Skip to main content

Chitosan-Based Theranostics for Cancer Therapy

  • Chapter
  • First Online:
Chitosan for Biomaterials IV

Part of the book series: Advances in Polymer Science ((POLYMER,volume 288))

Abstract

Chitosan, a natural-based cationic polysaccharide, has a great potential to be utilized as drug delivery systems, tissue engineering scaffolds, and wound dressings due to its biocompatibility, bioactivity, biodegradability, antibacterial property, gelling behavior, cell adhesion, and proliferation abilities. Due to the presence of primary amino and hydroxyl groups, chitosan can be chemically modified or functionalized with other bioactive molecules easily to improve its physicochemical and biological properties required for advanced biomedical applications. In this context, considerable efforts have been made to conjugate chitosan and its derivatives with different types of photosensitizers/photothermal agents, quantum dots (QDs), bioactive molecules, metals, and metal oxides to develop theranostic agents for concurrent imaging and treatment of tumors. The chitosan-based theranostics were found to have better cellular imaging capability, tumor-targeted drug release, and multimodal therapeutic efficiencies. This chapter reviews the recent progress of chitosan-based theranostics, their properties, and applications in advanced cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nair JB, Joseph MM, Mohapatra S, Safeera M, Ghosh S, Sreelekha TT, Maiti KK (2016) A dual-targeting octaguanidine–doxorubicin conjugate transporter for inducing caspase-mediated apoptosis on folate-expressing cancer cells. Chem Med Chem 11(7):702–712

    Article  CAS  PubMed  Google Scholar 

  2. Peng N, Wu B, Wang L, He W, Ai Z, Zhang X, Wang Y, Fan L, Ye Q (2016) High drug loading and pH-responsive targeted nanocarriers from alginate-modified SPIONs for anti-tumor chemotherapy. Biomater Sci 4(12):1802–1813

    Article  CAS  PubMed  Google Scholar 

  3. Gonciar D, Mocan T, Matea CT, Zdrehus C, Mosteanu O, Mocan L, Pop T (2019) Nanotechnology in metastatic cancer treatment: current achievements and future research trends. J Cancer 10(6):1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Zhang H (2019) Nanoparticle-based drug delivery systems for enhanced tumor-targeting treatment. J Biomed Nanotech 15(1):1–27

    Article  CAS  Google Scholar 

  5. Teijeiro-Valino C, Novoa-Carballal R, Borrajo E, Vidal A, Alonso-Nocelo M, de la Fuente FM, Lopez-Casas PP, Hidalgo M, Csaba N, Alonso MJ (2019) A multifunctional drug nanocarrier for efficient anticancer therapy. J Control Release 294:154–164

    Article  CAS  PubMed  Google Scholar 

  6. Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ (2019) A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomedicine 14:1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nunes SS, De Barros ALB (2015) The use of coating agents to enhance liposomes blood circulation time. J Mol Pharm Org Proc Res 3(1):e120

    Google Scholar 

  8. He Q, Liu J, Liang J, Liu X, Li W, Liu Z, Ding Z, Tuo D (2018) Towards improvements for penetrating the blood–brain barrier - recent progress from a material and pharmaceutical perspective. Cell 7(4):24

    Article  CAS  Google Scholar 

  9. Jiang H, Guo D, Chen D, Wu Y, Jin X, Zhu X (2019) A new insight into the reversal of multidrug resistance in cancer by nanodrugs. Biomater Sci 7(8):3489–3496

    Article  CAS  PubMed  Google Scholar 

  10. Mirrahimi M, Abed Z, Beik J, Shiri I, Dezfuli AS, Mahabadi VP, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A (2019) A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol Res 143:178–185

    Article  CAS  PubMed  Google Scholar 

  11. An J, Yang XQ, Cheng K, Song XL, Zhang L, Li C, Zhang XS, Xuan Y, Song YY, Fang BY, Hou XL (2017) In vivo computed tomography/photoacoustic imaging and NIR-triggered chemo–photothermal combined therapy based on a gold nanostar, mesoporous silica, and thermosensitive liposome-composited nanoprobe. ACS Appl Mater Interfaces 9(48):41748–41759

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, Liu X, Deng G, Wang Q, Zhang L, Wang Q, Lu J (2017) Multifunctional PS@CS@Au–Fe3O4–FA nanocomposites for CT, MR and fluorescence imaging guided targeted-photothermal therapy of cancer cells. J Mater Chem B 5(22):4221–4232

