Skip to main content

Modeling Materials and Processes in Dye-Sensitized Solar Cells: Understanding the Mechanism, Improving the Efficiency

  • Chapter
  • First Online:
Multiscale Modelling of Organic and Hybrid Photovoltaics

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 352))

Abstract

We present a review of recent first-principles computational modeling studies on dye-sensitized solar cells (DSCs), focusing on the materials and processes modeling aspects which are key to the functioning of this promising class of photovoltaic devices. Crucial to the DSCs functioning is the photoinduced charge separation occurring at the heterointerface(s) between a dye-sensitized nanocrystalline, mesoporous metal oxide electrode and a redox shuttle. Theoretical and computational modeling of isolated cell components (e.g., dye, semiconductor nanoparticles, redox shuttle, etc…) as well as of combined dye/semiconductor/redox shuttle systems can successfully assist the experimental research by providing basic design rules of new sensitizers and a deeper comprehension of the fundamental chemical and physical processes governing the cell functioning and its performances. A computational approach to DSCs modeling can essentially be cast into a stepwise problem, whereby one first needs to simulate accurately the individual DSCs components to move to relevant pair (or higher order) interactions characterizing the device functioning. This information can contribute to enhancing further the target DSCs characteristics, such as temporal stability and optimization of device components. After presenting selected results for isolated dyes, including the computational design of new dyes, and model semiconductors, including realistic nanostructure models, we focus in the remainder of this review on the interaction between dye-sensitizers and semiconductor oxides, covering organic as well as metallorganic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O'Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Google Scholar 

  2. Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42(11):1788–1798

    Google Scholar 

  3. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

    CAS  Google Scholar 

  4. Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photonics 6:162

    CAS  Google Scholar 

  5. Moser JE (2010) Dynamics of interfacial and surface electron transfer processes. In: Kalyanasundarame K (ed) Dye-sensitized solar cells. EPFL, Lausanne, pp 403–456

    Google Scholar 

  6. Lanzafame JM, Palese S, Wang D, Miller RJD, Muenter AA (1994) Ultrafast nonlinear optical studies of surface reaction dynamics: mapping the electron trajectory. J Phys Chem 98(43):11020–11033

    CAS  Google Scholar 

  7. Clifford JN, Forneli A, Chen H, Torres T, Tan S, Palomares E (2011) Co-sensitized DSCs: dye selection criteria for optimized device Voc and efficiency. J Mater Chem 21(6):1693–1696

    CAS  Google Scholar 

  8. Sayama K, Tsukagoshi S, Mori T, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H (2003) Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Sol Energy Mater Sol Cells 80(1):47–71

    CAS  Google Scholar 

  9. Martínez-Díaz MV, de la Torre G, Torres T (2010) Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem Commun 46(38):7090–7108

    Google Scholar 

  10. Chen Y, Zeng Z, Li C, Wang W, Wang X, Zhang B (2005) Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New J Chem 29(6):773–776

    CAS  Google Scholar 

  11. Yum J-H, Jang S-R, Walter P, Geiger T, Nüesch F, Kim S, Ko J, Grätzel M, Nazeeruddin MK (2007) Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers. Chem Commun (44):4680–4682

    Google Scholar 

  12. Lan C-M, Wu H-P, Pan T-Y, Chang C-W, Chao W-S, Chen C-T, Wang C-L, Lin C-Y, Diau EW-G (2012) Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells. Energy Environ Sci 5(4):6460–6464

    CAS  Google Scholar 

  13. Yum J-H, Baranoff E, Wenger S, Nazeeruddin MK, Grätzel M (2011) Panchromatic engineering for dye-sensitized solar cells. Energy Environ Sci 4(3):842–857

    CAS  Google Scholar 

  14. Brown MD, Parkinson P, Torres T, Miura H, Herz LM, Snaith HJ (2011) Surface energy relay between cosensitized molecules in solid-state dye-sensitized solar cells. J Phys Chem C 115(46):23204–23208

    CAS  Google Scholar 

  15. Siegers C, Würfel U, Zistler M, Gores H, Hohl-Ebinger J, Hinsch A, Haag R (2008) Overcoming kinetic limitations of electron injection in the dye solar cell via coadsorption and FRET. Chem Phys Chem 9(5):793–798

    CAS  Google Scholar 

  16. Clifford JN, Palomares E, Nazeeruddin MK, Thampi R, Grätzel M, Durrant JR (2004) Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films. J Am Chem Soc 126(18):5670–5671

    CAS  Google Scholar 

  17. Fan S-Q, Kim C, Fang B, Liao K-X, Yang G-J, Li C-J, Kim J-J, Ko J (2011) Improved efficiency of over 10% in dye-sensitized solar cells with a ruthenium complex and an organic dye heterogeneously positioning on a single TiO2 electrode. J Phys Chem C 115(15):7747–7754

    CAS  Google Scholar 

  18. Ogura RY, Nakane S, Morooka M, Orihashi M, Suzuki Y, Noda K (2009) High-performance dye-sensitized solar cell with a multiple dye system. Appl Phys Lett 94(7):073308

    Google Scholar 

  19. Ozawa H, Shimizu R, Arakawa H (2012) Significant improvement in the conversion efficiency of black-dye-based dye-sensitized solar cells by cosensitization with organic dye. RSC Adv 2(8):3198–3200

    CAS  Google Scholar 

  20. Kuang D, Walter P, Nüesch F, Kim S, Ko J, Comte P, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2007) Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir 23(22):10906–10909

    CAS  Google Scholar 

  21. Nguyen LH, Mulmudi HK, Sabba D, Kulkarni SA, Batabyal SK, Nonomura K, Grätzel M, Mhaisalkar SG (2012) A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells. Phy Chem Chem Phys. doi:10.1039/C2CP42959D

    Google Scholar 

  22. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634

    CAS  Google Scholar 

  23. Rühle S, Cahen D (2004) Electron tunneling at the TiO2/substrate interface can determine dye-sensitized solar cell performance. J Phys Chem B 108(46):17946–17951

    Google Scholar 

  24. Liu J, Zhou D, Xu M, Jing X, Wang P (2011) The structure–property relationship of organic dyes in mesoscopic titania solar cells: only one double-bond difference. Energy Environ Sci 4:3545–3551

    CAS  Google Scholar 

  25. Xu M, Zhang M, Pastore M, Li R, De Angelis F, Wang P (2012) Joint electrical, photophysical and computational studies on D-p-A dye sensitized solar cells: the impacts of dithiophene rigidification. Chem Sci 3:976–983

    CAS  Google Scholar 

  26. Dualeh A, De Angelis F, Fantacci S, Moehl T, Yi C, Kessler F, Baranoff E, Nazeeruddin MK, Grätzel M (2012) Influence of donor groups of organic D-π-A dyes on open-circuit voltage in solid-state dye-sensitized solar cells. J Phys Chem C 116:1572–1578

    CAS  Google Scholar 

  27. Howie WH, Claeyssens F, Miura H, Peter LM (2008) Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes. J Am Chem Soc 130(4):1367–1375

    CAS  Google Scholar 

  28. De Angelis F, Vitillaro G, Kavan L, Nazeeruddin MK, Grätzel M (2012) Modeling ruthenium-dye-sensitized TiO2 surfaces exposing the (001) or (101) faces: a first-principles investigation. J Phys Chem C 116(34):18124–18131

    Google Scholar 

  29. Griffith MJ, James M, Triani G, Wagner P, Wallace GG, Officer DL (2011) Determining the orientation and molecular packing of organic dyes on a TiO2 surface using X-ray reflectometry. Langmuir 27(21):12944–12950

    CAS  Google Scholar 

  30. O’Regan BC, Walley K, Juozapavicius M, Anderson AY, Matar F, Ghaddar T, Zakeeruddin SM, Klein C, Durrant JR (2009) Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage. J Am Chem Soc 131(10):3541–3548

    Google Scholar 

  31. Miyashita M, Sunahara K, Nishikawa K, Uemura Y, Koumura N, Hara K, Mori A, Abe T, Suzuki E, Mori S (2008) Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes. J Am Chem Soc 130:17874–17881

    CAS  Google Scholar 

  32. Planells M, Pellejà L, Clifford JN, Pastore M, De Angelis F, López N, Marder SR, Palomares E (2011) Energy levels, charge injection, charge recombination and dye regeneration dynamics for donor–acceptor π-conjugated organic dyes in mesoscopic TiO2 sensitized solar cells. Energy Environ Sci 4:1820–1829

    CAS  Google Scholar 

  33. Pastore M, Mosconi E, De Angelis F (2012) Computational investigation of dye–iodine interactions in organic dye-sensitized solar cells. J Phys Chem C 116(9):5965–5973

    CAS  Google Scholar 

  34. Bai Y, Zhang J, Zhou D, Wang Y, Zhang M, Wang P (2011) Engineering organic sensitizers for iodine-free dye-sensitized solar cells: red-shifted current response concomitant with attenuated charge recombination. J Am Chem Soc 133(30):11442–11445. doi:10.1021/ja203708k

    Google Scholar 

  35. Tuikka M, Hirva P, Rissanen K, Korppi-Tommola J, Haukka M (2011) Halogen bonding—a key step in charge recombination of the dye-sensitized solar cell. Chem Commun 47:4499–4501

