by cell migration and angiogenesis. Ann Surg 250(2):322–330

    Article  PubMed  Google Scholar 

  91. Vournakis J, Eldridge J, Demcheva M, Muise-Helmericks R (2008) Poly-N-acetyl glucosamine nanofibers regulate endothelial cell movement and angiogenesis: dependency on integrin activation of Ets1. J Vasc Res 45:222–232

    Article  CAS  PubMed  Google Scholar 

  92. Kelechi T, Mueller M, Hankin C, Bronstone A, Samies J, Bonham P (2012) A randomized, investigator-blinded, controlled pilot study to evaluate the safety and efficacy of a poly-N-acetyl glucosamine-derived membrane material in patients with venous leg ulcers. J Am Acad Dermatol 66(6):e209–e215

    Article  CAS  PubMed  Google Scholar 

  93. Toole B (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–529

    Article  CAS  PubMed  Google Scholar 

  94. Chen W, Abatangelo G (1999) Function of hyaluronan in wound repair. Wound Repair Regen 7:79–89

    Article  CAS  PubMed  Google Scholar 

  95. Litwiniuk M, Krejner A, Grzela T (2016) Hyaluronic acid in inflammation and tissue regeneration. Wounds 8(3):78–88

    Google Scholar 

  96. West D, Fan T-P (2002) Hyaluronan as a regulator of angiogenesis in wound repair. In: Tai-Ping D, Kohn EC (eds) The new angiotherapy. Humana Press, New York

    Google Scholar 

  97. Stern R (2004) Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol 83(7):317–325

    Article  CAS  PubMed  Google Scholar 

  98. Benedetti L, Cortivo R, Berti T, Berti A, Pea F, Mazzo M, Moras M, Abatangelo G (1993) Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats. Biomaterials 14(15):1154–1163

    Article  CAS  PubMed  Google Scholar 

  99. Galassi G, Brun P, Radice M, Cortivo R, Zanon G, Genovese P, Abatangelo G (2000) In vitro reconstructed dermis implanted in human wounds: degradation studies of the HA-based supporting scaffold. Biomaterials 21(21):2183–2191

    Article  CAS  PubMed  Google Scholar 

  100. Turner N, Kielty C, Walker M, Canfield A (2004) A novel hyaluronan-based biomaterial (Hyaff-11) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials 25(28):5955–5964

    Article  CAS  PubMed  Google Scholar 

  101. Caravaggi C, Grigoletto F, Scuderi N (2011) Wound bed preparation with a dermal substitute (Hyalomatrix® PA) facilitates re-epithelialization and healing: results of a multicenter, prospective, observational study on complex chronic ulcers (the FAST study). Wounds 23(8):228–235

    PubMed  Google Scholar 

  102. Murphy WL, Peters MC, Kohn DH, Mooney DJ (2000) Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21(24):2521–2527

    Article  CAS  PubMed  Google Scholar 

  103. Xiao DY, Ahadian DS, Radisic PM (2016) Biochemical and biophysical cues in matrix design for chronic and diabetic wound treatment. Tissue Eng Part B Rev 23(1):9–26

    Article  PubMed  CAS  Google Scholar 

  104. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    Article  CAS  PubMed  Google Scholar 

  105. Chattopadhyay S, Raines RT (2014) Collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Moura LIF, Dias AMA, Carvalho E, de Sousa HC (2013) Recent advances on the development of wound dressings for diabetic foot ulcer treatment—a review. Acta Biomater 9(7):7093–7114

    Article  CAS  PubMed  Google Scholar 

  107. Ahadian S, Ostrovidov S, Hosseini V, Kaji H, Ramalingam M, Bae H, Khademhosseini A (2013) Electrical stimulation as a biomimicry tool for regulating muscle cell behavior. Organogenesis 9(2):87–92