    Article  CAS  PubMed  Google Scholar 

  13. Calavia PG, Bruce G, Pérez-García L, Russell DA (2018) Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem Photobiol Sci 17(11):1534–1552

    Article  Google Scholar 

  14. Simões JCS, Sarpaki S, Papadimitroulas P, Therrien B, Loudos G (2020) Conjugated photosensitizers for imaging and PDT in cancer research. J Med Chem 63(23):14119–14150

    Article  PubMed  CAS  Google Scholar 

  15. Lee SJ, Park K, Oh YK, Kwon SH, Her S, Kim IS, Choi K, Lee SJ, Kim H, Lee SG, Kim K, Kwon IC (2009) Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosanbased nanoparticles in tumor-bearingmice. Biomaterials 30:2929–2939

    Article  CAS  PubMed  Google Scholar 

  16. Lim CK, Shin J, Kwon IC, Jeong SY, Kim S (2012) Iodinated photosensitizing chitosan: self-assembly into tumor-homing nanoparticles with enhanced singlet oxygen generation. Bioconjug Chem 23:1022–1028

    Article  CAS  PubMed  Google Scholar 

  17. Lee SJ, Koo H, Jeong H, Huh MS, Choi Y, Jeong SY, Byun E, Choi K, Kim K, Kwon IC (2011) Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J Control Release 152:21–29

    Article  CAS  PubMed  Google Scholar 

  18. Shrestha A, Kishen A (2012) Polycationic chitosan-conjugated photosensitizer for antibacterial photodynamic therapy. Photochem Photobiol 88:577–583

    Article  CAS  PubMed  Google Scholar 

  19. Sun L, Jiang W, Zhang H, Guo Y, Chen W, Jin Y, Chen H, Du K, Dai H, Ji J, Wang B (2019) Photosensitizer-loaded multifunctional chitosan nanoparticles for simultaneous in situ imaging, highly efficient bacterial biofilm eradication and tumor ablation. ACS Appl Mater Interfaces 11:2302–2316

    Article  CAS  PubMed  Google Scholar 

  20. Pandya AD, Øverbye A, Sahariah P, Gaware VS, Høgset H, Masson M, Høgset A, Mælandsmo GM, Skotland T, Sandvig K, Iversen TG (2020) Drug-loaded photosensitizer-chitosan nanoparticles for combinatorial chemo- and photodynamic therapy of cancer. Biomacromolecules 21:1489–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doughty ACV, Hoover AR, Layton E, Murray CK, Howard EW, Chen WR (2019) Nanomaterial applications in photothermal therapy for cancer. Materials (Basel) 2(5):779

    Article  CAS  Google Scholar 

  22. Kumar P, Srivastava R (2015) IR 820 stabilized multifunctional polycaprolactone glycol chitosan composite nanoparticles for cancer therapy. RSC Adv 5:56162–56170

    Article  CAS  Google Scholar 

  23. Manivasagan P, Bui NQ, Bharathiraja S, Moorthy MS, Oh YO, Song K, Seo H, Yoon M, Oh J (2017) Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer. Sci Rep 7:43593

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee S, Jo G, Jung JS, Yang DH, Hyun H (2020) Near-infra-red fluorescent chitosan oligosaccharide lactate for targeted cancer imaging and photothermal therapy. Artif Cells Nanomed Biotech 48:1144–1152

    Article  CAS  Google Scholar 

  25. Kulkarni NS, Guererro Y, Gupta N, Muth A, Gupta V (2019) Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J Drug Del Sci Technol 49:352–364

    Article  CAS  Google Scholar 

  26. Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28:1565–1571

    Article  CAS  PubMed  Google Scholar 

  27. Yuan Q, Hein S, Misra RD (2010) New generation of chitosan encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater 6:2732–2739

    Article  CAS  PubMed  Google Scholar 

  28. Upadhyaya L, Singh J, Agarwal V, Pandey AC, Verma SP, Das P, Tewari RP (2015) Efficient water soluble nanostructured ZnO grafted O-carboxymethyl chitosan/curcumin-nanocomposite for cancer therapy. Process Biochem 50:678–688

    Article  CAS  Google Scholar 

  29. Ma Q, Lin ZH, Yang N, Li Y, Su XG (2014) A novel carboxymethyl chitosan–quantum dot-based intracellular probe for Zn2+ ion sensing in prostate cancer cells. Acta Biomater 10:868–874

    Article  CAS  PubMed  Google Scholar 

  30. Kumar H, Srivastava R, Dutta PK (2013) Highly luminescent chitosan-L-cysteine functionalized CdTe quantum dots film: synthesis and characterization. Carbohydr Polym 97:327–334

    Article  CAS  PubMed  Google Scholar 

  31. Yang H, Xu M, Li S, Shen X, Li T, Yan J, Zhang C, Wu C, Zeng H, Liu Y (2016) Chitosan hybrid nanoparticles as a theranostic platform for targeted doxorubicin/VEGF shRNA codelivery and dual-modality fluorescence imaging. RSC Adv 6:29685

    Article  CAS  Google Scholar 

  32. Ding Y, Yin H, Chen R, Bai R, Chen C, Hao X, Shen S, Sun K, Liu F (2017) Carboxymethyl chitosan based nanocomposites containing chemically bonded quantum dots and magnetic nanoparticles. Appl Surf Sci:433

    Google Scholar 

  33. Lin YJ, Huang KB, Wu YC, Rani P, Lin HR (2019) Pluronic-chitosan-folate nano-micelles incorporated with quantum dots for anti-cancer drug therapy. Int J Polym Mater Polym Biomater 68:16

    Article  Google Scholar 

  34. Janus L, Piatkowski M, Pragłowska JR, Bogdał D, Matysek D (2019) Chitosan-based carbon quantum dots for biomedical applications: synthesis and characterization. Nano 9:274

    CAS  Google Scholar 

  35. Yu W, Yu N, Wang Z, Li X, Song C, Jiang R, Geng P, Li M, Yin S, Chen Z (2019) Chitosan-mediated green synthesis and folic-acid modification of CuS quantum dots for photoacoustic imaging guided photothermal therapy of tumor. J Colloid Inter Sci 555:480–488

    Article  CAS  Google Scholar 

  36. Mohammed MA, Syeda JTM, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9(4):53

    Article  PubMed Central  CAS  Google Scholar 

  37. Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Rozaria A, Pontillo N, Tzani A, Christodoulou P, Siliachli A, Zoumpoulakis P (2020) Nanosystems for the encapsulation of natural products: the case of chitosan biopolymer as a matrix. Pharmaceutics 12:669

    Article  CAS  PubMed Central  Google Scholar 

  38. Thangam R, Sundarraj S, Vivek R, Suresh V, Sivasubramanian S, Paulpandi M, Karthick SV, Ragavi AS, Kannan S (2015) Theranostic potentials of multifunctional chitosan-silver-phycoerythrin nanocomposites against triple negative breast cancer cells. RSC Adv 5:12209–12223

    Article  CAS  Google Scholar 

  39. Wang Z, Dong J, Zhao Q, Ying Y, Zhang L, Zou J, Jiang S (2020) Gold nanoparticle-mediated delivery of paclitaxel and nucleic acids for cancer therapy. Mol Med Rep 22:4475–4484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang C, Huang P, Bao L, He M, Luo T, Gao G, Cui D (2011) Enhancement of gastric cell radiation sensitivity by chitosan-modified gold nanoparticles. J Nanosci Nanotechnol 11:9528–9535

    Article  CAS  PubMed  Google Scholar 

  41. Sahoo AK, Banerjee S, Ghosh SS, Chattopadhyay A (2013) Simultaneous RGB emitting Au nanoclusters in chitosan nanoparticles for anticancer gene theranostics. ACS Appl Mater Interfaces 6:712–724

    Article  PubMed  CAS  Google Scholar 

  42. Yan E, Cao M, Wang Y, Hao X, Pei S, Gao J, Wang Y, Zhang Z, Zhang D (2016) Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery. Mater Sci Eng C 58:1090–1097

    Article  CAS  Google Scholar 

  43. Bharathiraja S, Bui NQ, Manivasagan P, Moorthy MS, Mondal S, Seo H, Phuoc NT, Phan TTV, Kim H, Lee KD, Oh J (2018) Multimodal tumor-homing chitosan oligosaccharide coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci Rep 8:500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sun IC, Ahn CH, Kim K, Emelianov S (2019) Photoacoustic imaging of cancer cells with glycol-chitosan-coated gold nanoparticles as contrast agents. J Biomed Opt 24(12):1–5

    Article  CAS  PubMed  Google Scholar 

  45. Wang X, Almoallim HS, Cui Q, Alharbi SA, Yang H (2021) In situ decorated Au NPs on chitosan-encapsulated Fe3O4-NH2 NPs as magnetic nanocomposite: investigation of its anti-colon carcinoma, anti-gastric cancer and anti-pancreatic cancer. Int J Biol Macromol 171:198–207

    Article  CAS  PubMed  Google Scholar 

  46. Ma K, Cheng Y, Wei X, Chen D, Zhao X, Jia P (2020) Gold embedded chitosan nanoparticles with cell membrane mimetic polymer coating for pH-sensitive controlled drug release and cellular fluorescence imaging. J Biomater Appl 35(7):088532822095259

    Google Scholar 

  47. Guo T, Lin M, Huang J, Zhou C, Tian W, Yu H, Jiang X, Ye J, Shi Y, Xiao Y, Bian X, Feng X (2018) The recent advances of magnetic nanoparticles in medicine. J Nanomater 2018:7805147

    Article  CAS  Google Scholar 

  48. Natarajan S, Harini K, Gajula GP, Sarmento B, Petersen MTN, Thiagarajan V (2019) Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Mater 1:2

    Article  Google Scholar 

  49. Farnaz A, Hoda J, Hossein A, Vaghari H, Anarjan N, Ahmadi O, Berenjian A (2017) Chitosan magnetic nanoparticles for drug delivery systems. Crit Rev Biotechnol 37:492–509

    Article  CAS  Google Scholar 

  50. Nabavinia M, Huarac JB (2020) Recent progress in iron oxide nanoparticles as therapeutic magnetic agents for cancer treatment and tissue engineering. ACS Appl Bio Mater 3(12):8172–8187

    Article  CAS  PubMed  Google Scholar 

  51. Lee CM, Jeong HJ, Kim SL, Jeong HJ, Kim EM, Park EH, Kim DW, Lim ST (2009) SPION-loaded chitosan–linoleic acid nanoparticles to target hepatocytes. Int J Pharm 371:163–169

    Article  CAS  PubMed  Google Scholar 

  52. Maria VL, Daniel T, Dolores T, Anxo V, Fernando D, Alonso MJ (2009) Highly efficient system to deliver taxanes into tumor cells: docetaxel-loaded chitosan oligomer colloidal carriers. Biomacromolecules 9:2186–2193

    Google Scholar 

  53. Shi Z, Neoh KG, Kang ET, Shuter B, Wang SC, Poh C, Wang W (2009) Carboxymethyl chitosan-modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells. ACS Appl Mater Inter 1(2):328–335

    Article  CAS  Google Scholar 

  54. Santos DP, Ruiz MA, Gallardo V, Zanoni MVB, Arias JL (2011) Multifunctional antitumor magnetite/chitosan-l-glutamic acid (core/shell) nanocomposites. J Nanopart Res 13:4311–4323

    Article  CAS  Google Scholar 

  55. Fan C, Gao W, Chen Z, Fan H, Li M, Deng F, Chen Z (2011) Tumor selectivity of stealth multifunctionalized superparamagnetic iron oxide nanoparticles. Int J Pharm 404(1–2):180–190

    Article  CAS  PubMed  Google Scholar 

  56. Balan V, Butnaru M, Verestiuc L (2013) Synthesis and characterization of magnetic nanoparticles based on N-palmitoyl-chitosan with potential applications in cancer theranostics. In: The 4th IEEE international conference on E-health and bioengineering

    Google Scholar 

  57. Wang C, Ravi S, Garapati US, Das M, Howell M, Mallela JM, Alwarapan S, Mohapatra SS, Mohapatra S (2013) Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J Mater Chem B 1(35):4396–4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lim EK, Sajomsang W, Choi Y, Jang E, Lee H, Kang B, Kim E, Haam S, Suh JS, Chung SJ, Huh YM (2013) Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale Res Lett 8:467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhou S, Li Y, Cui F, Jia M, Yang X, Wang Y, Xie L, Zhang Q, Hou Z (2014) Development of multifunctional folate-poly (ethylene glycol)-chitosan-coated Fe3O4 nanoparticles for biomedical applications. Macromol Res 22:58–66

    Article  CAS  Google Scholar 

  60. Guanghui Z, Jianzhi W, Xiaomen P, Yanfeng L, Xuemei Y, Ma Y (2014) Facile solvo thermal synthesis of mesostructured Fe3O4/chitosan nanoparticles as delivery vehicles for pH-responsive drug delivery and magnetic resonance imaging contrast agents. Chem Asian J 9:546–553

    Article  CAS  Google Scholar 

  61. Wang G, Jin L, Dong Y, Niu L, Liu Y, Ren F, Su X (2014) Multifunctional Fe3O4–CdTe@SiO2–carboxymethyl chitosan drug nanocarriers: synergistic effect toward magnetic targeted drug delivery and cell imaging. New J Chem 38:700–708

    Article  CAS  Google Scholar 

  62. Yang PS, Tung FI, Chen HP, Liu TY, Lin YY (2014) A novel bubble-formingmaterial for preparing hydrophobic-agent-loaded bubbles with theranostic functionality. Acta Biomater 10:3762–3774

    Article  CAS  PubMed  Google Scholar 

  63. Li S, Xiao L, Deng H, Shi X, Cao Q (2017) Remote controlled drug release from multifunctional Fe3O4/GO/chitosan microspheres fabricated by an electrospray method. Colloid Surf B 151:354–362

    Article  CAS  Google Scholar 

  64. Kania G, Sternak M, Jasztal A, Chlopicki S, Błazejczyk A, Nasulewicz-Goldeman A, Wietrzyk J, Jasinski K, Skórka T, Zapotoczny S, Nowakowska M (2018) Uptake and bioreactivity of charged chitosan-coated superparamagnetic nanoparticles as promising contrast agents for magnetic resonance imaging. Nanomedicine 14:131–140

    Article  CAS  PubMed  Google Scholar 

  65. Bruniaux J, Ben Djemaa S, Herve-Aubert K, Marchais H, Chourpa I, David S (2017) Stealth magnetic nanocarriers of siRNA as platform for breast cancer theranostics. Int J Pharm 532:660–668

    Article  CAS  PubMed  Google Scholar 

  66. Israel LL, Lellouche E, Greneche JM, Bechor M, Michaeli S, Lellouche JP (2016) Ultrasound-mediated surface engineering of theranostic magnetic nanoparticles: an effective one-pot functionalization process using mixed polymers for siRNA delivery. J Nanomed Nanotechnol 7:385/381–385/314

    Article  CAS  Google Scholar 

  67. Sauceda-Oloño PY, Lucero-Acuña JA, Zavala-Rivera P (2018) Encapsulation of iron oxide nanoparticles type core-shell in chitosan as possible theranostic agent. Microsc Microanal 24:2018

    Article  Google Scholar 

  68. Piyush K, Rohit S (2018) FITC conjugated polycaprolactone-glycol-chitosan nanoparticles containing the longwave emitting fluorophore IR 820 for in-vitro tracking of hyperthermia-induced cell death. BioRxiv. https://doi.org/10.1101/273748

  69. Baktash MS, Zarrabi A, Avazverdi E, Reis NM (2020) Development and optimization of a new hybrid chitosan-grafted graphene oxide/magnetic nanoparticle system for theranostic applications. J Mol Liquids 322(24):114515

    Google Scholar 

  70. Na JH, Koo H, Lee S, Min KH, Park K, Yoo H, Lee SH, Park JH, Kwon IC, Jeong SY, Kim K (2011) Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials 32:5252–5261

    Article  CAS  PubMed  Google Scholar 

  71. Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, Du K, Pullar B, Lee D, Ellenbogen RG, Olson J, Zhang M (2009) Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood–brain barrier. Cancer Res 69:6200–6207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoon HY, Son S, Lee SJ, You DG, Yhee JY, Park JH, Swierczewska M, Lee S, Kwon IC, Kim SH, Kim K, Pomper MG (2014) Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: sequential delivery of doxorubicin and Bcl-2 siRNA. Sci Rep 4:6878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim K, Kim JH, Park H, Kim YS, Park K, Nam H, Lee S, Park JH, Park RW, Kim IS, Choi K, Kim SY, Park K, Kwon IC (2010) Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 146:219–227

    Article  CAS  PubMed  Google Scholar 

  74. Na JH, Koo H, Lee S, Min KH, Park K, Yoo H, Lee SH, Park JH, Kwon IC, Jeong SY, Kim K (2011) Real-time and noninvasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials 32:5252–5261

