Skip to main content

Chitosan Nanoparticles and Their Applications in Drug Delivery, Hemostasis, and Stem Cell Research

  • Chapter
  • First Online:
Functional Bionanomaterials

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

The nanoparticle-based advanced drug formulations present indubitable benefits for drug administration. Over the past two decades, new approaches for the development of novel drug delivery carriers have yielded the opportunities to address and treat many disease conditions. Among the other drug delivery systems, chitosan has recently gained more attention for the development of safe and effective drug delivery systems due to its biocompatibility and unique physicochemical characteristics. Chitosan is a cationic, biodegradable, and biocompatible polymer, which appears to be safe for human dietary use and approved for wound dressing applications. Chitosan has reached a prominent position as a carrier-forming material for the development of polymeric nanoparticles for drug delivery through various routes of administration. Chitosan-based nanoparticles have numerous applications for the treatment of different disease conditions. This chapter mainly explains the characteristics of chitosan, different methods of chitosan nanoparticle preparation, and their applications in drug delivery, hemostasis and stem cell research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso MJ, Sánchez A (2003) The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 55(11):1451–1463

    CAS  PubMed  Google Scholar 

  • Artursson P, Lindmark T, Davis SS, Illum L (1994) Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res 11:1358–1361

    CAS  PubMed  Google Scholar 

  • Bagre AP, Jain K, Jain NK (2013) Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm 456:31–40

    CAS  PubMed  Google Scholar 

  • Barnes AE (1966) The specificity of pH and ionic strength effects on the kinetics of the Rh (D)-anti-Rh (D) system. J Immunol 96(5):854–864

    CAS  PubMed  Google Scholar 

  • Behrens I, Pena AI, Alonso MJ, Kissel T (2002) Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm Res 19:1185–1193

    CAS  PubMed  Google Scholar 

  • Bivas-Benita M, van Meijgaarden KE, Franken KL et al (2004) Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A∗0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine 22(13–14):1609–1615

    CAS  PubMed  Google Scholar 

  • Chen X, Gu S, Chen BF et al (2015) Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 53:239–250

    CAS  PubMed  Google Scholar 

  • Choi SY, Song MS, Ryu PD et al (2015) Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/beta-catenin signaling pathway. Int J Nanomedicine 10:4383–4392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong H, Vile RG (1996) Replication competent retrovirus produced by a split function third generation of amphot ropic packaging cell line. Gene Ther 3:624–629

    CAS  PubMed  Google Scholar 

  • De Campos AM, Sanchez A, Alonso MJ (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin a. Int J Pharm 224:159–168

    PubMed  Google Scholar 

  • de la Fuente M, Seijo B, Alonso MJ (2008) Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci 49(5):2016–2024

    PubMed  Google Scholar 

  • De Lima JM, Sarmento RR, de Souza JR et al (2015) Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes. Biomed Res Int 2015:247965

    PubMed  PubMed Central  Google Scholar 

  • Diop M, Auberval N, Viciglio A et al (2015) Design, characterisation and bioefficiency of insulin-chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Int J Pharm 491:402–408

    CAS  PubMed  Google Scholar 

  • Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16:101–112

    CAS  Google Scholar 

  • El-Shabouri MH (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249:101–108

    CAS  PubMed  Google Scholar 

  • Erbacher P, Zou S, Bettinger T et al (1998) Chitosan based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15:1332–1339

    CAS  PubMed  Google Scholar 

  • Fan W, Yan W, Xu Z, Ni H (2012) Erythrocytes load of low molecular weight chitosan nanoparticles as a potential vascular drug delivery system. Colloids Surf B Biointerfaces 95:258–265

    CAS  PubMed  Google Scholar 

  • Fernández-Urrusuno R, Calvo P, Remuñán-López C et al (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16:1576–1581

    PubMed  Google Scholar 

  • Guang Liu W, De Yao K (2002) Chitosan and its derivatives – a promising non-viral vector for gene transfection. J Control Release 83(1):1–11

    PubMed  Google Scholar 

  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–29

    CAS  PubMed  Google Scholar 

  • Hembram KC, Prabha S, Chandra R et al (2014) Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif Cells Nanomed Biotechnol 44:305–314

    Google Scholar 

  • Hirano S (1996) Chitin biotechnology applications. Biotechnol Annu Rev 2:237–258

    CAS  PubMed  Google Scholar 

  • Ji J, Tong X, Huang X et al (2015) Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scafolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts. Biomed Mater 10:045005

    PubMed  Google Scholar 

  • Jin MX, Hu QH (2008) Characterization and application in bioadhesive drug delivery system of chitosan. Centr South Pharm 6(3):324–327