    Article  PubMed  PubMed Central  Google Scholar 

  108. Marmaras A, Lendenmann T, Civenni G, Franco D, Poulikakos D, Kurtcuoglu V, Ferrari A (2012) Topography-mediated apical guidance in epidermal wound healing. Soft Matter 8:6922–6930

    Article  CAS  Google Scholar 

  109. Fu X, Xu M, Liu J, Qi Y, Li S, Wang H (2014) Regulation of migratory activity of human keratinocytes by topography of multiscale collagen-containing nanofibrous matrices. Biomaterials 35(5):1496–1506

    Article  CAS  PubMed  Google Scholar 

  110. Kim HN, Hong Y, Kim MS, Kim SM, Suh KY (2012) Effect of orientation and density of nanotopography in dermal wound healing. Biomaterials 33(34):8782–8792

    Article  CAS  PubMed  Google Scholar 

  111. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  CAS  PubMed  Google Scholar 

  112. Marshall AJ, Ratner BD (2005) Quantitative characterization of sphere-templated porous biomaterials. AICHE J 51(4):1221–1232

    Article  CAS  Google Scholar 

  113. Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, Hauch KD, Laflamme MA, Murry CE, Ratner BD (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci U S A 107(34):15211–15216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xie J, Liu W, MacEwan MR, Yeh YC, Thomopoulos S, Xia Y (2011) Nanofiber membranes with controllable microwells and structural cues and their use in forming cell microarrays and neuronal networks. Small 7(3):293–297

    Article  CAS  PubMed  Google Scholar 

  115. Ma B, Xie J, Jiang J, Wu J (2014) Sandwich-type fiber scaffolds with square arrayed microwells and nanostructured cues as microskin grafts for skin regeneration. Biomaterials 35(2):630–641

    Article  CAS  PubMed  Google Scholar 

  116. Chen H, Jia P, Kang H, Zhang H, Liu Y, Yang P, Yan Y, Zuo G, Guo L, Jiang M, Qi J, Liu Y, Cui W, Santos HA, Deng L (2016) Upregulating Hif-1 by hydrogel nanofibrous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound. Adv Health Mater 5(8):907–918

    Article  CAS  Google Scholar 

  117. Obregon R, Ramon-Azcon J, Ahadian S, Shiku H, Bae H, Ramalingam M, Matsue T (2014) The use of microtechnology and nanotechnology in fabricating vascularized tissues. J Nanosci Nanotechnol 14(1):487–500

    Article  CAS  PubMed  Google Scholar 

  118. Chin CD, Khanna K, Sia SK (2008) A microfabricated porous collagen-based scaffold as prototype for skin substitutes. Biomed Microdevices 10(3):459–467

    Article  CAS  PubMed  Google Scholar 

  119. Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93(1):172–177

    Article  CAS  PubMed  Google Scholar 

  120. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9(3):1022–1026

    Article  CAS  PubMed  Google Scholar 

  121. Nordli HR, Chinga-Carrasco G, Rokstad AM, Pukstad B (2016) Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells. Carbohydr Polym 150:65–73

    Article  CAS  PubMed  Google Scholar 

  122. Sun F, Nordli HR, Pukstad B, Kristofer Gamstedt E, Chinga-Carrasco G (2017) Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. J Mech Behav Biomed Mater 69:377–384

    Article  CAS  PubMed  Google Scholar 

  123. Wiegand C, Hipler U-C, Elsner P, Tittelbach J (2015) Clinical efficacy of dressings for treatment of heavily exuding chronic wounds. Chronic Wound Care Manag Res 2:101–111

    Article  Google Scholar 

  124. Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindström T, Siró I, Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membr Sci 358(1–2):67–75

    Article  CAS  Google Scholar 

  125. Tehrani Z, Nordli HR, Pukstad B, Gethin DT, Chinga-Carrasco G (2015) Translucent and ductile nanocellulose-PEG bionanocomposites-a novel substrate with potential to be functionalized by printing for wound dressing applications. Ind Crop Prod 93:193–202