    CAS  Google Scholar 

  36. Li X, Reynal A, Barnes P, Humphry-Baker R, Zakeeruddin SM, De Angelis F, O'Regan BC (2012) Measured binding coefficients for iodine and ruthenium dyes; implications for recombination in dye sensitised solar cells. Phy Chem Chem Phys 14(44):15421–15428

    CAS  Google Scholar 

  37. Mosconi E, Yum J-H, Kessler F, García CJG, Zuccaccia C, Cinti A, Nazeeruddin MK, Grätzel M, De Angelis F (2012) Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study. J Am Chem Soc 134(47):19438–19453

    CAS  Google Scholar 

  38. Rothenberger G, Fitzmaurice D, Grätzel M (1992) Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films. J Phys Chem 96(14):5983–5986

    CAS  Google Scholar 

  39. O'Regan B, Grätzel M, Fitzmaurice D (1991) Optical electrochemistry. 2. Real-time spectroscopy of conduction band electrons in a metal oxide semiconductor electrode. J Phys Chem 95(26):10525–10528

    Google Scholar 

  40. Boschloo G, Fitzmaurice D (1999) Electron accumulation in nanostructured TiO2 (anatase) electrodes. J Phys Chem B 103(37):7860–7868

    CAS  Google Scholar 

  41. Redmond G, Fitzmaurice D (1993) Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents. J Phys Chem 97(7):1426–1430

    CAS  Google Scholar 

  42. Enright B, Redmond G, Fitzmaurice D (1994) Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in mixed solvent systems. J Phys Chem 98:6195–6200

    CAS  Google Scholar 

  43. Westermark K, Henningsson A, Rensmo H, Södergren S, Siegbahn H, Hagfeldt A (2002) Determination of the electronic density of states at a nanostructured TiO2/Ru-dye/electrolyte interface by means of photoelectron spectroscopy. Chem Phys 285(1):157–165

    CAS  Google Scholar 

  44. Rühle S, Greenshtein M, Chen S-G, Merson A, Pizem H, Sukenik CS, Cahen D, Zaban A (2005) Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. J Phys Chem B 109(40):18907–18913

    Google Scholar 

  45. Yan SG, Hupp JT (1996) Semiconductor-based interfacial electron-transfer reactivity: decoupling kinetics from pH-dependent band energetics in a dye-sensitized titanium dioxide aqueous solution system. J Phys Chem 100(17):6867–6870

    CAS  Google Scholar 

  46. De Angelis F, Fantacci S, Selloni A, Grätzel M, Nazeeruddin MK (2007) Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells. Nano Lett 7(10):3189–3195

    Google Scholar 

  47. Pastore M, De Angelis F (2012) Computational modelling of TiO2 surfaces sensitized by organic dyes with different anchoring groups: adsorption modes electronic structure and implication for electron injection/recombination. Phy Chem Chem Phys 14(2):920–928

    CAS  Google Scholar 

  48. Kusama H, Orita H, Sugihara H (2008) TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study. Langmuir 24(8):4411–4419

    CAS  Google Scholar 

  49. Tachibana Y, Haque SA, Mercer IP, Moser JE, Klug DR, Durrant JR (2001) Modulation of the rate of electron injection in dye-sensitized nanocrystalline TiO2 films by externally applied bias. J Phys Chem B 105(31):7424–7431

    CAS  Google Scholar 

  50. Chen P, Yum JH, De Angelis F, Mosconi E, Fantacci S, Moon S-J, Baker RH, Ko J, Nazeeruddin MK, Grätzel M (2009) High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. Nano Lett 9(6):2487–2492

    CAS  Google Scholar 

  51. O’Regan BC, Durrant JR (2009) Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc Chem Res 42(11):1799–1808

    Google Scholar 

  52. De Angelis F, Fantacci S, Sgamellotti A (2007) An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires. Theor Chem Acc 117(5–6):1093–1104

    Google Scholar 

  53. Lee DH, Lee MJ, Song HM, Song BJ, Seo KD, Pastore M, Anselmi C, Fantacci S, De Angelis F, Nazeeruddin MK, Gräetzel M, Kim HK (2011) Organic dyes incorporating low-band-gap chromophores based on π-extended benzothiadiazole for dye-sensitized solar cells 91(2):192–198

    CAS  Google Scholar 

  54. Stier W, Prezhdo OV (2002) Nonadiabatic molecular dynamics simulation of light-induced electron transfer from an anchored molecular electron donor to a semiconductor acceptor. J Phys Chem B 106(33):8047–8054

    CAS  Google Scholar 

  55. Rego LGC, Batista VS (2003) Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J Am Chem Soc 125(7989–7997)

    Google Scholar 

  56. Kondov I, Čížek M, Benesch C, Wang H, Thoss M (2007) Quantum dynamics of photoinduced electron-transfer reactions in dye−semiconductor systems: first-principles description and application to coumarin 343–TiO2. J Phys Chem C 111(32):11970–11981

    CAS  Google Scholar 

  57. Meng S, Ren J, Kaxiras E (2008) Natural dyes adsorbed on TiO2 nanowire for photovoltaic applications: enhanced light absorption and ultrafast electron injection. Nano Lett 8(10):3266–3272

    CAS  Google Scholar 

  58. Rego LGC, Batista VS (2003) Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J Am Chem Soc 125:7989–7997

    CAS  Google Scholar 

  59. Abuabara SG, Rego LGC, Batista VS (2005) Influence of thermal fluctuations on interfacial electron transfer in functionalized TiO2 semiconductors. J Am Chem Soc 127:18234–18242

    CAS  Google Scholar 

  60. Duncan WR, Stier WM, Prezhdo OV (2005) Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin−TiO2 interface. J Am Chem Soc 127(21):7941–7951

    CAS  Google Scholar 

  61. Li J, Wang H, Persson P, Thoss M (2012) Photoinduced electron transfer processes in dye-semiconductor systems with different spacer groups. J Chem Phys 137:22A529

    Google Scholar 

  62. Marques MAL, López X, Varsano D, Castro A, Rubio A (2003) Time-dependent density-functional approach for biological chromophores: the case of the green fluorescent protein. Phys Rev Lett 90(25):258101–258104

    Google Scholar 

  63. Meng S, Kaxiras E (2010) Electron and hole dynamics in dye-sensitized solar cells: influencing factors and systematic trends. Nano Lett 10:1238–1247

    CAS  Google Scholar 

  64. Fantacci S, De Angelis F, Selloni A (2003) Absorption spectrum and solvatochromism of the [Ru(4,4'-COOH-2,2'-bpy)2(NCS)2] molecular dye by time dependent density functional theory. J Am Chem Soc 125(14):4381–4387

    CAS  Google Scholar 

  65. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  66. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115(10):4708–4717

    CAS  Google Scholar 

  67. Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210

    CAS  Google Scholar 

  68. Kristyán S, Pulay P (1994) Can (semi)local density functional theory account for the london dispersion forces? Che Phys Lett 229(3):175–180

    Google Scholar 

  69. Tkatchenko A, Romaner L, Hofmann OT, Zojer E, Ambrosch-Draxl C, Scheffler M (2010) Van der Waals interactions between organic adsorbates and at organic/inorganic interfaces. MRS Bulletin 35(6):435–442

    CAS  Google Scholar 

  70. Johnson ER, Mackie ID, DiLabio GA (2009) Dispersion interactions in density-functional theory. J Phys Org Chem 22(12):1127–1135

    CAS  Google Scholar 

  71. Johnson ERJ, Wolkow RA, DiLabio GA (2004) Application of 25 density functionals to dispersion-bound homomolecular dimers. Chem Phys Lett 394:334–338

    CAS  Google Scholar 

  72. Klimeš J, Michaelides A (2012) Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 137(12):120901

    Google Scholar 

  73. Zhao Y, Truhlar DG (2005) Benchmark databases for nonbonded interactions and their use to test density functional theory. J Chem Theor Comp 1(3):415–432

    CAS  Google Scholar 

  74. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theor Comp 2(2):364–382

    Google Scholar 

  75. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    CAS  Google Scholar 

  76. Wu Q, Yang W (2002) Empirical correction to density functional theory for van der Waals interactions. J Chem Phys 116(2):515

    CAS  Google Scholar 

  77. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comp Chem 25(12):1463–1473

    CAS  Google Scholar 

  78. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) Hydrogen bonding and stacking interactions of nucleic acid base pairs: a density-functional-theory based treatment. J Chem Phys 114:5149

    CAS  Google Scholar 

  79. Zimmerli U, Parrinello M, Koumoutsakos P (2004) Dispersion corrections to density functionals for water aromatic interactions. J Chem Phys 120(6):2693

    CAS  Google Scholar 

  80. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

    Google Scholar 

  81. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comp Chem 27(15):1787–1799

    CAS  Google Scholar 

  82. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    CAS  Google Scholar 

  83. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comp Chem 32(7):1456–1465

    CAS  Google Scholar 

  84. Pastore M, De Angelis F (2012) First-principles computational modeling of fluorescence resonance energy transfer in co-sensitized dye solar cells. J Phys Chem Lett 3(16):2146–2153

