Skip to main content

Evolution of Holobiont-Like Systems: From Individual to Composed Ecological and Global Units

  • Chapter
  • First Online:
Progress in Botany Vol. 83

Part of the book series: Progress in Botany ((BOTANY,volume 83))

Abstract

Higher Plants or Animals with microbial companions constitute holobionts, being spatiotemporal interaction networks as (co-)evolutionary selection units. As intrinsic interaction patterns also prevail at hierarchically different scales of ecological organization, organismic associations scale-invariantly represent holobiont-like systems (HLSs). This essay explores how high-ranking HLSs (ecosystems, biosphere) do evolve, in particular, under the conventionally gene-centric view at the Darwinian principles of mutation, heredity, and selection.

Re-visiting evolution theory, shortcomings by DNA-restricted interpretations impede perceptions of HLS evolution, notably, at hierarchically high ecological scales. Any HLS is discernable as a selection unit, however, through considering genericness by widening DNA-encoded to structurally and functionally stored information upon historical contingencies in “EvoDevoEco” processes, relating evolution, development, and ecology. On such grounds, HLS evolution proceeds through adaptive cycling and sequential selection, examining predictability versus stochasticity of aggregated information for adaptiveness to environmental variation. Each turn mirroring evolutionary advancement, cycling does not require resource-related competition as evolutionary driver. However, selection is reflected in competition in a sense of facing the challenge to maintain internal stability upon environmental changes. Such challenge becomes evident also in biospheric HLS Earth evolution through traded contingency effects upon manifold biogeochemical impacts. Although repeatedly inciting global species mass extinctions, such were pulse generators towards niches diversification and ecological complexity, owed to recurrent valuing scrutiny of sequential selection. Abandoning gene-centric perspectives, HLS evolution is borne by oscillating phases of consolidation versus renewal.

It’s the song, not the singer

(W. Ford Doolittle & A. Booth)

Communicated by Hans Pretzsch

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelfattah A, Wisniewski M, Schena L, Tack AJM (2021) Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environ Microbiol 23:2199–2214

    Article  CAS  PubMed  Google Scholar 

  • Ajslev TA, Ängquist L, Silventoinen K, Gamborg M, Allison DB, Baker JL, Sørensen TIA (2012) Assortative marriages by body mass index have increased simultaneously with the obesity pandemic. Front Gen 3:Article 125

    Google Scholar 

  • Arthur R, Nicholson A, Sibani P, Christensen M (2017) The tangled nature model for organizational ecology. Comput Math Organ Theory 23:1–31

    Article  Google Scholar 

  • Axelrod DI (1966) Origin of deciduous and evergreen habits in temperate forests. Evolution 20:1–15

    Article  PubMed  Google Scholar 

  • Baedke J, Fábregas-Tejeda A, Nieves Delgado A (2019) The holobiont concept before Margulis. J Exp Zool (Mol Dev Evol) 334:149–155

    Article  Google Scholar 

  • Bak P (1999) How nature works: the science of self-organized criticality. Springer, New York

    Google Scholar 

  • Bak P, Boettcher S (1997) Self-organized criticality and punctuated equilibria. Physica D 107(2–4):143–150

    Article  Google Scholar 

  • Bateson G (1972) Form, substance and difference. In: Bateson G (ed) Steps to an ecology of mind. Ballantine Books, New York, pp 448–466

    Google Scholar 

  • Bond DM, Finnegan EJ (2007) Passing the message on: inheritance of epigenetic traits. Trends Plant Sci 12:211–216

    Article  CAS  PubMed  Google Scholar 

  • Bonduriansky R (2012) Rethinking heredity, again. Trends Ecol Evol 27:330–336

    Article  CAS  PubMed  Google Scholar 

  • Bossel H (1998) Ecological orientors: emergence of basic orientors in evolutionary self-organization. In: Müller F, Leupelt M (eds) Eco targets, goal functions, and orientors. Springer, Berlin, pp 19–33