    Article  CAS  Google Scholar 

  126. Bjurhager I, Ljungdahl J, Wallström L, Gamstedt EK, Berglund LA (2010) Towards improved understanding of PEG-impregnated waterlogged archaeological wood: a model study on recent oak. Holzforschung 64(2):243–250

    Article  CAS  Google Scholar 

  127. Agache PG, Monneur C, Leveque JL, Rigal de J (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res 269:221–232

    Article  CAS  PubMed  Google Scholar 

  128. Liu J, Chinga-Carrasco G, Cheng F, Xu W, Willför S, Syverud K, Xu C (2016) Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 23(5):3129–3143

    Article  CAS  Google Scholar 

  129. Hosokawa K, Fujii T, Endo I (1999) Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device. Anal Chem 71(20):4781–4785

    Article  CAS  Google Scholar 

  130. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366

    Article  CAS  Google Scholar 

  131. Kawakatsu T, Kikuchi Y, Nakajima M (1997) Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J Am Oil Chem Soc 74(3):317–321

    Article  CAS  Google Scholar 

  132. Griffin DR, Weaver WM, Scumpia P, Di Carlo D (2016) Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater 14(7):737–744

    Article  CAS  Google Scholar 

  133. Griffin DR, Borrajo J, Soon A, Acosta-Vélez GF, Oshita V, Darling N, MacK J, Barker T, Iruela-Arispe ML, Segura T (2014) Hybrid photopatterned enzymatic reaction (HyPER) for in situ cell manipulation. Chembiochem 15(2):233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schense JC, Hubbell JA (1999) Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem 10(1):75–81

    Article  CAS  PubMed  Google Scholar 

  135. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55

    Article  CAS  PubMed  Google Scholar 

  136. Seliktar D, Zisch AH, Lutolf MP, Wrana JL, Hubbell JA (2004) MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A 68(4):704–716

    Article  CAS  PubMed  Google Scholar 

  137. Galiano RD, Michaels VJ, Dobryansky M, Levine JP, Gurtner GC (2004) Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 12(4):485–492

    Article  PubMed  Google Scholar 

  138. Sun G, Shen Y-I, Ho CC, Kusuma S, Gerecht S (2010) Functional groups affect physical and biological properties of dextran-based hydrogels. J Biomed Mater Res A 93(3):1080–1090

    PubMed  Google Scholar 

  139. Sun G, Shen Y-I, Kusuma S, Fox-Talbot K, Steenbergen CJ, Gerecht S (2011) Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials 32(1):95–106

    Article  PubMed  CAS  Google Scholar 

  140. Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, Chan RK, Christy RJ, Chung K (2015) Burn wound healing and treatment: review and advancements. Crit Care 19:243

    Article  PubMed  PubMed Central  Google Scholar 

  141. Sun G, Zhang X, Shen Y-I, Sebastian R, Dickinson LE, Fox-Talbot K, Reinblatt M, Steenbergen C, Harmon JW, Gerecht S (2011) Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci U S A 108(52):20976–20981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shen Y-I, Song H-HG, Papa AE, Burke JA, Volk SW, Gerecht S (2016) Acellular hydrogels for regenerative burn wound healing: translation from a porcine model. J Invest Dermatol 135(10):2519–2529

    Article  CAS  Google Scholar 

  143. Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8(6):457–470

    Article  CAS  PubMed  Google Scholar 

  144. Smiell JM, Wieman TJ, Steed DL, Perry BH, Sampson AR, Schwab BH (1999) Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB)in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen 7(5):335–346

    Article  CAS  PubMed  Google Scholar 

  145. Ferrara N, Alitalo K (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5(12):1359–1364

    Article  CAS  PubMed  Google Scholar 

  146. Kuhl P, Griffith-Cima LG (1996) Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat Med 14(3):353–356

    Article  Google Scholar 

  147. Chiu LLY, Weisel RD, Li R-K, Radisic M (2011) Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering. J Tissue Eng Regen Med 5:69–84