    CAS  Google Scholar 

  85. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline titanium dioxide electrode. J Am Chem Soc 115(14):6382–6390

    CAS  Google Scholar 

  86. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847

    CAS  Google Scholar 

  87. Nazeeruddin MK, Péchy P, Grätzel M (1997) Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on atrithiocyanato–ruthenium complex. Chem Commun (18):1705–1706

    Google Scholar 

  88. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123(8):1613–1624

    CAS  Google Scholar 

  89. Han L, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S, Yang X, Yanagida M (2012) High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ Sci 5(3):6057–6060

    CAS  Google Scholar 

  90. Wang P, Zakeeruddin SM, Exnar I, Grätzel M (2002) High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun (24):2972–2973

    Google Scholar 

  91. Chen C-Y, Wu S-J, Wu C-G, Chen J-G, Ho K-C (2006) A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angew Chem Int Ed 45(35):5822–5825

    CAS  Google Scholar 

  92. Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130(32):10720–10728

    CAS  Google Scholar 

  93. Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin MK, Grätzel M (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131(16):5930–5934

    CAS  Google Scholar 

  94. Bomben PG, Koivisto BD, Berlinguette CP (2010) Cyclometalated Ru complexes of type [RuII(NN)2(CN)]z: physicochemical response to substituents installed on the anionic ligand. Inorg Chem 49(11):4960–4971

    CAS  Google Scholar 

  95. Mishra A, Fischer M, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48(14):2474–2499

    CAS  Google Scholar 

  96. Pastore M, Mosconi E, Fantacci S, De Angelis F (2012) Computational investigations on organic sensitizers for dye-sensitized solar cells. Curr Org Synth 9(2):215–232

    CAS  Google Scholar 

  97. Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P (2010) Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem Mater 22(5):1915–1925

    CAS  Google Scholar 

  98. Wu S-L, Lu H-P, Yu H-T, Chuang S-H, Chiu C-L, Lee C-W, Diau EW-G, Yeh C-Y (2010) Design and characterization of porphyrin sensitizers with a push–pull framework for highly efficient dye-sensitized solar cells. Energy Environ Sci 3(7):949–955

    CAS  Google Scholar 

  99. Chang Y-C, Wang C-L, Pan T-Y, Hong S-H, Lan C-M, Kuo H-H, Lo C-F, Hsu H-Y, Lin C-Y, Diau EW-G (2011) A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chem Commun 47(31):8910–8912

    CAS  Google Scholar 

  100. Rensmo H, Södergren S, Patthey L, Westermark K, Vayssieres L, Kohle O, Brühwiler PA, Hagfeldt A, Siegbahn H (1997) The electronic structure of the cis-bis(4,4′-dicarboxy-2, 2′-bipyridine)-bis(isothiocyanato)ruthenium(II) complex and its ligand 2,2′-bipyridyl-4, 4′-dicarboxylic acid studied with electron spectroscopy. Chem Phys Lett 274(1–3):51–57

    Google Scholar 

  101. Monat JE, Rodriguez JH, McCusker JK (2002) Ground- and excited-state electronic structures of the solar cell sensitizer bis(4,4′-dicarboxylato-2,2′-bipyridine)bis(isothiocyanato)ruthenium(II). J Phys Chem A 106:7399–7406

    CAS  Google Scholar 

  102. Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Gorelsky SI, Lever ABP, Grätzel M (2000) Synthesis, spectroscopic and a ZINDO study of cis- and trans-(X2)bis(4,4′-dicarboxylic acid-2,2′-bipyridine)ruthenium(II) complexes (X=Cl−, H2O, NCS−). Coord Chemi Rev 208(1):213–225

    CAS  Google Scholar 

  103. Guillemoles J-F, Barone V, Joubert L, Adamo C (2002) A theoretical investigation of the ground and excited states of selected Ru and Os polypyridyl molecular dyes. J Phys Chem A 106(46):11354–11360

    CAS  Google Scholar 

  104. De Angelis F, Fantacci S, Selloni A (2005) Time dependent density functional theory study of the absorption spectrum of the [Ru(4,4′-COO–2,2′-bpy)(2)(X)(2)](4-) (X=NCS, Cl) dyes in water solution. Chem Phys Lett 415(1–3):115–120

    Google Scholar 

  105. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2007) Time-dependent density functional theory investigations on the excited states of Ru(II)-dye-sensitized TiO2 nanoparticles: the role of sensitizer protonation. J Am Chem Soc 129(46):14156–14157

    Google Scholar 

  106. De Angelis F, Fantacci S, Selloni A (2004) Time-dependent density functional theory study of the absorption spectrum of [Ru(4,4′-COOH-2,2′-bpy)(2)(NCS)(2)] in water solution: influence of the pH. Chem Phys Lett 389(1–3):204

    Google Scholar 

  107. Aiga F, Tada T (2003) Molecular and electronic structures of black dye; an efficient sensitizing dye for nanocrystalline TiO2 solar cells. J Mol Struc 658(1–2):25–32

    CAS  Google Scholar 

  108. Ghosh S, Chaitanya GK, Bhanuprakash K, Nazeeruddin MK, Grätzel M, Yella RP (2006) Electronic structures and absorption spectra of linkage isomers of trithiocyanato (4,4',4''-tricarboxy-2,2':6,2''-terpyridine) ruthenium(II) complexes: a DFT Study. Inorg Chem 45(19):7600–7611

    CAS  Google Scholar 

  109. Li M-X, Zhou X, Xia B-H, Zhang H-X, Pan Q-J, Liu T, Fu H-G, Sun C-C (2008) Theoretical studies on structures and spectroscopic properties of photoelectrochemical cell ruthenium sensitizers, [Ru(Hmtcterpy)(NCS)3]n- (m = 0, 1, 2, and 3; n = 4, 3, 2, and 1). Inorg Chem 47(7):2312–2324

    CAS  Google Scholar 

  110. Li M-X, Zhang H-X, Zhou X, Pan Q-J, Fu H-G, Sun C-C (2007) Theoretical studies of the electronic structure and spectroscopic properties of [Ru(Htcterpy)(NCS)3]3–. Eur J Inorg Chem 2171–2180

    Google Scholar 

  111. Govindasamy A, Lv C, Tsuboi H, Koyama M, Endou A, Takaba H, Kubo M, Del Carpio CA, Miyamoto A (2007) Theoretical investigation of the photophysical properties of black dye sensitizer [(H3-tctpy)M(NCS)3]− (M = Fe, Ru, Os) in dye sensitized solar cells. Jpn J Appl Phys 46:2655–2660

    CAS  Google Scholar 

  112. Kusama H, Sugihara H, Sayama K (2011) Theoretical study on the interactions between black dye and iodide in dye-sensitized solar cells. J Phys Chem C 115(18):9267–9275

    CAS  Google Scholar 

  113. Bang SY, Ko MJ, Kim K, Kim JH, Jang I-H, Park N-G (2012) Evaluation of dye aggregation and effect of deoxycholic acid concentration on photovoltaic performance of N749-sensitized solar cell. Synth Metals 162(17–18):1503–1507

    CAS  Google Scholar 

  114. Sodeyama K, Sumita M, O’Rourke C, Terranova U, Islam A, Han L, Bowler DR, Tateyama Y (2012) Protonated carboxyl anchor for stable adsorption of Ru N749 dye (black dye) on a TiO2 anatase (101) surface. J Phys Chem Lett 3(4):472–477

    CAS  Google Scholar 

  115. Liu S-H, Fu H, Cheng Y-M, Wu K-L, Ho S-T, Chi Y, Chou P-T (2012) Theoretical study of N749 dyes anchoring on the (TiO2)28 surface in DSSCs and their electronic absorption properties. J Phys Chem C 116(31):16338–16345

    CAS  Google Scholar 

  116. Chen J, Bai F-Q, Wang J, Hao L, Xie Z-F, Pan Q-J, Zhang H-X (2012) Theoretical studies on spectroscopic properties of ruthenium sensitizers adsorbed to TiO2 film surface with connection mode for DSSC. Dyes Pigm 94(3):459–468

    CAS  Google Scholar 

  117. Kusama H, Sugihara H, Sayama K (2011) Effect of cations on the interactions of Ru dye and iodides in dye-sensitized solar cells: a density functional theory study. J Phys Chem C 115(5):2544–2552

    CAS  Google Scholar 

  118. Fantacci S, Lobello MG, De Angelis F (2013) Everything you always wanted to know about the black dye (but were afraid to ask): a DFT/TDDFT investigation. Chimia. doi:10.2533/chimia.2013.1

  119. Lee C-W, Lu H-P, Lan C-M, Huang Y-L, Liang Y-R, Yen W-N, Liu Y-C, Lin Y-S, Diau EW-G, Yeh C-Y (2009) Novel zinc porphyrin sensitizers for dye-sensitized solar cells: synthesis and spectral, electrochemical, and photovoltaic properties. Chem Eur J 15(6):1403–1412

    CAS  Google Scholar 

  120. Bessho T, Zakeeruddin SM, Yeh C-Y, Diau EW-G, Grätzel M (2010) Highly efficient mesoscopic dye-sensitized solar cells based on donor–acceptor-substituted porphyrins. Angew Chem Int Ed 49(37):6646–6649