    CAS  Google Scholar 

  • Kato Y, Onishi H, Machida Y (2001) Biological characteristics of lactosaminated N-succinyl-chitosan as a liver-specificdrug carrier in mice. J Control Release 70:295–307

    Google Scholar 

  • Kreuter J (1995) Nanoparticles as adjuvants for vaccines. Pharm Biotechnol 6:463–472

    CAS  PubMed  Google Scholar 

  • Krishna Sailaja A, Amareshwar P, Chakravarty P (2010) Chitosan nanoparticles as a drug delivery system. Res J Pharm, Biol Chem Sci 1:474–484

    CAS  Google Scholar 

  • Lee DW, Shirley SA, Lockey RF, Mohapatra SS (2006) Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respir Res 7:112

    PubMed  PubMed Central  Google Scholar 

  • Lee DW, Yun KS, Ban HS et al (2009) Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. J Control Release 139(2):146–152

    CAS  PubMed  Google Scholar 

  • Leong YS, Candau F (1982) Inverse microemulsion polymerization. J Phys Chem 86(13):2269–2271

    CAS  Google Scholar 

  • Lin Y, Chen Q, Luo HB (2007) Preparation and characterization of N-(2-carboxybenzyl) chitosan as a potential pH-sensitive hydrogel for drug delivery. Carbohydr Res 342:87–95

    CAS  PubMed  Google Scholar 

  • Lytting E, Nguyen J, Wang X, Kissel T (2008) Biodegradable polymeric nanocarriers for pulmonary drug delivery biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv 5(6):629–639

    Google Scholar 

  • Mahato RI, Narang AS, Thoma L, Miller DD (2003) Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst 20:153–214

    CAS  PubMed  Google Scholar 

  • Maitra AN, Ghoshl PK, De TK, Sahoo SK (1999) Process for preparation of highly monodispersed hydrophilic polymeric nanoparticles. US patent 5874111, 23

    Google Scholar 

  • Maity S, Mukhopadhyay P, Kundu PP, Chakraborti AS (2017) Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals – an in vitro and in vivo approach. Carbohydr Polym 170:124–132

    CAS  PubMed  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  • Mi FL, Shyu SS, Chen CT, Lai JY (2002) Adsorption of indomethacin onto chemically modified chitosan beads. Polymer 43:757–765

    CAS  Google Scholar 

  • Mitra S, Gaur U, Ghosh PC, Maitra AN (2001) Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 74:317–323

    CAS  PubMed  Google Scholar 

  • Mohammed MA, Syeda JTM, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9(4):53

    PubMed Central  Google Scholar 

  • Morishita M, Peppas NA (2006) Is the oral route possible for peptide and protein drug delivery? Drug Discov Today 11:905–910

    CAS  PubMed  Google Scholar 

  • Morris GA, Castile J, Smith A et al (2011) The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP)−chitosan nanoparticles. Carbohydr Polym 84:1430–1434

    CAS  Google Scholar 

  • Muzzarelli R, Jeuniaux C, Gooday GW (1986) Chitin in nature and technology. Plenum Publishing Corporation, New York, NY

    Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58:1423–1430

    CAS  PubMed  Google Scholar 

  • Niwa T, Takeuchi H, Hino T et al (1993) Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D,L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behaviour. J Control Release 25:89–98

    CAS  Google Scholar 

  • Ohya Y, Shiratani M, Kobayashi H, Ouchi T (1994) Release behavior of 5-fluorouracil from chitosan gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. J Macromol Sci Pure Appl Chem 31:629–642

    Google Scholar 

  • Ong SY, Wu J, Moochhala SM et al (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29(32):4323–4332

    CAS  PubMed  Google Scholar 

  • Palacio J, Agudelo NA, Lopez BL (2016) PEGylation of PLA nanoparticles to improve mucus-penetration and colloidal stability for oral delivery systems. Curr Opin Chem Eng 11:14–19

    Google Scholar 

  • Pati F, Adhikari B, Dhara S (2011) Development of chitosan−tripolyphosphate fibers through pH dependent ionotropic gelation. Carbohydr Res 346:2582–2588

    CAS  PubMed  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, UK, pp 53–70

    Google Scholar 

  • Rajalakshmi R, Indira Muzib Y, Aruna U et al (2014) Chitosan nanoparticles – an emerging trend in nanotechnology. Int J Drug Deliv 6:204–229

    CAS  Google Scholar 

  • Rao SB, Sharma CP (1997) Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 34(1):21–28

    CAS  PubMed  Google Scholar 

  • Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Google Scholar 

  • Sailaja A, Amareshwar P, Chakravarty P (2011) Different techniques used for the preparation of nanoparticles using natural polymers and their application. Int J Pharm Pharm Sci 3:45–50