    Article  CAS  PubMed  Google Scholar 

  148. Martino MM, Briquez PS, Guc E, Tortelli F, Kilarski WW, Metzger S, Rice JJ, Kuhn GA, Muller R, Swartz MA, Hubbell JA (2014) Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science 343(6173):885–888

    Article  CAS  PubMed  Google Scholar 

  149. Decker CG, Wang Y, Paluck SJ, Shen L, Loo JA, Levine AJ, Miller LS, Maynard HD (2016) Fibroblast growth factor 2 dimer with superagonist in vitro activity improves granulation tissue formation during wound healing. Biomaterials 81:157–168

    Article  CAS  PubMed  Google Scholar 

  150. Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Invest 117(5):1219–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jiang L, Dai Y, Cui F, Pan Y, Zhang H, Xiao J, Xiaobing FU (2013) Expression of cytokines, growth factors and apoptosis-related signal molecules in chronic pressure ulcer wounds healing. Spinal Cord 52:1–7

    Google Scholar 

  152. Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M (1999) Structural basis for FGF receptor dimerization and activation. Cell 98(5):641–650

    Article  CAS  PubMed  Google Scholar 

  153. Cui Y, Lu C, Meng D, Xiao Z, Hou X, Ding W, Kou D, Yao Y, Chen B, Zhang Z, Li J, Pan J, Dai J (2014) Collagen scaffolds modified with CNTF and bFGF promote facial nerve regeneration in minipigs. Biomaterials 35(27):7819–7827

    Article  CAS  PubMed  Google Scholar 

  154. Nillesen STM, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH (2007) Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28(6):1123–1131

    Article  CAS  PubMed  Google Scholar 

  155. Bhang SH, Kim JH, Yang HS, La WG, Lee TJ, Sun AY, Kim GH, Lee M, Kim BS (2009) Combined delivery of heme oxygenase-1 gene and fibroblast growth factor-2 protein for therapeutic angiogenesis. Biomaterials 30(31):6247–6256

    Article  CAS  PubMed  Google Scholar 

  156. Chen WCW, Lee BG, Park DW, Kim K, Chu H, Kim K, Huard J, Wang Y (2015) Controlled dual delivery of fibroblast growth factor-2 and Interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair. Biomaterials 72:138–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kwan CP, Venkataraman G, Shriver Z, Raman R, Liu D, Qi Y, Varticovski L, Sasisekharan R (2001) Probing fibroblast growth factor dimerization and role of heparin-like glycosaminoglycans in modulating dimerization and signaling. J Biol Chem 276(26):23421–23429

    Article  CAS  PubMed  Google Scholar 

  158. Kang CE, Tator CH, Shoichet MS (2010) Poly(ethylene glycol) modification enhances penetration of fibroblast growth factor 2 to injured spinal cord tissue from an intrathecal delivery system. J Control Release 144(1):25–31

    Article  CAS  PubMed  Google Scholar 

  159. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580

    Article  CAS  PubMed  Google Scholar 

  160. Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H, Ph D (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res 153(2):347–358

    Article  CAS  PubMed  Google Scholar 

  161. Robinson CJ, Stringer SE (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114:853–865

    Article  CAS  PubMed  Google Scholar 

  162. Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4(12):1317–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ferrara N (2010) Binding to the extracellular matrix and proteolytic processing: two key. Mol Biol Cell 21(5):687–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Grant DS, Leblond CP, Kleinman HK, Inoue S, Hassell JR (1989) The incubation of laminin, collagen IV, and heparan sulfate proteoglycan at 35C yields basement membrane-like structures. J Cell Biol 108(4):1567–1574