    CAS  Google Scholar 

  121. Wang Q, Campbell WM, Bonfantani EE, Jolley KW, Officer DL, Walsh PJ, Gordon K, Humphry-Baker R, Nazeeruddin MK, Grätzel M (2005) Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films. J Phys Chem B 109(32):15397–15409

    CAS  Google Scholar 

  122. Walsh PJ, Gordon KC, Officer DL, Campbell WM (2006) A DFT study of the optical properties of substituted Zn(II)TPP complexes. J Mol Struct THEOCHEM 759(1–3):17–24

    CAS  Google Scholar 

  123. Santhanamoorthi N, Lo C-M, Jiang J-C (2013) Molecular design of porphyrins for dye-sensitized solar cells: a DFT/TDDFT study. J Phys Chem Let 4(3):524–530

    CAS  Google Scholar 

  124. Lind SJ, Gordon KC, Gambhir S, Officer DL (2009) A spectroscopic and DFT study of thiophene-substituted metalloporphyrins as dye-sensitized solar cell dyes. Phys Chem Chem Phys 11(27):5598–5607

    CAS  Google Scholar 

  125. Hsieh C-P, Lu H-P, Chiu C-L, Lee C-W, Chuang S-H, Mai C-L, Yen W-N, Hsu S-J, Diau EW-G, Yeh C-Y (2010) Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells. J Mater Chem 20(6):1127–1134

    CAS  Google Scholar 

  126. Ma R, Guo P, Cui H, Zhang X, Nazeeruddin MK, Grätzel M (2009) Substituent effect on the meso-substituted porphyrins: theoretical screening of sensitizer candidates for dye-sensitized solar cells. J Phys Chem A 113(37):10119–10124

    CAS  Google Scholar 

  127. Orbelli Biroli A, Tessore F, Pizzotti M, Biaggi C, Ugo R, Caramori S, Aliprandi A, Bignozzi CA, De Angelis F, Giorgi G, Licandro E, Longhi E (2011) A multitechnique physicochemical investigation of various factors controlling the photoaction spectra and of some aspects of the electron transfer for a series of push–pull Zn(II) porphyrins acting as dyes in DSSCs. J Phys Chem C 115(46):23170–23182

    CAS  Google Scholar 

  128. Balanay MP, Kim DH (2008) DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. Phys Chem Chem Phys 10(33):5121–5127

    CAS  Google Scholar 

  129. Pastore M, Mosconi E, De Angelis F, Grätzel M (2010) A computational investigation of organic dyes for dye-sensitized solar cells: benchmark, strategies, and open issues. J Phys Chem C 114(15):7205–7212

    CAS  Google Scholar 

  130. Pastore M, Fantacci S, De Angelis F (2010) Ab Initio determination of ground and excited state oxidation potentials of organic chromophores for dye-sensitized solar cells. J Phys Chem C 114(51):22742–22750

    CAS  Google Scholar 

  131. Jacquemin D, Perpète EA, Ciofini I, Adamo C (2009) Accurate simulation of optical properties in dyes. Acc Chem Res 42(2):326–334

    CAS  Google Scholar 

  132. Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theor Comp 4(1):123–135

    CAS  Google Scholar 

  133. Dreuw A, Weisman JL, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119(6):2943–2946

    CAS  Google Scholar 

  134. Tozer DJ (2003) Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory. J Chem Phys 119(24):12697–12699

    CAS  Google Scholar 

  135. Dev P, Agrawal S, English NJ (2012) Determining the appropriate exchange-correlation functional for time-dependent density functional theory studies of charge-transfer excitations in organic dyes. J Chem Phys 136:224301

    Google Scholar 

  136. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120(18):8425–8433

    CAS  Google Scholar 

  137. Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn–Sham method. J Chem Phys 122(23):234111

    Google Scholar 

  138. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115(8):3540–3544

    CAS  Google Scholar 

  139. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128(8):084106

    Google Scholar 

  140. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    CAS  Google Scholar 

  141. Pastore M, Fantacci S, De Angelis F (2013) Modeling excited states and alignment of energy levels in dye-sensitized solar cells: successes, failures, and challenges. J Phys Chem C 117(8):3685–3700

    CAS  Google Scholar 

  142. Kim S, Lee JK, Kang SO, Ko J, Yum JH, Fantacci S, De Angelis F, Di Censo D, Nazeeruddin MK, Grätzel M (2006) Molecular engineering of organic sensitizers for solar cell applications. J Am Chem Soc 128(51):16701–16707

    CAS  Google Scholar 

  143. Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M (2005) Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv Mater 17(7):813–815

    CAS  Google Scholar 

  144. Horiuchi T, Miura H, Uchida S (2003) Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chem Commun 3036–3037

    Google Scholar 

  145. Magyar RJ, Tretiak S (2007) Dependence of spurious charge-transfer excited states on orbital exchange in TDDFT: large molecules and clusters. J Chem Theor Comp 3:976–987

    CAS  Google Scholar 

  146. Preat J, Michaux C, Jacquemin D, Perpete EA (2009) Enhanced efficiency of organic dye-sensitized solar cells: triphenylamine derivatives. J Phys Chem C 113:16821–16833

    CAS  Google Scholar 

  147. Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Pechy P, Grätzel M (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Progr Photovoltaics 15:603–612

    CAS  Google Scholar 

  148. Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18(6):065707

    Google Scholar 

  149. Saito M, Fujihara S (2008) Large photocurrent generation in dye-sensitized ZnO solar cells. Energy Environ Sci 1(2):280–283

    CAS  Google Scholar 

  150. Keis K, Lindgren J, Lindquist S-E, Hagfeldt A (2000) Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir 16(10):4688–4694

    CAS  Google Scholar 

  151. Ferrere S, Zaban A, Gregg BA (1997) Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J Phys Chem B 101(23):4490–4493

    CAS  Google Scholar 

  152. Kay A, Grätzel M (2002) Dye-sensitized core−shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem Mater 14(7):2930–2935

    CAS  Google Scholar 

  153. Vittadini A, Casarin M, Selloni A (2007) Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review. Theor Chem Acc 117(5–6):663–671

    CAS  Google Scholar 

  154. Kohan AF, Ceder G, Morgan D, Van de Walle CG (2000) First-principles study of native point defects in ZnO. Phys Rev B 61(22):15019–15027

    CAS  Google Scholar 

  155. Muscat J, Wander A, Harrison NM (2001) On the prediction of band gaps from hybrid functional theory. Chem Phys Lett 342(3–4):397–401

    CAS  Google Scholar 

  156. Di Valentin C, Pacchioni G, Selloni A (2006) Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. Phys Rev Lett 97(16):166803–166806

    Google Scholar 

  157. De Angelis F, Tilocca A, Selloni A (2004) Time-dependent DFT study of [Fe(CN)6](4-) sensitization of TiO2 nanoparticles. J Am Chem Soc 126(46):15024–15025

    Google Scholar 

  158. Lundqvist MJ, Nilsing M, Persson P, Lunel S (2006) DFT study of bare and dye-sensitized TiO2 clusters and nanocrystals. Int J Quantum Chem 106(15):3214–3234

    CAS  Google Scholar 

  159. van de Lagemaat J, Park N-G, Frank AJ (2000) Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques. J Phys Chem B 104(9):2044–2052

    Google Scholar 

  160. Schlichthörl G, Park NG, Frank AJ (1999) Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 103(5):782–791

    Google Scholar 

  161. Cao F, Oskam G, Meyer GJ, Searson PC (1996) Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells. J Phys Chem B 100(42):17021–17027

    CAS  Google Scholar 

  162. Dloczik L, Ileperuma O, Lauermann I, Peter LM, Ponomarev EA, Redmond G, Shaw NJ, Uhlendorf I (1997) Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J Phys Chem B 101(49):10281–10289

    CAS  Google Scholar 

  163. Solbrand A, Lindström H, Rensmo H, Hagfeldt A, Lindquist S-E (1997) Electron transport in the nanostructured TiO2 – electrolyte system studied with time-resolved photocurrents. J Phys Chem B 101(14):2514–2518

    CAS  Google Scholar 

  164. Kopidakis N, Schiff EA, Park N-G, van de Lagemaat J, Frank AJ (2000) Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2. J Phys Chem B 104(16):3930–3936

    CAS  Google Scholar 

  165. Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Bisquert J (2003) Cyclic voltammetry studies of nanoporous semiconductors. Capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte. J Phys Chem B 107(3):758–768

    CAS  Google Scholar 

  166. Bisquert J, Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Barea EM, Palomares E (2008) A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorg Chim Acta 361(3):684–698

    CAS  Google Scholar 

  167. Montero JM, Bisquert J (2011) Trap origin of field-dependent mobility of the carrier transport in organic layers. Solid-State Electron 55(1):1–4

    CAS  Google Scholar 

  168. Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Giménez S (2009) Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J Phys Chem C 113(40):17278–17290

    CAS  Google Scholar 

  169. Bisquert J, Zaban A, Salvador P (2002) Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady-state statistics and interfacial electron transfer via surface states. J Phys Chem B 106(34):8774–8782

    CAS  Google Scholar 

  170. Bisquert J, Cahen D, Hodes G, Ruhle S, Zaban A (2004) Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B 108(24):8106–8118

    CAS  Google Scholar 

  171. Zaban A, Greenshtein M, Bisquert J (2003) Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. Chem Phys Chem 4(8):859–864

    CAS  Google Scholar 

  172. Bailes M, Cameron PJ, Lobato K, Peter LM (2005) Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells. J Phys Chem B 109(32):15429–15435

    CAS  Google Scholar 

  173. Ardo S, Meyer GJ (2009) Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem Soc Rev 38(1):115–164

    CAS  Google Scholar 

  174. Hagfeldt A, Peter L (2010) Dye-sensitized solar cells dye-sensitized solar cells. EPFL, Lausanne

    Google Scholar 

  175. Moser JE (2010) Dye-sensitized solar cells dye-sensitized solar cells. EPFL, Lausanne

    Google Scholar 

  176. Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem Rev 106(10):4428–4453

    CAS  Google Scholar 

  177. Diebold U, Ruzycki N, Herman GS, Selloni A (2003) One step towards bridging the materials gap: surface studies of TiO2 anatase. Catal Today 85(2–4):93–100

    CAS  Google Scholar 

  178. Vittadini A, Selloni A, Rotzinger FP, Grätzel M (1998) Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phy Rev Lett 81(14):2954–2957

    CAS  Google Scholar 

  179. Diebold U (2003) Surf Sci Rep 48:53–229

    CAS  Google Scholar 

  180. Finazzi E, Di Valentin C, Pacchioni G, Selloni A (2008) Excess electron states in reduced bulk anatase TiO(2): comparison of standard GGA, GGA plus U, and hybrid DFT calculations. J Chem Phys 129(15):154113

    Google Scholar 

  181. Finazzi E, Di Valentin C, Pacchioni G (2009) Nature of Ti interstitials in reduced bulk anatase and rutile TiO2. J Phys Chem C 113(9):3382–3385

    CAS  Google Scholar 

  182. Krüger P, Bourgeois S, Domenichini B, Magnan H, Chandesris D, Le Fèvre P, Flank AM, Jupille J, Floreano L, Cossaro A, Verdini A, Morgante A (2008) Defect states at the TiO2 (110) surface probed by resonant photoelectron diffraction. Phys Rev Lett 100(5):055501

    Google Scholar 

  183. Barnard AS, Erdin S, Lin Y, Zapol P, Halley JW (2006) Modeling the structure and electronic properties of TiO2 nanoparticles. Phys Rev B 73(20):205405

    Google Scholar 

  184. Li Y-F, Liu Z-P (2011) Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. J Am Chem Soc 133(39):15743–15752

    CAS  Google Scholar 

  185. Zhang JF, Hughes T, Steigerwald M, Brus LA, Friesner R (2012) Realistic cluster modeling of electron transport and trapping in solvated TiO2 nanoparticles. J Am Chem Soc 134(29):12028–12042

    Google Scholar 

  186. Koparde VN, Cummings PT (2008) Phase transformations during sintering of titania nanoparticles. ACS Nano 2(8):1620–1624

    CAS  Google Scholar 

  187. Alimohammadi M, Fichthorn KA (2009) Molecular dynamics simulation of the aggregation of titanium dioxide nanocrystals: preferential alignment. Nano Lett 9(12):4198–4203

    CAS  Google Scholar 

  188. Nunzi F, Mosconi E, Storchi L, Ronca E, Selloni A, Gratzel M, De Angelis F (2013) Inherent electronic trap states in TiO2 nanocrystals: effect of saturation and sintering. Energy Environ Sci 6:1221–1229

    Google Scholar 

  189. Baerends EJ, Ellis DE, Ros P (1973) Self-consistent molecular Hartree–Fock–Slater calculations I. The computational procedure. Chem Phys 2:41–51

    CAS  Google Scholar 

  190. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99(6):391–403

    Google Scholar 

  191. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, De Gironcoli S, Fabris S, Frates G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umaril P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Google Scholar 

  192. Bisquert J, Zaban A, Greenshtein M, Mora-Serò I (2004) Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am Chem Soc 126(41):13550–13559

    CAS  Google Scholar 

  193. Monticone S, Tufeu R, Kanaev AV (1998) Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. J Phys Chem B 102(16):2854–2862

    CAS  Google Scholar 

  194. van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A (2000) The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J Phys Chem B 104(8):1715–1723

    Google Scholar 

  195. Kahn ML, Cardinal T, Bousquet B, Monge M, Jubera V, Chaudret B (2006) Optical properties of zinc oxide nanoparticles and nanorods synthesized using an organometallic method. Chem Phys Chem 7(11):2392–2397

    CAS  Google Scholar 

  196. Schrier J, Demchenko DO, Wang L-W, Alivisatos AP (2007) Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett 7(8):2377–2382

    CAS  Google Scholar 

  197. Galoppini E, Rochford J, Chen H, Saraf G, Lu Y, Hagfeldt A, Boschloo G (2006) Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J Phys Chem B 110(33):16159–16161

    CAS  Google Scholar 

  198. Quintana M, Edvinsson T, Hagfeldt A, Boschloo G (2007) Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J Phys Chem C 111(2):1035–1041

    CAS  Google Scholar 

  199. Martinson ABF, Elam JW, Hupp JT, Pellin MJ (2007) ZnO nanotube based dye-sensitized solar cells. Nano Lett 7(8):2183–2187

    Google Scholar 

  200. De Angelis F, Armelao L (2011) Optical properties of ZnO nanostructures: a hybrid DFT/TDDFT investigation. Phys Chem Chem Phys 13:467–475

    Google Scholar 

  201. Azpiroz JM, Mosconi E, De Angelis F (2011) Modeling ZnS and ZnO nanostructures: structural, electronic, and optical properties. J Phys Chem C 115:25219–25226

    CAS  Google Scholar 

  202. Azpiroz JM, Infante I, Lopez X, Ugalde JU, De Angelis F (2012) A first-principles study of II–VI (II = Zn; VI = O, S, Se, Te) semiconductor nanostructures. J Mater Chem 22:21453–21465

    CAS  Google Scholar 

  203. Labat F, Ciofini I, Hratchian HP, Frisch M, Raghavachari K, Adamo C (2009) First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances. J Am Chem Soc 131(40):14290–14298

    CAS  Google Scholar 

  204. Westermark K, Rensmo H, Siegbahn H (2002) PES studies of Ru(dcbpyH2)2(NCS)2 adsorption on nanostructured ZnO for solar cell applications. J Phys Chem B 106(39):10102–10107

    CAS  Google Scholar 

  205. Persson P, Lunell S, Ojamäe L (2002) Quantum chemical prediction of the adsorption conformations and dynamics at HCOOH-covered ZnO(1010) surfaces. Int J Quantum Chem 89(3):172–180

    CAS  Google Scholar 

  206. Persson P, Ojamäe L (2000) Periodic Hartree–Fock study of the adsorption of formic acid on ZnO(1010). Chem Phys Lett 321(3.4):302–308

    Google Scholar 

  207. Amat A, De Angelis F (2012) Challenges in the simulation of dye-sensitized ZnO solar cells: quantum confinement, alignment of energy levels and excited states nature at the dye/semiconductor interface. Chem Phys Phys Chem 14:10662–10668

    CAS  Google Scholar 

  208. Patterson CH (2006) Role of defects in ferromagnetism in Zn1xCoxO: a hybrid density-functional study. Phys Rev B 74(14):144432

    Google Scholar 

  209. Wander A, Harrison NM (2001) The stability of polar oxide surfaces: the interaction of H2O with ZnO(0001) and ZnO(000). J Chem Phys 115(5):2312

    CAS  Google Scholar 

  210. Matxain JM, Mercero JM, Fowler JE, Ugalde JM (2003) Electronic excitation energies of ZniOi clusters. J Am Chem Soc 125(31):9494–9499

    CAS  Google Scholar 

  211. Liu D-P, Li G-D, Su Y, Chen J-S (2006) Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components. Angew Chem Int Ed 45(44):7370–7373. doi:10.1002/anie.200602429

    CAS  Google Scholar 

  212. Meyer B (2004) First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen. Phys Rev B 69(4):045416

    Google Scholar 

  213. Li C, Guo W, Kong Y, Gao H (2007) First-principles study on ZnO nanoclusters with hexagonal prism structures. Appl Phys Lett 90(22):223102–223103

    Google Scholar 

  214. Shen X, Allen PB, Muckerman JT, Davenport JW, Zheng J-C (2007) Wire versus tube: stability of small one-dimensional ZnO nanostructures. Nano Lett 7(8):2267–2271

    CAS  Google Scholar 

  215. Djurišić AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2(8–9):944–961

    Google Scholar 

  216. Armelao L, Pascolini M, Biasiolo E, Tondello E, Bottaro G, Dalle Carbonare MD, D'Arrigo A, Leon A (2008) Innovative metal oxide-based substrates for DNA microarrays. Inorg Chim Acta 361(12–13):3603–3608