    Google Scholar 

  • Sarmento B, Ribeiro AJ, Veiga F et al (2007) Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol 7(8):2833–2841

    CAS  PubMed  Google Scholar 

  • Shi XY, Fan XG (2002) Advances in nanoparticle system for delivering drugs across the biological barriers. J China Pharm Univ 33(3):169–172

    CAS  Google Scholar 

  • Shi Y, Xue J, Jia L et al (2018) Surface-modified PLGA nanoparticles with chitosan for oral delivery of tolbutamide. Colloids Surf B Biointerfaces 161:67–72

    CAS  PubMed  Google Scholar 

  • Subramanian A, Rau AV, Kaligotla H (2006) Surface modification of chitosan for selective surface–protein interaction. Carbohydr Polym 66:321–332

    CAS  Google Scholar 

  • Sun Y, Wan AJ (2007) Preparation of nanoparticles composed of chitosan and its derivatives as delivery systems for macromolecules. J Appl Polym Sci 105:552–561

    CAS  Google Scholar 

  • Sun P, Li P, Li YM et al (2011) A pH-sensitive chitosan−tripolyphosphate hydrogel beads for controlled glipizide delivery. J Biomed Mater Res Part B 97:175–183

    Google Scholar 

  • Tammam S, Malak P, Correa D et al (2016) Nuclear delivery of recombinant OCT4 by chitosan nanoparticles for transgene-free generation of protein-induced pluripotent stem cells. Oncotarget 7(25):37728–37739

    PubMed  PubMed Central  Google Scholar 

  • Teijeiro-Osorio D, Remunan-Lopez C, Alonso MJ (2009) New generation of hybrid poly/oligosaccharide nanoparticles as carriers for the nasal delivery of macromolecules. Biomacromolecules 10:243–249

    CAS  PubMed  Google Scholar 

  • Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11:51–66

    Google Scholar 

  • Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 61:2549–2559

    CAS  PubMed  Google Scholar 

  • Trapani A, Di Gioia S, Ditaranto N et al (2013) Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles. Int J Pharm 447:115–123

    CAS  PubMed  Google Scholar 

  • van der Lubben IM, Kersten G, Fretz MM et al (2003) Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine 21(13–14):1400–1408

    PubMed  Google Scholar 

  • Vila A, Sánchez A, Janes K et al (2004) Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 57:123–131

    CAS  PubMed  Google Scholar 

  • Vyas A, Saraf S, Saraf S (2010) Encapsulation of cyclodextrin complexed simvastatin in chitosan nanocarriers: a novel technique for oral delivery. J Incl Phenom Macrocycl Chem 66:251–259

    CAS  Google Scholar 

  • Wang X, Xing B (2007) Importance of structural makeup of biopolymers for organic contaminant sorption. Environ Sci Technol 41:3559–3565

    CAS  PubMed  Google Scholar 

  • Wang X, Chi N, Tang X (2008) Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 70:735–740

    CAS  PubMed  Google Scholar 

  • Xue M, Hu S, Lu Y et al (2015) Development of chitosan nanoparticles as drug delivery system for a prototype capsid inhibitor. Int J Pharm 495:771–782

    CAS  PubMed  Google Scholar 

  • Yang J, Tian F, Wang Z et al (2008) Effect of chitosan molecular weight and deacetylation degree on hemostasis. J Biomed Mater Res B Appl Biomater 84(1):131–137

    CAS  PubMed  Google Scholar 

  • Zhang H, Oh M, Allen C, Kumacheva E (2004) Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 5:2461–2468

    CAS  PubMed  Google Scholar 

  • Zhao LM, Shi LE, Zhang ZL et al (2011) Preparation and application of chitosan nanoparticles and nanofibers. Braz J Chem Eng 28:353–362

    CAS  Google Scholar 

  • Zheng YL, Yang W, Wang CC et al (2007) Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: preparation, characterization and the use for 5-fluorouracil delivery. Eur J Pharm Biopharm 67:621–631

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Biotechnology (DBT), Department of Science and Technology (DST), and University Grants Commission (UGC) grants of Government of India. We appreciate funding in the form of Council of Scientific and Industrial Research (CSIR) and UGC Fellowships from Government of India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raghuwanshi, S., Agarwal, R., Raval, R., Gutti, R.K. (2020). Chitosan Nanoparticles and Their Applications in Drug Delivery, Hemostasis, and Stem Cell Research. In: Thangadurai, D., Sangeetha, J., Prasad, R. (eds) Functional Bionanomaterials. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-41464-1_6

Download citation

Publish with us

Policies and ethics