    Article  CAS  PubMed  Google Scholar 

  165. Zhou Z, Wang J, Cao R, Morita H, Soininen R, Chan KM, Liu B, Cao Y, Tryggvason K (2004) Impaired angiogenesis, delayed wound healing and retarded tumor growth in Perlecan heparan sulfate-deficient mice. Cancer Res 64(14):4699–4702

    Article  CAS  PubMed  Google Scholar 

  166. Steinstraesser L, Lam MC, Jacobsen F, Porporato PE, Chereddy KK, Becerikli M, Stricker I, Hancock RE, Lehnhardt M, Sonveaux P, Préat V, Vandermeulen G (2014) Skin electroporation of a plasmid encoding hCAP-18/LL-37 host defense peptide promotes wound healing. Mol Ther 22(4):734–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Powell RJ, Simons M, Mendelsohn FO, Daniel G, Henry TD, Koga M, Morishita R, Annex BH (2008) Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 118(1):58–65

    Article  CAS  PubMed  Google Scholar 

  168. Morishita R, Makino H, Aoki M, Hashiya N, Yamasaki K, Azuma J, Taniyama Y, Sawa Y, Kaneda Y, Ogihara T (2011) Phase I/IIa clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia. Arterioscler Thromb Vasc Biol 31(3):713–720

    Article  CAS  PubMed  Google Scholar 

  169. Lord MS, Ellis AL, Farrugia BL, Whitelock JM, Grenett H, Li C, O’Grady RL, DeCarlo AA (2017) Perlecan and vascular endothelial growth factor-encoding DNA-loaded chitosan scaffolds promote angiogenesis and wound healing. J Control Release 250:48–61

    Article  CAS  PubMed  Google Scholar 

  170. Turner CT, McInnes SJP, Melville E, Cowin AJ, Voelcker NH (2016) Delivery of flightless I neutralizing antibody from porous silicon nanoparticles improves wound healing in diabetic mice. Adv Healthc Mater 6(2):1600707

    Article  CAS  Google Scholar 

  171. Cowin AJ, Adams DH, Strudwick XL, Chan H, Hooper JA, Sander GR, Rayner TE, Marrhaei KI, Powell BC, Campbell HD (2007) Flightless I deficiency enhances wound repair by increasing cell migration and proliferation. J Pathol 211(5):572–581

    Article  CAS  PubMed  Google Scholar 

  172. Adams DH, Ruzehaji N, Strudwick XL, Greenwood JE, Campbell HD, Arkell R, Cowin AJ (2009) Attenuation of flightless I, an actin-remodelling protein, improves burn injury repair via modulation of transforming growth factor (TGF)-β1 and TGF-β3. Br J Dermatol 161(2):326–336

    Article  CAS  PubMed  Google Scholar 

  173. Kopecki Z, Ruzehaji N, Turner C, Iwata H, Ludwig RJ, Zillikens D, Murrell DF, Cowin AJ (2013) Topically applied flightless I neutralizing antibodies improve healing of blistered skin in a murine model of epidermolysis bullosa acquisita. J Invest Dermatol 133(4):1008–1016

    Article  CAS  PubMed  Google Scholar 

  174. Cullis AG, Canham LT, Calcott PDJ (1997) The structural and luminescence properties of porous silicon. J Appl Phys 82(3):909–965

    Article  CAS  Google Scholar 

  175. Xu K, Cantu DA, Fu Y, Kim J, Zheng X, Hematti P, Kao WJ (2013) Thiol-ene Michael-type formation of gelatin/poly(ethylene glycol) biomatrices for three-dimensional mesenchymal stromal/stem cell administration to cutaneous wounds. Acta Biomater 9(11):8802–8814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Modarressi A, Pietramaggiori G, Godbout C, Vigato E, Pittet B, Hinz B (2010) Hypoxia impairs skin myofibroblast differentiation and function. J Invest Dermatol 130(12):2818–2827

