Skip to main content

Parameters Influencing Fatigue Characteristics of Tyre Tread Rubber Compounds

  • Chapter
  • First Online:
Degradation of Elastomers in Practice, Experiments and Modeling

Part of the book series: Advances in Polymer Science ((POLYMER,volume 289))

Abstract

Tyre acts as a linkage between a vehicle and road. Out of many functions a tyre must perform in its service life, durability is one of them. In service, a tyre is exposed to all kinds of road hazards (sharp asperities, pot holes, nails, etc.) and this may cause cuts on different parts of a tyre, viz. tread, sidewall, etc. These cuts propagate during subsequent loading and tyre may fail on reaching a critical crack length. To ensure tyre durability, knowledge of fatigue crack propagation is essential. In a tyre, majorly Natural rubber (NR), Butadiene rubber (BR) and Styrene butadiene rubber (SBR) are used. In this work, fatigue crack growth (FCG) characteristics of these rubbers and their blends using a Tear & Fatigue Analyser (TFA, Coesfeld GmbH & Co. KG, Germany) are studied in detail. This study emphasized on capturing the influence of material composition (rubber, rubber blend and filler) and operational conditions (temperature, waveform and R ratio) on FCG resistance of tyre rubber compounds. It has been observed that rubber blends have shown superior FCG resistance over single rubber compounds up to a certain tearing energy level. The influence of filler on FCG resistance has varied effect on crystallized and non-crystallized rubbers. In addition to filler, much higher property enhancement is observed in non-crystallized rubber compared to crystallized one. FCG resistance found to be increased with decrease in carbon black particle size. Temperature has a deleterious effect on FCG resistance and this effect is more prominent in blend compounds. Gaussian pulse load form exhibited higher FCG rate compared to sine loading. Positive R ratio exhibited superior FCG resistance, especially in NR compound. It has also been observed that advantage of positive R ratio effect in terms of superior FCG resistance diminished due to increase in measurement temperature. Fractured surface micrographs of NR compounds are distinctly different from BR and SBR compounds and reflected as higher root mean square roughness parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamed GR (1994) Molecular aspects of the fatigue and fracture of rubber. Rubber Chem Technol 67:529–536

    Article  CAS  Google Scholar 

  2. Mangaraj D (2002) Elastomer blends. Rubber Chem Technol 75:366–428

    Article  Google Scholar 

  3. Mars WV, Fatemi A (2004) Factors that affect fatigue life of rubber: a literature survey. Rubber Chem Technol 77:391–412

    Article  CAS  Google Scholar 

  4. Tee YL, Loo MS, Andriyana A (2018) Recent advances on fatigue of rubber after the literature survey by Mars and Fatemi in 2002 and 2004. Int J Fatigue 110:115–129

    Article  CAS  Google Scholar 

  5. Young DG (1985) Dynamic property and fatigue crack propagation research on tire sidewall and model compounds. Rubber Chem Technol 58:785–805

    Article  CAS  Google Scholar 

  6. Lee MP (1993) Analysis of fatigue crack propagation in NR/BR rubber blend. Rubber Chem Technol 66:304–316

    Article  CAS  Google Scholar 

  7. Chung WW, Chang YW (2001) Fatigue crack growth behavior of NR/EPDM blend. Korea Polym J 9:319–326

    Article  CAS  Google Scholar 

  8. Ghosh P, Stocek R, Gehde M, Mukhopadhyay R, Krishnakumar R (2014) Investigation of fatigue crack growth characteristics of NR/BR blend based Tyre tread compounds. Int J Fract 188:9–21

    Article  CAS  Google Scholar 

  9. Ghosh P, Mukhopadhyay R, Stocek R (2016) Durability prediction of NR/BR and NR/SBR blend tread compounds using tear fatigue Analyser. KGK-Kautschuk Gummi Kunststoffe 69:53–55

    CAS  Google Scholar 

  10. Stoček R, Ghosh P, Machů A, Chanda J, Mukhopadhyay R (2020) Fatigue crack growth vs. chip and cut wear of NR and NR/SBR blend-based rubber compounds. In: Heinrich G, Kipscholl R, Stoček R (eds) Fatigue crack growth in rubber materials. Advances in polymer science, vol 286. Springer, Cham. https://doi.org/10.1007/12_2020_67