    CAS  Google Scholar 

  217. Lundqvist MJ, Nilsing M, Lunell S, Åkermark B, Persson P (2006) Spacer and anchor effects on the electronic coupling in ruthenium-bis-terpyridine dye-sensitized TiO2 nanocrystals studied by DFT. J Phys Chem B 110(41):20513–20525

    CAS  Google Scholar 

  218. Wiberg J, Marinado T, Hagberg DP, Sun L, Hagfeldt A, Albinsson B (2009) Effect of anchoring group on electron injection and recombination dynamics in organic dye-sensitized solar cells. J Phys Chem C 113(9):3881–3886

    CAS  Google Scholar 

  219. Pastore M, De Angelis F (2010) Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation. ACS Nano 4(1):556–562

    CAS  Google Scholar 

  220. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A 164(1–3):3–14

    Google Scholar 

  221. Odobel F, Blart E, Lagrée M, Villieras M, Boujtita H, El Murr N, Caramori S, Bignozzi CA (2003) Porphyrin dyes for TiO2 sensitization. J Mater Chem 13(3):502–510

    CAS  Google Scholar 

  222. Abbotto A, Manfredi N, Marinzi C, De Angelis F, Mosconi E, Yum J, Xianxi Z, Nazeeruddin MK, Grätzel M (2009) Di-branched di-anchoring organic dyes for dye-sensitized solar cells. Energy Environ Sci 2(10):1094. doi:10.1039/b910654e

    CAS  Google Scholar 

  223. Argazzi R, Bignozzi CA (2002) Solvatochromic dye sensitized nanocrystalline solar cells. Nano Lett 2(6):625–628

    CAS  Google Scholar 

  224. Katoh R, Kasuya M, Furube A, Fuke N, Koide N, Han L (2009) Quantitative study of solvent effects on electron injection efficiency for black-dye-sensitized nanocrystalline TiO2 films. Sol Energy Mater Sol Cells 93(6–7):698–703

    CAS  Google Scholar 

  225. Hara K, Dan-oh Y, Kasada C, Ohga Y, Shinpo A, Suga S, Sayama K, Arakawa H (2004) Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Langmuir 20:4205–4210

    CAS  Google Scholar 

  226. Kay A, Gratzel M (1993) Artificial photosynthesis. 1. Photosensitization of TiO2 solar cells with chlorophyll derivatives and related natural porphyrins. J Phys Chem 97:6272–6277

    Google Scholar 

  227. Liu Y, Hagfeldt A, Xiao X-R, Lindquist S-E (1998) Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Sol Energy Mater Sol Cells 55(3):267–281

    CAS  Google Scholar 

  228. Falaras P (1998) Synergetic effect of carboxylic acid functional groups and fractal surface characteristics for efficient dye sensitization of titanium oxide. Sol Energy Mater Sol Cells 53(1–2):163–175

    CAS  Google Scholar 

  229. Finnie KS, Bartlett JR, Woolfrey JL (1998) Vibrational spectroscopic study of the coordination of (2,2′-bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) complexes to the surface of nanocrystalline titania. Langmuir 14:2744–2749

    CAS  Google Scholar 

  230. Srinivas K, Yesudas K, Bhanuprakash K, Rao VJ, Giribabu L (2009) A combined experimental and computational investigation of anthracene based sensitizers for DSSC: comparison of cyanoacrylic and malonic acid electron withdrawing groups binding onto the TiO2 anatase (101) surface. J Phys Chem C 113:20117–20126

    CAS  Google Scholar 

  231. Hara K, Sato T, Katoh R, Furube A, Yoshihara T, Murai M, Kurashige M, Ito S, Shinpo A, Suga S (2005) Novel conjugated organic dyes for efficient dye sensitized solar cells. Adv Funct Mater 15(2):246–252

    CAS  Google Scholar 

  232. Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B 107:597–606

    CAS  Google Scholar 

  233. Ganbold E-O, Lee Y, Lee K, Kwon O, Joo S-W (2010) Interfacial behavior of benzoic acid and phenylphosphonic acid on nanocrystalline TiO2 surfaces. Chem Asian J 5:852–858

    CAS  Google Scholar 

  234. Nazeeruddin MK, Humphry-Baker R, Liska P, Grätzel M (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107(34):8981–8987

    CAS  Google Scholar 

  235. Lee KE, Gomez MA, Elouatik S, Demopoulos GP (2010) Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir 26(12):9575–9583

    CAS  Google Scholar 

  236. Pérez León C, Kador L, Peng B, Thelakkat M (2006) Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV−vis, Raman, and FTIR spectroscopies. J Phys Chem B 110(17):8723–8730

    Google Scholar 

  237. Anselmi C, Mosconi E, Pastore M, Ronca E, De Angelis F (2012) Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment. Phy Chem Chem Phys 14(46):15963–15974

    CAS  Google Scholar 

  238. Johansson EMJ, Edvinsson T, Odelius M, Hagberg DP, Sun L, Hagfeldt A, Siegbahn H, Rensmo H (2007) Electronic and molecular surface structure of a polyene-diphenylaniline dye adsorbed from solution onto nanoporous TiO2. J Phys Chem C 111:8580–8586

    Google Scholar 

  239. Marinado T, Hagberg D, Hedlund M, Edvinsson T, Johansson E, Boschloo G, Rensmo H, Brinck T, Sun L, Hagfeldt A (2009) Rhodanine dyes for dye-sensitized solar cells: spectroscopy, energy levels and photovoltaic performance. Phys Chem Chem Phys 11(1):133–141

    CAS  Google Scholar 

  240. Hahlin M, Johansson E, Plogmaker S, Odelius M, Sun L, Siegbahn H, Rensmo H (2010) Electronic and molecular structures of organic dye/TiO2 interfaces for solar cell applications: a core level photoelectron spectroscopy study. Phys Chem Chem Phys 12:1507–1517

    CAS  Google Scholar 

  241. Karlsson KM, Jiang X, Eriksson SK, Gabrielsson E, Rensmo H, Hagfeldt A, Sun L (2011) Phenoxazine dyes for dye-sensitized solar cells: relationship between molecular structure and electron lifetime. Chem Eur J 17(23):6415–6424

    CAS  Google Scholar 

  242. Wang M, Plogmaker S, Humphry-Baker R, Pechy P, Rensmo H, Zakeeruddin SM, Grätzel M (2012) Molecular-scale interface engineering of nanocrystalline titania by co-adsorbents for solar energy conversion. Chem Sus Chem 5(1):181–187

    CAS  Google Scholar 

  243. Nara M, Torii H, Tasumi M (1996) Correlation between the vibrational frequencies of the carboxylate group and the types of its coordination to a metal ion: an ab initio molecular orbital study. J Phys Chem 100:19812–19817

    CAS  Google Scholar 

  244. Deacon GB, Phillips RJ (1980) Relationships between the carbon–oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev 33(3):227–250

    CAS  Google Scholar 

  245. Shklover V, Ovchinnikov YE, Braginsky LS, Zakeeruddin SM, Grätzel M (1998) Structure of organic/inorganic interface in assembled materials comprising molecular components. Crystal structure of the sensitizer bis[(4,4′-carboxy-2,2′-bipyridine)(thiocyanato)]ruthenium(II). Chem Mater 10(9):2533–2541

    CAS  Google Scholar 

  246. Schiffmann F, VandeVondele J, Hutter J, Wirz R, Urakawa A, Baiker A (2010) Protonation-dependent binding of ruthenium bipyridyl complexes to the anatase(101) surface. J Phys Chem C 114(18):8398–8404

    CAS  Google Scholar 

  247. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2010) First-principles modeling of the adsorption geometry and electronic structure of Ru(II) dyes on extended TiO2 substrates for dye-sensitized solar cell applications. J Phys Chem C 114(13):6054–6061

    Google Scholar 

  248. De Angelis F, Fantacci S, Mosconi E, Nazeeruddin MK, Grätzel M (2011) Absorption spectra and excited state energy levels of the N719 dye on TiO2 in dye-sensitized solar cell models. J Phys Chem C 115(17):8825–8831

    Google Scholar 

  249. Rocca D, Gebauer R, De Angelis F, Nazeeruddin MK, Baroni S (2009) Time-dependent density functional theory study of squaraine dye-sensitized solar cells. Chem Phys Lett 475:49–53

    CAS  Google Scholar 

  250. Martsinovich N, Jones DR, Troisi A (2010) Electronic structure of TiO2 surfaces and effect of molecular adsorbates using different DFT implementations. J Phys Chem C 114(51):22659–22670

    CAS  Google Scholar 

  251. Martsinovich N, Troisi A (2011) High-throughput computational screening of chromophores for dye-sensitized solar cells. J Phys Chem C 115(23):11781–11792

    CAS  Google Scholar 

  252. De Angelis F (2010) Direct vs indirect injection mechanisms in perylene dye-sensitized solar cells: a DFT/TDDFT investigation. Chem Phys Lett 493(4–6):323–327

    Google Scholar 

  253. Persson P, Bergstrom R, Lunell S (2000) Quantum chemical study of photoinjection processes in dye-sensitized TiO2 nanoparticles. J Phys Chem B 104(44):10348–10351