    Article  CAS  PubMed  Google Scholar 

  177. Siddiqui A, Galiano RD, Connors D, Gruskin E, Wu L, Mustoe TA (1996) Differential effects of oxygen on human dermal fibroblasts: acute versus chronic hypoxia. Wound Repair Regen 4(2):211–218

    Article  CAS  PubMed  Google Scholar 

  178. Burns JL, Mancoll JS, Phillips LG (2003) Impairments to wound healing. Clin Plast Surg 30:47–56

    Article  PubMed  Google Scholar 

  179. Chen S, Shi J, Zhang M, Chen Y, Wang X, Zhang L, Tian Z, Yan Y, Li Q, Zhong W, Xing M, Zhang L, Zhang L (2015) Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Sci Rep 5:18104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, Madsen KG, Phipps R, Krogfelt K, Høiby N, Givskov M (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16:2–10

    Article  PubMed  Google Scholar 

  181. Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366(9498):1736–1743

    Article  PubMed  Google Scholar 

  182. Shi J, Ouyang J, Li Q, Wang L, Wu J, Zhong W, Xing MMQ (2012) Cell-compatible hydrogels based on a multifunctional crosslinker with tunable stiffness for tissue engineering. J Mater Chem 22(45):23952

    Article  CAS  Google Scholar 

  183. Ding J, Ma Z, Shankowsky HA, Medina A, Tredget EE (2013) Deep dermal fibroblast profibrotic characteristics are enhanced by bone marrow-derived mesenchymal stem cells. Wound Repair Regen 21(3):448–455

    Article  PubMed  Google Scholar 

  184. Ma K, Liao S, He L, Lu J, Ramakrishna S, Chan CK (2011) Effects of nanofiber/stem cell composite on wound healing in acute full-thickness skin wounds. Tissue Eng Part A 17:1413–1424

    Article  CAS  PubMed  Google Scholar 

  185. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180:2581–2587

    Article  CAS  PubMed  Google Scholar 

  186. Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, Longaker MT, Gurtner GC (2012) Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 33(1):80–90

    Article  CAS  PubMed  Google Scholar 

  187. Jiang D, Qi Y, Walker NG, Sindrilaru A, Hainzl A, Wlaschek M, MacNeil S, Scharffetter-Kochanek K (2013) The effect of adipose tissue derived MSCs delivered by a chemically defined carrier on full-thickness cutaneous wound healing. Biomaterials 34(10):2501–2515

    Article  CAS  PubMed  Google Scholar 

  188. Delavary BM, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ (2011) Macrophages in skin injury and repair. Immunobiology 216:753–762

    Article  CAS  Google Scholar 

  189. Faulknor RA, Olekson MA, Nativ NI, Ghodbane M, Gray AJ, Berthiaume F (2015) Mesenchymal stromal cells reverse hypoxia-mediated suppression of a-smooth muscle actin expression in human dermal fibroblasts. Biochem Biophys Res Commun 458(1):8–13

    Article  CAS  PubMed  Google Scholar 

  190. Chen L, Xu Y, Zhao J, Zhang Z, Yang R, Xie J, Liu X, Qi S (2014) Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One 9(4):e96161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Jun EK, Zhang Q, Yoon BS, Moon JH, Lee G, Park G, Kang PJ, Lee JH, Kim A, You S (2014) Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-b1/SMAD2 and PI3K/AKT pathways. Int J Mol Sci 15(1):605–628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research work completed by members of Dr. Gerecht’s laboratory that is cited in this review and the funding resources used to support that work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. Dickinson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davenport, M., Dickinson, L.E. (2018). Engineered Biomaterials for Chronic Wound Healing. In: Shiffman, M., Low, M. (eds) Chronic Wounds, Wound Dressings and Wound Healing. Recent Clinical Techniques, Results, and Research in Wounds, vol 6. Springer, Cham. https://doi.org/10.1007/15695_2017_92

Download citation

  • DOI: https://doi.org/10.1007/15695_2017_92

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10697-3

  • Online ISBN: 978-3-030-10698-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics