Skip to main content

Chitosan–Platelet Interactions

  • Chapter
  • First Online:
Chitosan for Biomaterials III

Part of the book series: Advances in Polymer Science ((POLYMER,volume 287))

Abstract

Since chitosan was identified as a hemostatic agent in the 1980s, “chitosan and platelets” has developed into a topic of intense interest. This chapter gives an overview of platelet biogenesis, composition, activation, and mechanisms implicated in chitosan–platelet interactions. Chitosan is a unique acid-soluble cationic glucosamine polysaccharide with tunable molecular weight, glucosamine/N-acetyl glucosamine content, and acetylation pattern. Platelets are small anuclear cells with anionic surfaces that are released to the blood stream by megakaryocytes that reside in bone marrow and the lung. Platelets are stocked with granules that contain a plethora of bioactive wound-healing and procoagulant factors. Upon activation by agonists, or adhesion to von Willebrand factor “strings” under shear stress, platelets aid in fibrin clot formation to seal off a wound and initiate wound repair. Purified platelets rapidly adhere to a variety of solid chitosan and chitin substrates but show inconsistent levels of activation in the absence of calcium. Chitosans with a positive charge state bind to platelets and potentiate alpha granule release in whole blood or recalcified platelet-rich plasma (PRP). Platelet activation kinetics were accelerated by higher chitosan deacetylation levels and molecular weight (95% vs. 80% deacetylated, 177 kDa vs. 102 kDa), but mis-timed platelet degranulation prior to thrombin activation led to weaker clot tensile strength. Neutral-soluble chitosans (oligomers, 50% reacetylated chitosans) do not activate platelets and hydrophobic butyryl-chitosan coatings inhibit platelet adhesion. Collective data suggest two mechanisms underlying chitosan–platelet interactions: (1) non-specific electrostatic binding of anionic platelets to positively charged chitosan surfaces, and (2) platelet binding to blood plasma factors adsorbed on chitosan or chitin surfaces. Future directions include deepening our understanding of the molecular basis for thrombocyte–chitosan interactions, and the performance of platelet-activating chitosan formulations in clinically relevant contexts where platelet physiology is altered by medications, trauma, or disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349. https://doi.org/10.1016/S0142-9612(03)00026-7

    Article  CAS  PubMed  Google Scholar 

  2. Fong D, Grégoire-Gélinas P, Cheng AP, Mezheritsky T, Lavertu M, Sato S, Hoemann CD (2017) Lysosomal rupture induced by structurally distinct chitosans either promotes a type 1 IFN response or activates the inflammasome in macrophages. Biomaterials 129:127–138. https://doi.org/10.1016/j.biomaterials.2017.03.022

    Article  CAS  PubMed  Google Scholar 

  3. Chang KLB, Tsai G, Lee J, Fu W-R (1997) Heterogeneous N-deacetylation of chitin in alkaline solution. Carbohydr Res 303:327–332. https://doi.org/10.1016/S0008-6215(97)00179-1

    Article  CAS  Google Scholar 

  4. Lamarque G, Viton C, Domard A (2004) Comparative study of the first heterogeneous deacetylation of α- and β-chitins in a multistep process. Biomacromolecules 5:992–1001. https://doi.org/10.1021/bm034498j

    Article  CAS  PubMed  Google Scholar 

  5. Vårum KM, Anthonsen MW, Grasdalen H, Smidsrød O (1991) 13C-N.m.r. studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohydr Res 217:19–27. https://doi.org/10.1016/0008-6215(91)84113-S

    Article  PubMed  Google Scholar 

  6. Sashiwa H, Saimoto H, Shigemasa Y, Ogawa R, Tokura S (1991) Distribution of the acetamide group in partially deacetylated chitins. Carbohydr Polym 16:291–296. https://doi.org/10.1016/0144-8617(91)90114-R

    Article  CAS  Google Scholar 

  7. Kubota N, Tatsumoto N, Sano T, Toya K (2000) A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydr Res 324:268–274. https://doi.org/10.1016/s0008-6215(99)00263-3

    Article  CAS  PubMed  Google Scholar 

  8. Fischer TH, Connolly R, Thatte HS, Schwaitzberg SS (2004) Comparison of structural and hemostatic properties of the poly-N-acetyl glucosamine Syvek Patch with products containing chitosan. Microsc Res Tech 63:168–174. https://doi.org/10.1002/jemt.20017

    Article  CAS  PubMed  Google Scholar 

  9. Thatte HS, Zagarins S, Khuri SF, Fischer TH (2004) Mechanisms of poly-N-acetyl glucosamine polymer-mediated hemostasis: platelet interactions. J Trauma 57:S13–S21. https://doi.org/10.1097/01.TA.0000136743.12440.89

    Article  CAS  PubMed  Google Scholar 

  10. Rinaudo M, Pavlov G, Desbrières J (1999) Influence of acetic acid concentration on the solubilization of chitosan. Polymer 40:7029–7032. https://doi.org/10.1016/S0032-3861(99)00056-7

    Article  CAS  Google Scholar 

  11. Filion D, Lavertu M, Buschmann MD (2007) Ionization and solubility of chitosan solutions related to thermosensitive chitosan/glycerol-phosphate systems. Biomacromolecules 8:3224–3234. https://doi.org/10.1021/bm700520m

    Article  CAS  PubMed  Google Scholar 

  12. Hoemann CD, Guzmán-Morales J, Tran-Khanh N, Lavallée G, Jolicoeur M, Lavertu M (2013) Chitosan rate of uptake in HEK293 cells is influenced by soluble versus microparticle state and enhanced by serum-induced cell metabolism and lactate-based media acidification. Molecules 18:1015–1035. https://doi.org/10.3390/molecules18011015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoemann CD, Hurtig M, Rossomacha E, Sun J, Chevrier A, Shive MS, Buschmann MD (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg 87:2671–2686. https://doi.org/10.2106/JBJS.D.02536

    Article  PubMed  Google Scholar 

  14. Marchand C, Bachand J, Périnêt J, Baraghis E, Lamarre M, Rivard GE, De Crescenzo G, Hoemann CD (2009) C3, C5, and factor B bind to chitosan without complement activation. J Biomed Mater Res 9999A. https://doi.org/10.1002/jbm.a.32638

  15. Chevrier A, Darras V, Picard G, Nelea M, Veilleux D, Lavertu M, Hoemann CD, Buschman MD (2018) Injectable chitosan-platelet-rich plasma implants to promote tissue regeneration: in vitro properties, in vivo residence, degradation, cell recruitment and vascularization: chitosan-PRP injectable implants for tissue repair. J Tissue Eng Regen Med 12:217–228. https://doi.org/10.1002/term.2403

    Article  CAS  PubMed  Google Scholar 

  16. Hoemann CD, Guzmán-Morales J, Picard G, Chen G, Veilleux D, Chevrier A, Sim S, Garon M, Quenneville E, Lafantaisie-Favreau C-H, Buschmann MD, Hurtig MB (2020) Guided bone marrow stimulation for articular cartilage repair through a freeze-dried chitosan microparticle approach. Materialia 9:100609. https://doi.org/10.1016/j.mtla.2020.100609

    Article  CAS  Google Scholar 

  17. Deprés-Tremblay G, Chevrier A, Tran-Khanh N, Nelea M, Buschmann MD (2017) Chitosan inhibits platelet-mediated clot retraction, increases platelet-derived growth factor release, and increases residence time and bioactivity of platelet-rich plasma in vivo. Biomed Mater 13:015005. https://doi.org/10.1088/1748-605X/aa8469

    Article  PubMed  Google Scholar 

  18. Cunha AG, Fernandes SCM, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2008) What is the real value of Chitosan’s surface energy? Biomacromolecules 9:610–614. https://doi.org/10.1021/bm701199g

    Article  CAS  PubMed  Google Scholar 

  19. Onishi H, Machida Y (1999) Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20:175–182. https://doi.org/10.1016/S0142-9612(98)00159-8

    Article  CAS  PubMed  Google Scholar 

  20. Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VGH (2010) Production of Chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517. https://doi.org/10.3390/md8051482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. George JN, Colman RW (2001) Platelets. In: Hemostasis & thrombosis: basic principles & clinical practice. 4th edn. Lippincott Williams & Wilkins, Baltimore, pp 381–386

    Google Scholar 

  22. Kuter DJ (2001) Megakaryopoiesis and thrombpoiesis. In: Williams hematology. 6th edn. McGraw-Hill, New York, pp 1339–1355

    Google Scholar 

  23. Cunin P, Nigrovic PA (2019) Megakaryocytes as immune cells. J Leukoc Biol 105:1111–1121. https://doi.org/10.1002/JLB.MR0718-261RR

    Article  CAS  PubMed  Google Scholar 

  24. Lefrancais E, Ortiz-Munoz G, Caudrillier A, Mallavia B, Liu F, Sayah D, Thornton E, Headley M, David T, Coughlin S, Krummel M, Leavitt A, Passegué E, Looney M (2017) The lung is a site of platelet biogenesis and a reservoir for hematopoietic progenitors. Nature 544. https://doi.org/10.1038/nature21706

  25. Rapkiewicz AV, Mai X, Carsons SE, Pittaluga S, Kleiner DE, Berger JS, Thomas S, Adler NM, Charytan DM, Gasmi B, Hochman JS, Reynolds HR (2020) Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: a case series. EClinicalMedicine 24:100434. https://doi.org/10.1016/j.eclinm.2020.100434

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lefrançais E, Looney MR (2019) Platelet biogenesis in the lung circulation. Physiology (Bethesda) 34:392–401. https://doi.org/10.1152/physiol.00017.2019

    Article  CAS  Google Scholar 

  27. Ryan DH (2001) Examination of the blood. In: Williams hematology. 6th edn. McGraw-Hill, New York, pp 9–16

    Google Scholar 

  28. Owens AP, Mackman N (2011) Microparticles in hemostasis and thrombosis. Circ Res 108:1284–1297. https://doi.org/10.1161/CIRCRESAHA.110.233056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alphonsus CS, Rodseth RN (2014) The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 69:777–784. https://doi.org/10.1111/anae.12661

    Article  CAS  PubMed  Google Scholar 

  30. Cramer EM (2001) Platelets and megakaryocytes: analtomy and structural organization. In: Hemostasis & thrombosis: basic principles & clinical practice. 4th edn. Lippincott Williams & Wilkins, Baltimore, pp 411–428

    Google Scholar 

  31. Ogasawara K, Ueki J, Takenaka M, Furihata K (1993) Study on the expression of ABH antigens on platelets. Blood 82:993–999. https://doi.org/10.1182/blood.V82.3.993.993

    Article  CAS  PubMed  Google Scholar 

  32. Cooling L (2015) Blood groups in infection and host susceptibility | clinical microbiology reviews. Clin Microbiol Rev 28:801–870. https://doi.org/10.1128/CMR.00109-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Verhoef PA, Kannan S, Sturgill JL, Tucker EW, Morris PE, Miller AC, Sexton TR, Koyner JL, Hejal R, Brakenridge SC, Moldawer LL, Hotchkiss RS, Blood TM, Mazer MB, Bolesta S, Alexander SA, Armaignac DL, Shein SL, Jones C, Hoemann CD, Doctor A, Friess SH, Parker RI, Rotta AT, Remy KE, for the B. and T.S.C. of the R.S. for the S. of C.C (2021) Medicine, severe acute respiratory syndrome–associated coronavirus 2 infection and organ dysfunction in the ICU: opportunities for translational research. Critic Care Explor 3:e0374. https://doi.org/10.1097/CCE.0000000000000374

    Article  Google Scholar 

  34. Stowell SR, Stowell CP (2019) Biologic roles of the ABH and Lewis histo-blood group antigens part II: thrombosis, cardiovascular disease and metabolism. Vox Sang 114:535–552. https://doi.org/10.1111/vox.12786

    Article  PubMed  Google Scholar 

  35. Brummel KE, Paradis SG, Butenas S, Mann KG (2002) Thrombin functions during tissue factor–induced blood coagulation. Blood 100:148–152. https://doi.org/10.1182/blood.V100.1.148

    Article  CAS  PubMed  Google Scholar 

  36. Rand MD, Lock JB, van’t Veer C, Gaffney DP, Mann KG (1996) Blood clotting in minimally altered whole blood. Blood 88:3432–3445

    Article  CAS  Google Scholar 

  37. Fukami MH, Holmsen H, Kowalska A, Niewiarowski S (2001) Platelet secretion. In: Hemostasis & thrombosis: basic principles and clinical practice. 4th edn. Lippincott Williams & Wilkins, Baltimore, pp 561–573

    Google Scholar 

  38. Contreras-García A, D’Elía NL, Desgagné M, Lafantaisie-Favreau C-H, Rivard G-E, Ruiz J-C, Wertheimer MR, Messina P, Hoemann CD (2019) Synthetic anionic surfaces can replace microparticles in stimulating burst coagulation of blood plasma. Colloids Surf B Biointerfaces 175:596–605. https://doi.org/10.1016/j.colsurfb.2018.11.066

    Article  CAS  PubMed  Google Scholar 

  39. Rivera J, Lozano ML, Navarro-Nunez L, Vicente V (2009) Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 94:700–711. https://doi.org/10.3324/haematol.2008.003178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lenting PJ, Christophe OD, Denis CV (2015) von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood 125:2019–2028. https://doi.org/10.1182/blood-2014-06-528406

    Article  CAS  PubMed  Google Scholar 

  41. Bryckaert M, Rosa J-P, Denis CV, Lenting PJ (2015) Of von Willebrand factor and platelets. Cell Mol Life Sci 72:307–326. https://doi.org/10.1007/s00018-014-1743-8

    Article  CAS  PubMed  Google Scholar 

  42. Parise LV, Smyth SS, Coller BS (2001) Platelet morphology, biochemistry, and function. In: Williams hematology. 6th edn. McGraw-Hill, New York, pp 1357–1408

    Google Scholar 

  43. Thierry B, Winnik FM, Merhi Y, Silver J, Tabrizian M (2003) Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 4:1564–1571. https://doi.org/10.1021/bm0341834

    Article  CAS  PubMed  Google Scholar 

  44. Schmitt A, Jouault H, Guichard J, Wendling F, Drouin A, Cramer EM (2000) Pathologic interaction between megakaryocytes and polymorphonuclear leukocytes in myelofibrosis. Blood 96:1342–1347. https://doi.org/10.1182/blood.V96.4.1342

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka M, Aze Y, Shinomiya K, Fujita T (1996) Morphological observations of megakaryocytic emperipolesis in the bone marrow of rats treated with lipopolysaccharide. J Vet Med Sci 58:663–667. https://doi.org/10.1292/jvms.58.663

    Article  CAS  PubMed  Google Scholar 

  46. Cunin P, Bouslama R, Machlus KR, Martínez-Bonet M, Lee PY, Wactor A, Nelson-Maney N, Morris A, Guo L, Weyrich A, Sola-Visner M, Boilard E, Italiano JE, Nigrovic PA (2019) Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. Elife 8:e44031. https://doi.org/10.7554/eLife.44031

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sun Y, Wu B, Yan S, Zhang J, Zhang R, Zhu S (2013) Preparation of hemostatic sponge used for dressing, involves preparing chitosan aqueous solution, injecting into mold, freezing chitosan aqueous solution in mold, freeze-drying frozen material and post-processing chitosan sponge. CN103028135-A, 2013–N96850

    Google Scholar 

  48. Kim C, Lee S, Lim J, Son Y, Kim K, Gin Y, Kim CH, Lee SJ, Lim IJ, Son YS (2017) Method of producing a porous chitosan scaffold comprises freeze-drying of an aqueous acidic solution having chitosan and a solvent, and neutralizing the aqueous acidic solution. WO2007111416-A1

    Google Scholar 

  49. Lafantaisie-Favreau C-H, Guzmán-Morales J, Sun J, Chen G, Harris A, Smith TD, Carli A, Henderson J, Stanish WD, Hoemann CD (2013) Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition. BMC Musculoskelet Disord 14:27. https://doi.org/10.1186/1471-2474-14-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghazi Zadeh L, Chevrier A, Lamontagne M, Buschmann MD, Hoemann CD, Lavertu M (2019) Multiple platelet-rich plasma preparations can solubilize freeze-dried chitosan formulations to form injectable implants for orthopedic indications. Biomed Mater Eng 30:349–364. https://doi.org/10.3233/BME-191058

    Article  CAS  PubMed  Google Scholar 

  51. Benesch J, Tengvall P (2002) Blood protein adsorption onto chitosan. Biomaterials 23:2561–2568. https://doi.org/10.1016/S0142-9612(01)00391-X

    Article  CAS  PubMed  Google Scholar 

  52. Rao SB, Sharma CP (1997) Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 34:21–28

    Article  CAS  Google Scholar 

  53. Hoemann CD, Hurtig M, Rossomacha E, Sun J, Chevrier A, Shive MS, Buschmann MD (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. The Journal of Bone & Joint Surgery 87:2671–2686. https://doi.org/10.2106/JBJS.D.02536

    Article  Google Scholar 

  54. del Conde I, Crúz MA, Zhang H, López JA, Afshar-Kharghan V (2005) Platelet activation leads to activation and propagation of the complement system. J Exp Med 201:871–879. https://doi.org/10.1084/jem.20041497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Uchimido R, Schmidt EP, Shapiro NI (2019) The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 23:16. https://doi.org/10.1186/s13054-018-2292-6

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ellies LG, Ditto D, Levy GG, Wahrenbrock M, Ginsburg D, Varki A, Le DT, Marth JD (2002) Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. Proc Natl Acad Sci U S A 99:10042–10047. https://doi.org/10.1073/pnas.142005099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grewal PK, Uchiyama S, Ditto D, Varki N, Le DT, Nizet V, Marth JD (2008) The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med 14:648–655. https://doi.org/10.1038/nm1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dang CV, Shin CK, Bell WR, Nagaswami C, Weisel JW (1989) Fibrinogen sialic acid residues are low affinity calcium-binding sites that influence fibrin assembly. J Biol Chem 264:15104–15108. https://doi.org/10.1016/S0021-9258(18)63817-7

    Article  CAS  PubMed  Google Scholar 

  59. Varki A, Schauer R (2009) Sialic acids. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME Essentials of glycobiology. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, http://www.ncbi.nlm.nih.gov/books/NBK1920/. Accessed 20 Mar 2021

  60. Malette WG, Quigley HJ, Gaines RD, Johnson ND, Rainer WG (1983) Chitosan: a new hemostatic. Ann Thorac Surg 36:55–58. https://doi.org/10.1016/s0003-4975(10)60649-2

    Article  CAS  PubMed  Google Scholar 

  61. Klokkevold PR, Lew DS, Ellis DG, Bertolami CN (1991) Effect of chitosan on lingual hemostasis in rabbits. J Oral Maxillofac Surg 49:858–863. https://doi.org/10.1016/0278-2391(91)90017-G

    Article  CAS  PubMed  Google Scholar 

  62. Chou T-C, Fu E, Wu C-J, Yeh J-H (2003) Chitosan enhances platelet adhesion and aggregation. Biochem Biophys Res Commun 302:480–483. https://doi.org/10.1016/S0006-291X(03)00173-6

    Article  CAS  PubMed  Google Scholar 

  63. Okamoto Y, Yano R, Miyatake K, Tomohiro I, Shigemasa Y, Minami S (2003) Effects of chitin and chitosan on blood coagulation. Carbohydr Polym 53:337–342. https://doi.org/10.1016/S0144-8617(03)00076-6

    Article  CAS  Google Scholar 

  64. Lin C-W, Lin J-C (2003) Characterization and blood coagulation evaluation of the water-soluble Chitooligosaccharides prepared by a facile fractionation method. Biomacromolecules 4:1691–1697. https://doi.org/10.1021/bm034129n

    Article  CAS  PubMed  Google Scholar 

  65. Hattori H, Ishihara M (2015) Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan. Biomed Mater 10:015014. https://doi.org/10.1088/1748-6041/10/1/015014

    Article  CAS  PubMed  Google Scholar 

  66. Whang HS, Kirsch W, Zhu YH, Yang CZ, Hudson SM (2005) Hemostatic agents derived from chitin and chitosan. J Macromol Sci C 45:309–323. https://doi.org/10.1080/15321790500304122

    Article  CAS  Google Scholar 

  67. Behrens AM, Sikorski MJ, Kofinas P (2014) Hemostatic strategies for traumatic and surgical bleeding: hemostatic strategies for traumatic and surgical bleeding. J Biomed Mater Res 102:4182–4194. https://doi.org/10.1002/jbm.a.35052

    Article  CAS  Google Scholar 

  68. Romani AA, Ippolito L, Riccardi F, Pipitone S, Morganti M, Baroni MC, Borghetti AF, Bettini R (2013) In vitro blood compatibility of novel hydrophilic chitosan films for vessel regeneration and repair. Adv Biomater Sci Biomed Appl. https://doi.org/10.5772/52706

  69. Sundaram MN, Mony U, Varma PK, Rangasamy J (2021) Vasoconstrictor and coagulation activator entrapped chitosan based composite hydrogel for rapid bleeding control. Carbohydr Polym 258:117634. https://doi.org/10.1016/j.carbpol.2021.117634

    Article  CAS  PubMed  Google Scholar 

  70. Marchand C, Rivard G-E, Sun J, Hoemann CD (2009) Solidification mechanisms of chitosan–glycerol phosphate/blood implant for articular cartilage repair. Osteoarthr Cartil 17:953–960. https://doi.org/10.1016/j.joca.2008.12.002

    Article  CAS  Google Scholar 

  71. Hoemann CD, Chen G, Marchand C, Tran-Khanh N, Thibault M, Chevrier A, Sun J, Shive MS, Fernandes MJG, Poubelle PE, Centola M, El-Gabalawy H (2010) Scaffold-guided subchondral bone repair: implication of neutrophils and alternatively activated Arginase-1+ macrophages. Am J Sports Med 38:1845–1856. https://doi.org/10.1177/0363546510369547

    Article  PubMed  Google Scholar 

  72. Bell AD, Hurtig MB, Quenneville E, Rivard G-É, Hoemann CD (2017) Effect of a rapidly degrading Presolidified 10 kDa chitosan/blood implant and subchondral marrow stimulation surgical approach on cartilage resurfacing in a sheep model. Cartilage 8:417–431. https://doi.org/10.1177/1947603516676872

    Article  CAS  PubMed  Google Scholar 

  73. Guzmán-Morales J, Lafantaisie-Favreau C-H, Chen G, Hoemann CD (2014) Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees. Osteoarthr Cartil 22:323–333. https://doi.org/10.1016/j.joca.2013.12.011

    Article  Google Scholar 

  74. Dwivedi G, Chevrier A, Hoemann CD, Buschmann MD (2019) Injectable freeze-dried chitosan-platelet-rich-plasma implants improve marrow-stimulated cartilage repair in a chronic-defect rabbit model. J Tissue Eng Regen Med 13:599–611. https://doi.org/10.1002/term.2814

    Article  CAS  PubMed  Google Scholar 

  75. Zhao X, Guo B, Wu H, Liang Y, Ma PX (2018) Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat Commun 9:2784. https://doi.org/10.1038/s41467-018-04998-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ghavidel Mehr N, Hoemann CD, Favis BD (2015) Chitosan surface modification of fully interconnected 3D porous poly(ε-caprolactone) by the LbL approach. Polymer 64:112–121. https://doi.org/10.1016/j.polymer.2015.03.025

    Article  CAS  Google Scholar 

  77. Mao C, Qiu Y, Sang H, Mei H, Zhu A, Shen J, Lin S (2004) Various approaches to modify biomaterial surfaces for improving hemocompatibility. Adv Colloid Interface Sci 110:5–17. https://doi.org/10.1016/j.cis.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  78. Yatomi Y, Igarashi Y, Yang L, Hisano N, Qi R, Asazuma N, Satoh K, Ozaki Y, Kume S (1997) Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a Normal constituent of human plasma and serum. J Biochem 121:969–973. https://doi.org/10.1093/oxfordjournals.jbchem.a021681

    Article  CAS  PubMed  Google Scholar 

  79. Jeon J-H, Kim Y-S, Choi E-J, Cheon S, Kim S, Kim J-S, Jang JS, Ha WS, Park ST, Park CS, Park K, Park B-K (2001) Implication of co-measured platelet factor 4 in the reliability of the results of the plasma transforming growth factor-β1 measurement. Cytokine 16:102–105. https://doi.org/10.1006/cyto.2001.0895

    Article  CAS  PubMed  Google Scholar 

  80. Erbel C, Korosoglou G, Ler P, Akhavanpoor M, Domschke G, Linden F, Doesch AO, Buss SJ, Giannitsis E, Katus HA, Gleissner CA (2015) CXCL4 plasma levels are not associated with the extent of coronary artery disease or with coronary plaque morphology. PLoS One 10:e0141693. https://doi.org/10.1371/journal.pone.0141693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Du Q, Li E, Liu Y, Xie W, Huang C, Song J, Zhang W, Zheng Y, Wang H, Wang Q (2018) CTAPIII/CXCL7: a novel biomarker for early diagnosis of lung cancer. Cancer Med 7:325–335. https://doi.org/10.1002/cam4.1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Franciotta D, Zardini E, Ravaglia S, Piccolo G, Andreoni L, Bergamaschi R, Romani A, Tavazzi E, Naldi P, Ceroni M, Marchioni E (2006) Cytokines and chemokines in cerebrospinal fluid and serum of adult patients with acute disseminated encephalomyelitis. J Neurol Sci 247:202–207. https://doi.org/10.1016/j.jns.2006.05.049

    Article  CAS  PubMed  Google Scholar 

  83. Neubauer H, Petrak F, Zahn D, Pepinghege F, Hägele A-K, Pirkl P-A, Uhl I, Juckel G, Mügge A, Herpertz S (2013) Newly diagnosed depression is associated with increased beta-thromboglobulin levels and increased expression of platelet activation markers and platelet derived CD40-CD40L. J Psychiatr Res 47:865–871. https://doi.org/10.1016/j.jpsychires.2013.03.011

    Article  PubMed  Google Scholar 

  84. Roberts HR, Monroe DM III, Hoffman M (2001) Molecular biology and biochemistry of the coagulation factors and pathways of hemostasis. In: Williams hematology. 6th edn. McGraw-Hill, New York, pp 1409–1434

    Google Scholar 

  85. Butenas S, Mann KG (2002) Blood coagulation. Biochemistry (Mosc) 67:3–12. https://doi.org/10.1023/a:1013985911759

    Article  CAS  Google Scholar 

  86. Miller CH, Haff E, Platt SJ, Rawlins P, Drews CD, Dilley AB, Evatt B (2003) Measurement of von Willebrand factor activity: relative effects of ABO blood type and race. J Thromb Haemost 1:2191–2197. https://doi.org/10.1046/j.1538-7836.2003.00367.x

    Article  CAS  PubMed  Google Scholar 

  87. Ruiz FA, Lea CR, Oldfield E, Docampo R (2004) Human platelet dense granules contain polyphosphate and are similar to Acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279:44250–44257. https://doi.org/10.1074/jbc.M406261200

    Article  CAS  PubMed  Google Scholar 

  88. Klemm KM, Klein MJ (2017) Biochemical markers of bone metabolism (chapter 15). In: Henry’s clinical diagnosis and management by laboratory methods. 23rd edn. Elsevier, St Louis, pp 188–204

    Google Scholar 

Download references

Acknowledgements

We thank Catherine Marchand for PF4 and TAT analyses and J. Guzmán-Morales and J. Sun for hybrid blood clot images. Funding: Canadian Institutes of Health Research Operating grant; Prima-Ortho grant; George Mason University start-up funds.

Competing interest statement: C. Hoemann is a shareholder and on the Scientific Advisory Board of Ortho RTi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Hoemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoemann, C.D., Rivard, G.E. (2021). Chitosan–Platelet Interactions. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials III. Advances in Polymer Science, vol 287. Springer, Cham. https://doi.org/10.1007/12_2021_86

Download citation

Publish with us

Policies and ethics