    Chapter  Google Scholar 

  11. Stoček R, Stěnička M, Maloch J (2020) Determining parametrical functions defining the deformations of a plane strain tensile rubber sample. In: Heinrich G, Kipscholl R, Stoček R (eds) Fatigue crack growth in rubber materials. Advances in polymer science, vol 286. Springer, Cham. https://doi.org/10.1007/12_2020_78

    Chapter  Google Scholar 

  12. Kim JH, Jeong HY (2005) A study on the material properties and fatigue life of natural rubber with different carbon blacks. Int J Fatigue 27:263–272

    Article  CAS  Google Scholar 

  13. Nie Y, Wang B, Huang H, Qu L, Zhang P, Weng G, Wu J (2010) Relationship between the material properties and fatigue crack-growth characteristics of natural rubber filled with different carbon blacks. J Appl Polym Sci 117:3441–3447

    CAS  Google Scholar 

  14. Reincke K, Grellmann W, Kluppel M (2009) Investigation of fracture mechanical properties of filler-reinforced styrene-butadiene elastomers. Kautschuk Gumi Kunstoffe 5:246–251

    Google Scholar 

  15. Young DG, Danik JA (1994) Effect of temperature on fatigue and fracture. Rubber Chem Technol 67:137–147

    Article  CAS  Google Scholar 

  16. Legorju-jago K, Bathias C (2002) Fatigue initiation and propagation in natural and synthetic rubbers. Int J Fatigue 24:85–92

    Article  CAS  Google Scholar 

  17. Lake GJ, Lindley PB (1965) Cut growth and fatigue of rubbers. II. Experiments on a noncrystallizing rubber. Rubber Chem Technol 38:301–313

    Article  Google Scholar 

  18. Stoček R, Kratina O, Ghosh P, Maláč J, Mukhopadhyay R (2017) Influence of thermal ageing process on the crack propagation of rubber used for tire application. In: Grellmann W, Langer B (eds) Deformation and fracture behaviour of polymer materials. Springer, Berlin, pp 305–316. ISBN 978-3-319-41879-7. https://doi.org/10.1007/978-3-319-41879-7_24

  19. Harbour RJ, Fatemi A, Mars WV (2008) Fatigue life analysis and predictions for NR and SBR under variable amplitude and multiaxial loading conditions. Int J Fatigue 30:1231–1247

    Article  CAS  Google Scholar 

  20. Harbour RJ, Fatemi A, Mars WV (2007) The effect of dwell period on fatigue crack growth rates in filled SBR and NR. Rubber Chem Technol 80:838–853

    Article  CAS  Google Scholar 

  21. Andreini G, Straffi P, Cotugno S, Gallone G, Polacco G (2010) Comparison of sine versus pulse waveform effects on fatigue crack growth behaviour of NR, SBR and BR compounds. Rubber Chem Technol 83:391–403

    Article  CAS  Google Scholar 

  22. Andreini G, Straffi P, Cotugno S, Gallone G, Polacco G (2013) Crack growth behaviour of styrene-butadiene rubber, natural rubber and polybutadiene rubber compounds: comparison of pure-shear versus strip tensile test. Rubber Chem Technol 86:132–145

    Article  Google Scholar 

  23. Lindley PB (1973) Relation between hysteresis and dynamic crack growth resistance of natural rubber. Int J Fract 9:449–462

    Article  CAS  Google Scholar 

  24. Mars WV, Fatemi A (2003) A phenomenological model for the effect of R-ratio on fatigue of strain crystallizing rubbers. Rubber Chem Technol 76:1241–1258

    Article  CAS  Google Scholar 

  25. Abraham F, Alshuth T, Jerrams S (2004) The effect of minimum stress and stress amplitude on the fatigue life of non strain crystallising elastomers. Mater Des 26:239–245

    Article  Google Scholar 

  26. Saintier N, Cailletaud G, Piques R (2011) Cyclic loadings and crystallization of natural rubber: an explanation of fatigue crack propagation reinforcement under a positive loading ratio. Mater Sci Eng A 528:1078–1086