    Chapter  Google Scholar 

  • Brentnall SJ, Beerling DJ, Osbome CP, Harland M, Francis JE, Valdes PJ, Wittig VE (2005) Climatic and ecological determinants of leaf lifespan in polar forests of the high CO2 cretaceous ‘greenhouse’ world. Glob Chang Biol 11:2177–2195

    Article  CAS  PubMed  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Brucker RM, Bordenstein SR (2012) Speciation by symbiosis. Trends Ecol Evol 27:443–451

    Article  PubMed  Google Scholar 

  • Bruelheide H, Manegold M, Jandt U (2004) The genetical structure of Populus euphratica and Alhagi sparsifolia stands in the Taklimakan desert. In: Runge M, Zhang X (eds) Ecophysiology and habitat requirements of perennial plant species in the Taklimakan Desert. Shaker, Aachen, pp 153–160

    Google Scholar 

  • Carroll RL (2000) Towards a new evolutionary synthesis. Trends Ecol Evol 15:27–32

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Lv S, Meng Y (2010) Epigenetic performers in plants. Dev Growth Differ 52:555–566

    Article  CAS  PubMed  Google Scholar 

  • Chinnusami V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  Google Scholar 

  • Corominas-Murtra B, Goñi J, Solé RV (2013) On the origins of hierarchy in complex networks. Proc Natl Acad Sci U S A 110:13316–13321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  CAS  PubMed  Google Scholar 

  • D’Urso A, Brickner JH (2014) Mechanisms of epigenetic memory. Trends Genet 30:230–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Gen 12:475–486

    Article  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • Darwin CR, Wallace AR (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J Proc Linn Soc London Zool 3:45–62

    Article  Google Scholar 

  • Dawkins R (1976) The selfish Gene. Oxford University Press, Oxford

    Google Scholar 

  • Daxinger L, Whitelaw E (2010) Transgenerational epigenetic inheritance: more questions than answers. Genome Res 20:1623–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bary A (1879) Die Erscheinung der Symbiose (German). K. J. Trübner Verlag, Straßburg, pp 1–30

    Google Scholar 

  • Dennett D (1995) Darwin’s dangerous idea: evolution and the meaning of life. The Penguin Press, London

    Google Scholar 

  • Dobzhansky T (1937) Genetic nature of species differences. Am Nat 71:404–420

    Article  Google Scholar 

  • Doolittle WF (2017) Darwinizing Gaia. J Theor Biol 434:11–19

    Article  PubMed  Google Scholar 

  • Doolittle WF, Booth A (2017) It’s the song, not the singer: an exploration of holobiosis and evolutionary theory. Biol Philos 32:5–24

    Article  Google Scholar 

  • Doolittle WF, Inkpen A (2018) Processes and patterns of interaction as units of selection: an introduction to ITSNTS thinking. Proc Natl Acad Sci U S A 115:4006–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldredge N, Gould SJ (1985) Punctuated equilibria: an alternative to phyletic gradualism. In: Schupf T (ed) Models on Paleobiology. Freeman, Cooper and Co., San Francisco, pp 82–115

    Google Scholar 

  • Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung: Ergebnisse des Solling-Projektes 1966–1986 (German). Eugen Ulmer Verlag, Stuttgart, p 597

    Google Scholar 

  • Engel P, Kwong WK, McFrederick Q, Anderson KE, Barribeau SM, Chandler JA, Cronman RS, Dainat J, de Miranda JR, Doublet V, Emery O, Evans JD, Farinelli L, Flenniken ML, Granberg F, Grasis JA, Gauthier L, Hayer J, Koch H, Kocher S, Martinson VG, Moran N, Munoz-Torres M, Newton I, Paxton RJ, Powell E, Sadd BM, Schmid-Hempel P, Schmid-Hempel R, Song SJ, Schwarz RS, vanEngelsdorp D, Dainat B (2016) The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio 7(2):e02164–e02115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science 295:1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165

    Article  CAS  Google Scholar 

  • Faure E, Kwong K, Nguyen D (2018) Pseudomonas aeruginosa in chronic lung infections: how to adapt within the host? Front Immun 9:2416

    Article  Google Scholar 

  • Fernald RD (2004) Eyes: variety, development and evolution. Brain Behav Evol 64:141–147

