Skip to main content

Impacts of the LARES and LARES-2 Satellite Missions on the SLR Terrestrial Reference Frame

  • Conference paper
  • First Online:
IX Hotine-Marussi Symposium on Mathematical Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 151))

Abstract

LARES, an Italian satellite launched in 2012, and its successor LARES-2 approved by the Italian Space Agency, aim at the precise measurement of frame dragging predicted by General Relativity and other tests of fundamental physics. Both satellites are equipped with Laser retro-reflectors for Satellite Laser Ranging (SLR). Both satellites are also the most dense particles ever placed in an orbit around the Earth thus being nearly undisturbed by nuisance forces as atmospheric drag or solar radiation pressure. They are, therefore, ideally suited to contribute to the terrestrial reference frame (TRF). At GFZ we have implemented a tool to realistically simulate observations of all four space-geodetic techniques and to generate a TRF from that. Here we augment the LAGEOS based SLR simulation by LARES and LARES-2 simulations. It turns out that LARES and LARES-2, alone or in combination, can not deliver TRFs that meet the quality of the LAGEOS based TRF. However, once the LARES are combined with the LAGEOS satellites the formal errors of the estimated ground station coordinates and velocities and the co-estimated Earth Rotation Parameters are considerably reduced. The improvement is beyond what is expected from error propagation due to the increased number of observations. Also importantly, the improvement concerns in particular origin and scale of the TRF of about 25% w.r.t. the LAGEOS-combined TRF. Furthermore, we find that co-estimation of weekly average range biases for all stations does not change the resulting TRFs in this simulation scenario free of systematic errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121(8). https://doi.org/10.1002/2016JB013098

  • Appleby G, Rodriguez J, Altamimi Z (2016) Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993–2014. J Geod 90:12. https://doi.org/10.1007/s00190-016-0929-2

    Article  Google Scholar 

  • Bizouard C, Gambis, D (2011) The combined solution C04 for earth orientation parameters consistent with international terrestrial reference frame 2008. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.-pdf

  • Ciufolini I, Moreno Monge B, Paolozzi A, Koenig R, Sindoni G, Michalak G, Pavlis EC (2013) Monte Carlo simulations of the LARES space experiment to test general relativity and fundamental physics. Classical Quantum Gravity 30:23. https://doi.org/10.1088/0264-9381/30/23/235009

    Article  Google Scholar 

  • Ciufolini I, Paolozzi A, Pavlis EC, Sindoni G, Koenig R, Ries JC, Matzner R, Gurzadyan V, Penrose R, Rubincam D, Paris C (2017a) A new laser-ranged satellite for general relativity and space geodesy: I. An introduction to the LARES2 space experiment. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2017-11635-1

  • Ciufolini I, Pavlis EC, Sindoni G, Ries JC, Paolozzi A, Matzner R, Koenig R, Paris C (2017b) A new laser-ranged satellite for general relativity and space geodesy: II. Monte Carlo simulations and covariance analyses of the LARES 2 experiment. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2017-11636-0

  • Desai S (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107(C11). https://doi.org/10.1029/2001JC001224

  • Glaser S, Ampatzidis D, König R, Nilsson T, Heinkelmann R, Flechner F, Schuh H (2016) Simulation of VLBI observations to determine a global TRF for GGOS. IAG symposia series. Springer, Berlin. https://doi.org/10.1007/1345_2016_256

  • Glaser S, König R, Ampatzidis D, Nilsson T, Heinkelmann R, Flechner F, Schuh H (2017) A global terrestrial reference frame from simulated VLBI and SLR data in view of GGOS. J Geod. https://doi.org/10.1007/s00190-017-1021-2

  • Glaser S, König R, Neumayer KH, Nilsson T, Heinkelmann R, Flechtner F, Schuh H (2019a) On the impact of local ties on the datum realization of global terrestrial reference frames. J Geod. https://doi.org/10.1007/s00190-018-1189-0

  • Glaser S, König R, Neumayer KH, Balidakis K, Schuh H (2019b) Future SLR station networks in the framework of simulated multi-technique terrestrial reference frames. J Geod https://doi.org/10.1007/s00190-019-01256-8

  • Gross R, Beutler G, Plag HP (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin, pp 209–224. https://doi.org/10.1007/978-3-642-02687-4_7

    Chapter  Google Scholar 

  • IERS (2018) International earth rotation and reference systems service. http://www.iers.org. Accessed 30 Oct 2018

  • Kehm A, Blossfeld M, Pavlis EC, Seitz F (2017) Future global SLR network evolution and its impact on the terrestrial reference frame. J Geod 92:625. https://doi.org/10.1007/s00190-017-1083-1

    Article  Google Scholar 

  • Mendes VB, Pavlis EC (2004) High accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31:L14602. https://doi.org/10.1029/2004GL020308

    Article  Google Scholar 

  • Otsubo T, Matsuo K, Aoyama Y, Yamamoto K, Hobiger T, Kubo-oka T, Sekido M (2016) Effective expansion of satellite laser ranging network to improve global geodetic parameters. Earth Planets Space 68:65. https://doi.org/10.1186/s40623-016-0447-8

    Article  Google Scholar 

  • Paolozzi A, Ciufolini I, Paris C, Sindoni G (2015) LARES: a new satellite specifically designed for testing general relativity. Int J Aerosp Eng 2015, Article ID 341384. https://doi.org/10.1155/2015/341384

  • Pearlman MR, Degnan JJ, and Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS conventions (2010). Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

    Google Scholar 

  • Schuh H, König R, Ampatzidis D, Glaser S, Flechner F, Heinkelmann R, Nilsson T (2015) GGOS-SIM: simulation of the reference frame for the global geodetic observing system. In: van Dam T (eds) REFAG 2014, International association of geodesy symposia, vol 146, pp 95–100. https://doi.org/10.1007/1345_2015_217

  • Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75(2–3):63–73

    Article  Google Scholar 

  • Zhu S, Reigber Ch, König R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J Geod 78(1–2):103–108

    Google Scholar 

Download references

Acknowledgements

SLR data and a priori station coordinates are provided by the ILRS. EOPs are provided by IERS (IERS 2018). The basic LAGEOS results have been achieved within project GGOS-SIM (SCHU 1103/8-1) of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). I.C. and A.P. acknowledge ASI for supporting both LARES and LARES 2 missions under agreements No. 2015-021-R.0 and No. 2017-23-H.0. The authors would like to thank two anonymous reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf König .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

König, R., Glaser, S., Ciufolini, I., Paolozzi, A. (2019). Impacts of the LARES and LARES-2 Satellite Missions on the SLR Terrestrial Reference Frame. In: Novák, P., Crespi, M., Sneeuw, N., Sansò, F. (eds) IX Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, vol 151. Springer, Cham. https://doi.org/10.1007/1345_2019_84

Download citation

Publish with us

Policies and ethics