    Article  Google Scholar 

  27. Stadlbauer F, Koch T, Archodoulaki VM, Planitzer F, Fidi W, Holzner A (2013) Influence of experimental parameters on fatigue crack growth and heat build-up in rubber. Materials 6:5502–5516

    Article  Google Scholar 

  28. Qazvini N, Mohammadi N, Jalali A, Varasteh A (2002) The fracture behaviour of rubbery vulcanizates: I. Single component versus blend systems. Rubber Chem Technol 75:77–82

    Article  CAS  Google Scholar 

  29. Eisele U, Kelbch SA, Engels HW (1992) The tear analyzer – a new tool for quantitative measurements of the dynamic crack growth of elastomers. Kautschuk Gummi Kunststoffe 45:1064–1069

    CAS  Google Scholar 

  30. Stoček, R.; Heinrich, G. Gehde, M., Kipscholl, R (2013) Analysis of dynamic crack propagation in elastomers by simultaneous tensile- and pure-shear-mode testing. In: W. Grellmann et al. (eds) Fracture mechanics & statistical mechanics, LNACM 70, pp. 269–301, 978-3-642-37909-3

    Chapter  Google Scholar 

  31. Bertenev GM, Zuyev YS (1968) Strength and failure of visco-elastic material. Pergamon Press

    Google Scholar 

  32. Gent AN, Lindley PB, Thomas AG (1965) Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue. Rubber Chem Technol 38:292–300

    Article  Google Scholar 

  33. Liu C, Dong B, Li Z, Zheng Q, Wu Y (2015) Influence of strain amiplification near crac tip on the fracture resistance of carbon black filled SBR. Rubber Chem Technol 88:276–288

    Article  CAS  Google Scholar 

  34. Bruning K, Schneider K, Roth SV, Heinrich G (2013) Strain-induced cristallization around a crack tip in natural rubber under dynamic load. Polymer 54:6200–6205

    Article  Google Scholar 

  35. Wunde M, Klüppel M (2016) Influence of phase morphology and filler distribution in NR/BR and NR/SBR blends on fracture mechanical properties. Rubber Chem Technol 89:588–607

    Article  CAS  Google Scholar 

  36. Lee DJ, Donovan JA (1987) Microstructural changes in the crac tip region of carbon black filled natural rubber. Rubber Chem Technol 60:910–923

    Article  CAS  Google Scholar 

  37. Sridharan H, Chanda J, Ghosh P, Mukhopadhyay R (2019) Rubber blend and filler effects on damage mechanisms under monotonic and fatigue loading. Rubber Chem Technol 92:415–430

    Article  CAS  Google Scholar 

  38. Lake GJ (1995) Fatigue and fracture of elastomers. Rubber Chem Technol 67:137–147

    Google Scholar 

  39. Persson BNJ, Albohr O, Heinrich G, Ueba H (2005) Crack propagation in rubber like materials. J Phys Condens Matter 17:R1071–R1142

    Article  CAS  Google Scholar 

  40. Kluppel M (2009) Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics. J Phys Condens Matter 21:1–10

    Article  Google Scholar 

  41. Ghosh P, Mukhopadhyay R, Krishna Kumar R (2020) Influence of waveforms on fatigue crack growth characteristics of Tire tread rubber using finite element analysis. Tire Sci Technol. https://doi.org/10.2346/tire.20.190215

  42. Wunde M, Plagge J, Klüppel M (2019) The role of stress softening in crack propagation of filler reinforced elastomers as evaluated by the J-integral. Eng Fract Mech 214:520–533

    Article  Google Scholar 

  43. Ruellan B, Le Cam J-B, Jeanneau I, Canevet F, Mortier F, Robin E (2019) Fatigue of natural rubber under different temperatures. Int J Fatigue 124:544–557

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Managing Committee of Hari Shankar Singhania Elastomer & Tyre Research Institute (HASETRI) for giving permission to publish this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, P., Chanda, J., Mukhopadhyay, R. (2022). Parameters Influencing Fatigue Characteristics of Tyre Tread Rubber Compounds. In: Heinrich, G., Kipscholl, R., Stoček, R. (eds) Degradation of Elastomers in Practice, Experiments and Modeling. Advances in Polymer Science, vol 289. Springer, Cham. https://doi.org/10.1007/12_2022_115

Download citation

Publish with us

Policies and ethics