    Article  PubMed  Google Scholar 

  • Flores S (1992) Growth and seasonality of seedlings and juveniles of primary species of a cloud forest in northern Venezuela. J Trop Ecol 8:299–305

    Article  Google Scholar 

  • Friedman WE, Diggle PK (2011) Charles Darwin and the origins of plant evolutionary developmental biology. Plant Cell 23:1194–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway LF, Etterson JR (2007) Transgenerational plasticity is adaptive in the wild. Science 318:1134–1136

    Article  CAS  PubMed  Google Scholar 

  • Gatti RC (2011) Evolution is a cooperative process: the biodiversity-related niches differentiation. Theor Biol Forum 104:35

    PubMed  Google Scholar 

  • Gilbert S (2013) Developmental biology, 10th edn. Sinauer Ass, Sunderland

    Google Scholar 

  • Gilbert SF, Epel D (2009) Ecological development biology: integrating epigenetics, medicine and evolution. Sinauer Ass, Palgrave-MacMillan, New York

    Book  Google Scholar 

  • Giurfa M (2012) Social learning in insects: a higher-order capacity? Front Behav Neurosci 6:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure, stability and fluctuation. Wiley, New York

    Google Scholar 

  • Goodwin B (2001) How the leopard changed its spots. The evolution of complexity, Rev edn. Princeton Science Library, Princeton

    Book  Google Scholar 

  • Gould SJ (1980) Is a new and general theory of evolution emerging? Paleobiol 6:119–130

    Article  Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Grant MC (1993) The trembling giant. Discover (Los Angeles) 84:82–89

    Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  CAS  PubMed  Google Scholar 

  • Gunderson L, Holling C (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington

    Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen (German). Erster Band. Allgemeine Anatomie der Organismen. Georg Reimer, Berlin

    Book  Google Scholar 

  • Hassani MJ, Hosseinipour F (2018) Quantitative analysis, basin evolution and paleoecology of early Miocene ostracods in the southwest of Kerman, Iran. Geopersia 8:213–232

    Google Scholar 

  • Heylighen F (1999) The growth of structural and functional complexity during evolution. In: Heylighen F, Bollen J, Riegler A (eds) The evolution of complexity. Kluwer Academic, Dordrecht, pp 17–44

    Google Scholar 

  • Hoelzer GA, Smith E, Pepper JW (2006) On the logical relationship between natural selection and self-organization. J Compil 19:1785–1794

    CAS  Google Scholar 

  • Holling CS (1986) The resilience of terrestrial ecosystems. In: Clark WC, Munn RE (eds) Sustainable development of the biosphere. Cambridge University Press, pp 292–320

    Google Scholar 

  • Hug CB, Vaquerizas JM (2018) The birth of the 3D genome during early embryonic development. Trends Gen 34:903–914

    Article  CAS  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Habor Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Jablonka E, Lamb MJ (2014) Evolution in four dimensions. MIT Press, Cambridge

    Book  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196(4295):1161–1166

    Article  CAS  PubMed  Google Scholar 

  • Karakashian MW (1975) Symbiosis in Paramecium bursaria. Symp Soc Exp Biol 29:145–173

    Google Scholar 

  • Kemperman JA, Barnes BV (1976) Clone size in American aspens. Can J Bot 54:2603–2607

    Article  Google Scholar 

  • Kikuzawa K, Lechowicz MJ (2011) Ecology of leaf longevity. Ecological research monographs. Springer, p 147

    Book  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Knoop KA, Holtz LR, Newberry RD (2018) Inherited nongenetic influences on the gut microbiome and immune system. Birth Defects Res 110:1494–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshland DE (2002) The seven pillars of life. Science 295:2215–2216

    Article  CAS  PubMed  Google Scholar 

  • Laland KN, Sterelny K (2006) Seven reasons (not) to neglect niche construction. Evolution 60:1751–1762

    Article  PubMed  Google Scholar 

  • Laland KN, Odling-Smee J, Myles S (2010) How culture shaped the human genome: bringing genetics and the human sciences together. Nat Rev Gen 11:137–148

    Article  CAS  Google Scholar 

  • Laland K, Uller T, Feldman M, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J (2014) Does evolutionary theory need a rethinking? Yes, urgently. Nature 514:161–164

    Article  CAS  PubMed  Google Scholar 

  • Laland K, Odling-Smee J, Endler J (2017) Niche construction, sources of selection and trait evolution. Interface Focus 7:20160147

    Article  PubMed  PubMed Central  Google Scholar 

  • Layer P, Lüttge U (2020) Faden oder Kugel und die Landnahme von Flora und Fauna (German). Naturw Rundschau 73:572–585

    Google Scholar 

  • Lenton T, Watson A (2011) Revolutions that made the earth. Oxford University Press, Oxford

    Book  Google Scholar 

  • Levontin RC (1970) The units of selection. Annu Rev Ecol Syst 1:1–18

    Article  Google Scholar 

  • Liu H, Macdonald CA, Cook J, Anderson IC, Singh BK (2019) An ecological loop: host microbiomes across multitrophic interactions. Trends Ecol Evol 34:1118–1130

    Article  PubMed  Google Scholar 

  • Loreau M, de Mazancourt C (2013) Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16:106–115

    Article  PubMed  Google Scholar 

  • Lovelock J (1979) Gaia a new look at life on earth. Oxford University Press, Oxford

    Google Scholar 

  • Lovelock J (2009) The vanishing face of Gaia – a final warning. Basic Books, New York

    Google Scholar 

  • Lüttge U (2007) Photosynthesis. In: Lüttge U (ed) Clusia: a woody neotropical genus of remarkable plasticity and diversity. Springer, Berlin, pp 135–186

    Chapter  Google Scholar 

  • Lüttge U (2008) Physiological ecology of tropical plants, 2nd edn. Springer, Berlin

    Google Scholar 

  • Lüttge U (2012) Modularity and emergence: biology’s challenge in understanding life. Plant Biol 14:865–871

    Article  PubMed  Google Scholar 

  • Lüttge U (2016) Plants shape the terrestrial environment on earth: challenges of management for sustainability. Progr Bot 77:187–217

    Google Scholar 

  • Lüttge U (2021) Integrative emergence in contrast to separating modularity in plant biology: views on systems biology with information, signals and memory at scalar levels from molecules to the biosphere. Theor Exp Plant Physiol 33:1–13

    Article  Google Scholar 

  • Lüttge U (2020) Terrestrialization: the conquest of dry land by plants. Progr Bot 83. https://doi.org/10.1007/124_2020_49

  • Lüttge U, Scarano FR (2019) Emergence and sustainment of humankind on earth: the categorical imperative. In: Wegner LH, Lüttge U (eds) Emergence and modularity in life sciences. Springer, Cham, pp 235–254

    Chapter  Google Scholar 

  • Lüttge U, Kluge M, Thiel G (2010) Botanik. Die umfassende Biologie der Pflanzen (German). Wiley-VCH, Weinheim

    Google Scholar 

  • Lüttge U, Garbin ML, Scarano FR (2012) Evo-devo-eco and ecological stem species: potential repair systems in the planetary biosphere crisis. Progr Bot 74:191–212

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Mallo M (2018) Reassessing the role of Hox genes during vertebrate development and evolution. Trends Gen 34:209–217

    Article  CAS  Google Scholar 

  • Margulis L (1998) Symbiotic planet: a new look at evolution. Sciencewriters, Amherst

    Google Scholar 

  • Mathesius U, Watt M (2010) Rhizosphere signals for plant – microbe interactions: implications for field grown plants. Progr Bot 72:125–161

    Google Scholar 

  • Maturana HR, Varela FJ (1987) The tree of knowledge. The Bioloigal roots of human understanding. Shambhala Publications, Boston

    Google Scholar 

  • Matyssek R, Lüttge U (2013) Gaia: the planet holobiont. Nova Acta Leopold 114(391):325–344

    Google Scholar 

  • Mayfield JE (2013) The engine of complexity. Evolution as computation. Columbia University Press, New York

    Book  Google Scholar 

  • Mayr E (1940) Speciation phenomena in birds. Amer Nat 74:249–278

    Article  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1959) Isolation as an evolutionary factor. Proc Am Philos Soc 103:221–230

    Google Scholar 

  • Mayr E, Provine W (1980) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Mesoudi A, Blanchet S, Charmantier A, Danchin É, Fogarty L, Jablonka E, Laland KN, Morgan TJH, Müller GB, Odling-Smee FJ, Pujol B (2013) Is non-genetic inheritance just a proximate mechanism? A corroboration of the extended evolutionary synthesis. Biol Theor 7:189–195

    Article  Google Scholar 

  • Meyer-Abich A (1943) Beiträge zur Theorie der Evolution der Organismen. I. Das typologische Grundgesetz und seine Folgerungen für Phylogenie und Entwicklungsphysiologie (German). Acta Biotheor 7:1–80

    Article  Google Scholar 

  • Minelli A (2009) Forms of becoming. The evolutionary biology of development. Princeton University Press, Princeton

    Book  Google Scholar 

  • Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, Berninger T, Naveed M, Sheibani-Tezeerji R, von Maltzahn G, Sessitsch A (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW (2018) Transmission modes of the mammalian gut microbiota. Science 362:453–457

    Article  CAS  PubMed  Google Scholar 

  • Morris SC (2003) Life’s solution. Inevitable humans in a lonely universe. Cambridge University Press, New York

    Book  Google Scholar 

  • Morris SC (2008) Jenseits des Zufalls. Wir Menschen im einsamen Universum (German). Berlin University Press, Berlin

    Google Scholar 

  • Müller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Gen 8:939–949

    Article  Google Scholar 

  • Netter H (1959) Theoretische Biochemie (German). Springer, Heidelberg

    Book  Google Scholar 

  • Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law. Cont Phys 46:323–351

    Article  Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. From dissipative structures to order through fluctuations. Wiley, New York

    Google Scholar 

  • Noble D (2015) Evolution beyond neo-Darwinism: a new conceptual framework. J Exp Biol 218:7–13

    Article  PubMed  Google Scholar 

  • Odum EP (1971) Fundamentals of ecology, 3rd edn. W.B. Saunders, Philadelphia

    Google Scholar 

  • Odum HT (1983) Systems ecology: an introduction. Wiley, New York

    Google Scholar 

  • Parsons KJ, McWhinnie K, Pilakouta N, Walker L (2020) Does phenotypic plasticity initiate developmental bias? Evol Dev 22:56–70

    Article  PubMed  Google Scholar 

  • Pigliucci M (2008) Is evolvability evolvable? Nat Rev Gen 9:75–82

    Article  CAS  Google Scholar 

  • Popper KR (1986) Eine Neuinterpretation des Darwinismus. Die erste Medawar-Vorlesung 1986 (German). Aufklärung und Kritik 1/2013

    Google Scholar 

  • Popper KR (2013) A new interpretation of Darwinism. The first Medawar lecture 1986. In: Niemann H-J (ed) Karl Popper and the two new secrets of life. Tübingen, Mohr Siebeck, pp 115–129

    Google Scholar 

  • Reader SM (2016) Animal social learning; two perspectives: associations and adaptations. F1000Res 5:2120

    Article  Google Scholar 

  • Rering CC, Beck JJ, Hall GW, McCartney MM, Vannette RL (2018) Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytol 220:750–759

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Koren O, Reshef L et al (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  CAS  PubMed  Google Scholar 

  • Roux W (1881) Der Kampf der Teile im Organismus (German). W. Engelmann, Leipzig

    Google Scholar 

  • Scherer S (2017) Denkvoraussetzungen und weltanschauliche Überzeugungen in der Biologie (German). In: Lüke U, Souvignier G (eds) Wie objektiv ist Wissenschaft? Wiss Buchges Darmstadt, pp 45–80

    Google Scholar 

  • Schmidt JC (2015) Das Andere der Natur. Neue Wege zur Naturphilosophie (German). Hirzel, Stuttgart

    Book  Google Scholar 

  • Schmidt JC (2019) Is there anything new under the sun? Instability as the core of emergence. In: Wegner LH, Lüttge U (eds) Emergence and modularity in life sciences. Springer, Cham, pp 3–36