    CAS  Google Scholar 

  254. Vittadini A, Selloni A, Rotzinger FP, Grätzel M (2000) Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations. J Phys Chem B 104(6):1300–1306

    CAS  Google Scholar 

  255. Tian H, Yang X, Chen R, Zhang R, Hagfeldt A, Sun L (2008) Effect of different dye baths and dye-structures on the performance of dye-sensitized solar cells based on triphenylamine dyes. J Phys Chem C 112:11023–11033

    Google Scholar 

  256. Pastore M, De Angelis F (2011) Computational modeling of stark effects in organic dye-sensitized TiO2 heterointerfaces. J Phys Chem Lett 2(11):1261–1267

    CAS  Google Scholar 

  257. Mosconi E, Selloni A, De Angelis F (2012) Solvent effects on the adsorption geometry and electronic structure of dye-sensitized TiO2: a first-principles investigation. J Phys Chem C 116(9):5932–5940

    CAS  Google Scholar 

  258. Nunzi F, De Angelis F (2011) DFT investigations of formic acid adsorption on single-wall TiO2 nanotubes: effect of the surface curvature. J Phys Chem C 115(5):2179–2186

    CAS  Google Scholar 

  259. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phy Rev Lett 77(18):3865–3868

    CAS  Google Scholar 

  260. Foster AS, Nieminen RM (2004) Adsorption of acetic and trifluoroacetic acid on the TiO2(110) surface. J Chem Phys 121(18):9039

    CAS  Google Scholar 

  261. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comp Chem 22(9):931–967

    Google Scholar 

  262. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Revision B05 edn. Gaussian Inc., Pittsburgh

    Google Scholar 

  263. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372–1377

    CAS  Google Scholar 

  264. Miller KL, Musgrave CB, Falconer JL, Medlin JW (2011) Effects of water and formic acid adsorption on the electronic structure of anatase TiO2(101). J Phys Chem C 115(6):2738–2749

    CAS  Google Scholar 

  265. Miller KL, Falconer JL, Medlin JW (2011) Effect of water on the adsorbed structure of formic acid on TiO2 anatase (1 0 1). J Catalysis 278(2):321–328

    CAS  Google Scholar 

  266. Hagberg DP, Yum J-H, Lee H, De Angelis F, Marinado T, Karlsson KM, Humphry-Baker R, Sun L, Hagfeldt A, Grätzel M, Nazeeruddin MK (2008) Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. J Am Chem Soc 130:6259–6266

    CAS  Google Scholar 

  267. Hagberg DP, Edvinsson T, Marinado T, Boschloo G, Hagfeldt A, Sun LC (2006) A novel organic chromophore for dye-sensitized nanostructured solar cells. Chem Comm 21:2245–2247

    Google Scholar 

  268. Hagberg DP, Marinado T, Karlsson KM, Nonomura K, Qin P, Boschloo G, Brinck T, Hagfeldt A, Sun L (2007) Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. J Org Chem 72(25):9550–9556

    CAS  Google Scholar 

  269. Cappel UB, Feldt SM, Schoneboom J, Hagfeldt A, Boschloo G (2010) The influence of local electric fields on photoinduced absorption in dye-sensitized solar cells. J Am Chem Soc 132:9096–9101

    CAS  Google Scholar 

  270. Nilsing M, Persson P, Lunell S, Ojamäe L (2007) Dye-sensitization of the TiO2 rutile (110) surface by perylene dyes: quantum-chemical periodic B3LYP computations. J Phys Chem C 111(32):12116–12123

    CAS  Google Scholar 

  271. Li J, Nilsing M, Kondov I, Wang H, Persson P, Lunell S, Thoss M (2008) Dynamical simulation of photoinduced electron transfer reactions in dye – semiconductor systems with different anchor groups. J Phys Chem C 112(32):12326–12333

    CAS  Google Scholar 

  272. Persson P, Lundqvist MJ, Ernstorfer R, Goddard WA III, Willig F (2006) Quantum chemical calculations of the influence of anchor-cum-spacer groups on femtosecond electron transfer times in dye-sensitized semiconductor nanocrystals. J Chem Theor Comp 2(2):441–451

    CAS  Google Scholar 

  273. Moser JE, Grätzel M (1993) Observation of temperature independent heterogeneous electron transfer reactions in the inverted Marcus region. Chem Phys 176(2–3):493–500

    CAS  Google Scholar 

  274. O'Regan B, Moser J, Anderson M, Grätzel M (1990) Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation. J Phys Chem 94(24):8720–8726

    Google Scholar 

  275. Haque SA, Tachibana Y, Willis RL, Moser JE, Grätzel M, Klug DR, Durrant JR (2000) Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem B 104(3):538–547

    CAS  Google Scholar 

  276. Haque SA, Tachibana Y, Klug DR, Durrant JR (1998) Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias. J Phys Chem B 102(10):1745–1749

    CAS  Google Scholar 

  277. Haque SA, Handa S, Peter K, Palomares E, Thelakkat M, Durrant JR (2005) Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function. Angew Chem Int Ed 44:5740–5744

    Google Scholar 

  278. Prezhdo OV, Duncan WR, Prezhdo VV (2008) Dynamics of the photoexcited electron at the chromophore–semiconductor interface. Acc Chem Res 41(2):339–348

    CAS  Google Scholar 

  279. Haque SA, Palomares E, Cho BM, Green ANM, Hirata N, Klug DR, Durrant JR (2005) Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. J Am Chem Soc 127(10):3456–3462

    CAS  Google Scholar 

  280. Long H, Zhou D, Zhang M, Peng C, Uchida S, Wang P (2011) Probing dye-correlated interplay of energetics and kinetics in mesoscopic titania solar cells with 4-tert-butylpyridine. J Phys Chem C 115(29):14408–14414

    CAS  Google Scholar 

  281. Nilsing M, Persson P, Ojamäe L (2005) Anchor group influence on molecule-metal oxide interfaces: periodic hybrid DFT study of pyridine bound to TiO2 via carboxylic and phosphonic acid. Chem Phys Lett 415(4–6):375–380

    CAS  Google Scholar 

  282. Pal SK, Sundstrom V, Galoppini E, Persson P (2009) Calculations of interfacial interactions in pyrene-Ipa rod sensitized nanostructured TiO2. Dalton Trans (45):10021–10031

    Google Scholar 

  283. Persson P, Lundqvist MJ, Ernstorfer R, Goddard WA, Willig F (2006) Quantum chemical calculations of the influence of anchor-cum-spacer groups on femtosecond electron transfer times in dye-sensitized semiconductor nanocrystals. J Chem Theory Comput 2(2):441–451

    CAS  Google Scholar 

  284. Li J, Wang H, Persson P, Thoss M (2012) Photoinduced electron transfer processes in dye-semiconductor systems with different spacer groups. J Chem Phys 137(22):22A529-516

    Google Scholar 

  285. Ambrosio F, Martsinovich N, Troisi A (2012) Effect of the anchoring group on electron injection: theoretical study of phosphonated dyes for dye-sensitized solar cells. J Phys Chem C 116(3):2622–2629

    CAS  Google Scholar 

  286. Maggio E, Martsinovich N, Troisi A (2012) Evaluating charge recombination rate in dye-sensitized solar cells from electronic structure calculations. J Phys Chem C 116(14):7638–7649

    CAS  Google Scholar 

  287. Jones DR, Troisi A (2010) A method to rapidly predict the charge injection rate in dye sensitized solar cells. Phys Chem Chem Phys 12(18):4625–4634

    CAS  Google Scholar 

  288. Maggio E, Martsinovich N, Troisi A (2012) Theoretical study of charge recombination at the TiO2-electrolyte interface in dye sensitised solar cells. J Chem Phys 137(22):22A508

    Google Scholar 

  289. Maggio E, Martsinovich N, Troisi A (2013) Using orbital symmetry to minimize charge recombination in dye-sensitized solar cells. Angew Chem Int Ed 52(3):973–975

    CAS  Google Scholar 

  290. Ambrosio F, Martsinovich N, Troisi A (2012) What is the best anchoring group for a dye in a dye-sensitized solar cell? J Phys Chem Lett 3(11):1531–1535

    CAS  Google Scholar 

  291. Persson P, Lundqvist MJ (2005) Calculated structural and electronic interactions of the ruthenium dye N3 with a titanium dioxide nanocrystal. J Phys Chem B 109(24):11918–11924

    CAS  Google Scholar 

  292. Labat F, Ciofini I, Adamo C (2012) Revisiting the importance of dye binding mode in dye-sensitized solar cells: a periodic viewpoint. J Mater Chem 22(24):12205–12211

    CAS  Google Scholar 

  293. Labat FDR, Ciofini I, Hratchian HP, Frisch MJ, Raghavachari K, Adamo C (2011) Insights into working principles of ruthenium polypyridyl dye-sensitized solar cells from first principles modeling. J Phys Chem C 115(10):4297–4306

    CAS  Google Scholar 

  294. Martsinovich N, Ambrosio F, Troisi A (2012) Adsorption and electron injection of the N3 metal-organic dye on the TiO2 rutile (110) surface. Phys Chem Chem Phys 14(48):16668–16676