    Article  CAS  PubMed  Google Scholar 

  75. Srinivasan S, Manchanda R, Fernandez-Fernandez A, Lei T, McGoron AJ (2013) Near-infrared fluorescing IR820-chitosan conjugate for multifunctional cancer theranostic applications. J Photochem Photobiol B 119:52–59

    Article  CAS  PubMed  Google Scholar 

  76. Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M (2020) Applications of graphene and graphene oxide in smart drug/gene delivery: is the world still flat? Int J Nanomedicine 15:9469–9496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang C, Wang X, Chen Y, Fang Z (2020) In-vitro photothermal therapy using plant extract polyphenols functionalized graphene sheets for treatment of lung cancer. J Photochem Photobio B 204:111587

    Article  CAS  Google Scholar 

  78. Fu G, Zhu L, Yang K, Zhuang R, Xie J, Zhang F (2016) Diffusion-weighted magnetic resonance imaging for therapy response monitoring and early treatment prediction of photothermal therapy. ACS Appl Mater Interfaces 8:5137–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Baghbani F, Chegeni M, Moztarzadeh F, Hadian-Ghazvini S, Raz M (2017) Novel ultrasound-responsive chitosan/perfluorohexane nanodroplets for image-guided smart delivery of an anticancer agent: curcumin. Mater Sci Eng C 74:186–193

    Article  CAS  Google Scholar 

  80. Lee JY, Crake C, Teo B, Carugo D, Victor MS, Seth A, Stride E (2017) Ultrasound-enhanced siRNA delivery using magnetic nanoparticle-loaded chitosan-deoxycholic acid nanodroplets. Adv Healthcare Mater:6

    Google Scholar 

  81. Mohamed N (2020) Synthesis of hybrid chitosan silver nanoparticles loaded with doxorubicin with promising anti-cancer activity. BioNanoScience 10(3)

    Google Scholar 

  82. Zhang G, Gou H, Liu Y, Xi K, Jiang D, Jia X (2020) pH-responsive PEG-chitosan/iron oxide hybrid nanoassemblies for low-power-assisted PDT/PTT combination therapy. Nanomedicine (Lond) 5(11):1097–1112

    Article  CAS  Google Scholar 

  83. Lin J, Li Y, Li Y, Wu H, Yu F, Zhou S, Xie L, Luo F, Lin C, Hou Z (2015) Drug/dye-loaded, multifunctional PEG-chitosan-iron oxide nanocomposites for methotraxate synergistically self-targeted cancer therapy and dual model imaging. ACS Appl Mater Interfaces 7:11908–11920

    Article  CAS  PubMed  Google Scholar 

  84. Wang X, Liu H, Chen D, Meng X, Liu T, Fu C, Hao N, Zhang Y, Wu X, Ren J, Tang F (2013) Multifunctional Fe3O4@ P(St/MAA)@chitosan@ Au core/shell nanoparticles for dual imaging and photothermal therapy. ACS Appl Mater Interfaces 5:4966–4971

    Article  CAS  PubMed  Google Scholar 

  85. Kim JY, Ryu JH, Schellingerhout D, Sun IC, Lee SK, Jeon S, Kim J, Kwon IC, Nahrendorf M, Ahn CH, Kim K, Kim DE (2015) Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles. Theranostics 5:1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Key J, Dhawan D, Cooper CL, Knapp DW, Kim K, Kwon IC, Choi K, Park K, Decuzzi P, Leary JF (2016) Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging. Int J Nanomedicine 11:4141–4155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu S, Li W, Gai S, Yang G, Zhong C, Dai Y, He F, Yang P, Suh YD (2019) A smart tumor microenvironment responsive nanoplatform based on upconversion nanoparticles for efficient multimodal imaging guided therapy. Biomater Sci 7(3):951–962

    Article  CAS  PubMed  Google Scholar 

  88. Choi D, Jeon S, You DG, Um W, Kim JY, Yoon HY, Chang H, Kim DE, Park JH, Kim H, Kim K (2018) Iodinated echogenic glycol chitosan nanoparticles for X-ray CT/US dual imaging of tumor. Nano 2(2):117–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soubhagya, A.S., Prabaharan, M. (2021). Chitosan-Based Theranostics for Cancer Therapy. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials IV. Advances in Polymer Science, vol 288. Springer, Cham. https://doi.org/10.1007/12_2021_96

Download citation

Publish with us

Policies and ethics