    CAS  Google Scholar 

  295. Persson P, Lundqvist MJ (2005) Calculated structural and electronic interactions of a titanium dioxide nanocrystal sensitized with the ruthenium dye N3. J Phys Chem B 109:11918

    CAS  Google Scholar 

  296. Benkö G, Kallioinen J, Korppi-Tommola JEI, Yartsev AP, Sundström V (2001) Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J Am Chem Soc 124(3):489–493. doi:10.1021/ja016561n

    Google Scholar 

  297. Wenger B, Grätzel M, Moser J-E (2005) Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2. J Am Chem Soc 127(35):12150–12151

    CAS  Google Scholar 

  298. Kuang D, Ito S, Wenger B, Klein C, Moser J-E, Humphry-Baker R, Zakeeruddin SM, Grätzel M (2006) High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. J Am Chem Soc 128(12):4146–4154

    CAS  Google Scholar 

  299. Mayor LC, Taylor JB, Magnano G, Rienzo A, Satterley CJ, O'Shea JN, Schnadt J (2008) Photoemission, resonant photoemission, and X-ray absorption of a Ru(II) complex adsorbed on rutile TiO2 (110) prepared by in situ electrospray deposition. J Chem Phys 129(11):114701–114709

    Google Scholar 

  300. Weston M, Britton AJ, O'Shea JN (2011) Charge transfer dynamics of model charge transfer centers of a multicenter water splitting dye complex on rutile TiO2 (110). J Chem Phys 134(5):054705–054710

    Google Scholar 

  301. Benkö G, Kallioinen J, Korppi-Tommola JEI, Yartsev AP, Sundström V (2002) Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J Am Chem Soc 124(3):489–493

    Google Scholar 

  302. Bräm O, Cannizzo A, Chergui M (2012) Ultrafast fluorescence studies of dye sensitized solar cells. Phy Chem Chem Phys 14:7934–7937

    Google Scholar 

  303. Szarko JM, Neubauer A, Bartelt A, Socaciu-Siebert L, Birkner F, Schwarzburg K, Hannappel T, Eichberger R (2008) The ultrafast temporal and spectral characterization of electron injection from perylene derivatives into ZnO and TiO2 colloidal films. J Phys Chem C 112(28):10542–10552

    CAS  Google Scholar 

  304. Gonzalez-Moreno R, Cook PL, Zegkinoglou I, Liu X, Johnson PS, Yang W, Ruther RE, Hamers RJ, Tena-Zaera R, Himpsel FJ, Ortega JE, Rogero C (2011) Attachment of protoporphyrin dyes to nanostructured ZnO surfaces: characterization by near edge X-ray absorption fine structure spectroscopy. J Phys Chem C 115(37):18195–18201

    CAS  Google Scholar 

  305. Burfeindt B, Hannappel T, Storck W, Willig F (1996) Measurement of temperature-independent femtosecond interfacial electron transfer from an anchored molecular electron donor to a semiconductor as acceptor. J Phys Chem 100(41):16463–16465. doi:10.1021/jp9622905

    CAS  Google Scholar 

  306. Ronca E, Pastore M, Belpassi L, Tarantelli F, De Angelis F (2013) Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects. Energy Environ Sci 6:183–193

    Google Scholar 

  307. Belpassi L, Infante I, Tarantelli F, Visscher L (2008) The chemical bond between Au(I) and the noble gases. Comparative study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods. J Am Chem Soc 130(3):1048–1060

    CAS  Google Scholar 

  308. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc 126(39):12218–12219

    CAS  Google Scholar 

  309. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474

    CAS  Google Scholar 

  310. Pasquarello A, Laasonen K, Car R, Lee C, Vanderbilt D (1992) Ab initio molecular dynamics for d-electron systems: liquid copper at 1500 K. Phys Rev Lett 69(13):1982–1985

    CAS  Google Scholar 

  311. Giannozzi P, Angelis FD, Car R (2004) First-principle molecular dynamics with ultrasoft pseudopotentials: parallel implementation and application to extended bioinorganic systems. J Chem Phys 120(13):5903–5915

    CAS  Google Scholar 

  312. Ardo S, Sun Y, Castellano FN, Meyer GJ (2010) Excited-state electron transfer from ruthenium-polypyridyl compounds to anatase TiO2 nanocrystallites: evidence for a stark effect. J Phys Chem B 114:14596–14604

    Google Scholar 

  313. Ardo S, Sun Y, Staniszewski A, Castellano FN, Meyer GJ (2010) Stark effects after excited-state interfacial electron transfer at sensitized TiO2 nanocrystallites. J Am Chem Soc 132:6696–6709

    CAS  Google Scholar 

  314. Staniszewski A, Ardo S, Sun Y, Castellano FN, Meyer GJ (2008) Slow cation transfer follows sensitizer regeneration at anatase TiO2 interfaces. J Am Chem Soc 130(35):11586–11587

    CAS  Google Scholar 

  315. Snaith HJ, Karthikeyan CS, Petrozza A, Teuscher J, Moser JE, Nazeeruddin MK, Thelakkat M, Grätzel M (2008) High extinction coefficient “Antenna” dye in solid-state dye-sensitized solar cells: a photophysical and electronic study. J Phys Chem C 112(20):7562–7566

    CAS  Google Scholar 

  316. Cappel UB, Gibson EA, Hagfeldt A, Boschloo G (2009) Dye regeneration by spiro-MeOTAD in solid state dye-sensitized solar cells studied by photoinduced absorption spectroscopy and spectroelectrochemistry. J Phys Chem C 113:6275–6281

    CAS  Google Scholar 

  317. Anderson AY, Barnes PRF, Durrant JR, O'Regan B (2010) Simultaneous transient absorption and transient electrical measurements on operating dye-sensitized solar cells: elucidating the intermediates in iodide oxidation. J Phys Chem C 114:1953–1958

    CAS  Google Scholar 

  318. Cappel UB, Smeigh AL, Plogmaker S, Johansson EMJ, Rensmo H, Hammarström L, Hagfeldt A, Boschloo G (2011) Characterization of the interface properties and processes in solid state dye-sensitized solar cells employing a perylene sensitizer. J Phys Chem C 115:4345–4358

    CAS  Google Scholar 

  319. Stark J (1914) Observation of the separation of spectral lines by an electric field. Nature 401:401

    Google Scholar 

  320. Boxer SG (2009) Stark realities. J Phys Chem B 113:2972–2983

    CAS  Google Scholar 

  321. Bublitz GU, Boxer SG (1997) Stark spectroscopy: applications in chemistry, biology, and materials science. Ann Rev Phys Chem 48:213–242

    Google Scholar 

  322. Patrick CE, Giustino F (2011) O 1s core-level shifts at the anatase TiO2 (101)/N3 photovoltaic interface: signature of H-bonded supramolecular assembly. Phys Rev B 84:085330

    Google Scholar 

  323. Wang Q, Zakeeruddin SM, Nazeeruddin MK, Humphry-Baker R, Grätzel M (2006) Molecular wiring of nanocrystals: NCS-enhanced cross-surface charge transfer in self-assembled Ru-complex monolayer on mesoscopic oxide films. J Am Chem Soc 128:4446–4452

    CAS  Google Scholar 

  324. Ellis-Gibbings L, Johansson V, Walsh RB, Kloo L, Quinton JS, Andersson GG (2012) Formation of N719 dye multilayers on dye sensitized solar cell photoelectrode surfaces investigated by direct determination of element concentration depth profiles. Langmuir 28(25):9431–9439

    CAS  Google Scholar 

  325. Föster T (1959) 10th Spiers memorial lecture. Transfer mechanisms of electronic excitation. Discuss Faraday Soc 27:7–17

    Google Scholar 

  326. Hoke ET, Hardin BE, McGehee MD (2010) Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells. Opt Exp 18(4):3893–3904

    CAS  Google Scholar 

  327. Mor GK, Basham J, Paulose M, Kim S, Varghese OK, Vaish A, Yoriya S, Grimes CA (2010) High-efficiency Förster resonance energy transfer in solid-state dye sensitized solar cells. Nano Lett 10(7):2387–2394

    CAS  Google Scholar 

  328. Hardin BE, Sellinger A, Moehl T, Humphry-Baker R, Moser J-E, Wang P, Zakeeruddin SM, Grätzel M, McGehee MD (2011) Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells. J Am Chem Soc 133(27):10662–10667

    CAS  Google Scholar 

  329. Pastore F, De Angelis F (2013) Intermolecular interactions in dye-sensitized solar cells: a computational modeling perspective. J Phys Chem Lett 4:956–974

    CAS  Google Scholar 

Download references

Acknowledgments

We thank FP7-NMP-2009 project 246124 “SANS” and FP7-ENERGY-2010 project 261920 “ESCORT” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariachiara Pastore or Filippo De Angelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pastore, M., De Angelis, F. (2013). Modeling Materials and Processes in Dye-Sensitized Solar Cells: Understanding the Mechanism, Improving the Efficiency. In: Beljonne, D., Cornil, J. (eds) Multiscale Modelling of Organic and Hybrid Photovoltaics. Topics in Current Chemistry, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_468

Download citation

Publish with us

Policies and ethics