    Chapter  Google Scholar 

  • Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Ulrich MA, Libiger O, Schork NJ, Ecker JR (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon N, Cras A-L, Foulon E, Lemée R (2009) Diversity and evolution of marine phytoplankton. C R Biol 332:159–170

    Article  PubMed  Google Scholar 

  • Simon J-C, Marchesi JR, Mougel C, Selosse M-A (2019) Host-microbiota interactions: from holobiont theory to analysis. Microbiome 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Skillings D (2016) Holobionts and the ecology of organisms: multi-species communities or integrated individuals? Biol Philos 31:875–892

    Article  Google Scholar 

  • Smith DC, Douglas AE (1987) The biology of symbiosis. Edward Arnold, London

    Google Scholar 

  • Sober E, Wilson DS (2011) Adaptation and natural selection revisited. J Evol Biol 24:462–468

    Article  CAS  PubMed  Google Scholar 

  • Souza GM, Lüttge U (2015) Stability as a phenomenon emergent from plasticity – complexity – diversity in eco-physiology. Progr Bot 76:211–239

    CAS  Google Scholar 

  • Sun Y-H, Zhu Z-Y (2014) Cross-species cloning: influence of cytoplasmic factors on development. J Physiol 592:2375–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16:284–307

    Article  Google Scholar 

  • Thellier M (2015) Les plantes ont-elles une mémoire (French). Editions Quæ, Versailles

    Google Scholar 

  • Thellier M (2017a) Haben Pflanzen ein Gedächtnis? (German). Springer, Berlin

    Book  Google Scholar 

  • Thellier M (2017b) Plant responses to environmental stimuli. The role of specific forms of plant memory. Springer, Dordrecht

    Book  Google Scholar 

  • Thellier M, Lüttge U (2013) Plant memory: a tentative model. Plant Biol 15:1–12

    Article  CAS  PubMed  Google Scholar 

  • Torday JS (2015) Homeostasis as the mechanism of evolution. Biology 4:573–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Post DJ, Franz M, Laland KN (2016) Skill learning and the evolution of social learning mechanisms. BMC Evol Biol 16:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Vera FWM (2000) Grazing ecology and forest history. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    Article  CAS  PubMed  Google Scholar 

  • Ward PD, Brownlee D (2004a) The life and death of planet earth: how the new science of astrobiology charts the ultimate fate of our world. Henry Holt and Company, New York

    Google Scholar 

  • Ward PD, Brownlee D (2004b) Rare earth: why complex life is uncommon in the universe. Copernicus Books, New York

    Google Scholar 

  • Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    Article  CAS  PubMed  Google Scholar 

  • Wilson DS (1975) A theory of group selection. Proc Natl Acad Sci U S A 72:143–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DS, Sober E (1998) Multilevel selection and the return of group-level functionalism response. Behav Brain Sci 21:305–306

    Article  Google Scholar 

  • Wilson DW (1994) Regeneration of native forest on Hinewai reserve, banks peninsula. N Z J Bot 32:373–383

    Article  Google Scholar 

  • Wray GA, Hoekstra HE, Futuyma DJ, Lenski RE, Mackay TFC, Schluter D, Strassmann JE (2014) Does evolutionary theory need a rethinking? No, all is well. Nature 514:161–164

    Article  PubMed  Google Scholar 

  • Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62:3727–3735

    Article  CAS  PubMed  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

  • zu Castell W, Ernst D (2012) Experimental ‘omics’ data in tree research: facing complexity. Trees 26:1723–1735

    Article  Google Scholar 

  • zu Castell W, Schrenk H (2020) Computing the adaptive cycle. Sci Rep 10:18175

    Article  Google Scholar 

  • zu Castell W, Fleischmann F, Heger T, Matyssek R (2016) Shaping theoretic foundations of holobiont-like systems. Progr Bot 77:219–244

    Google Scholar 

  • zu Castell W, Lüttge U, Matyssek R (2019) Gaia – a holobiont-like system emerging from interaction. In: Wegner L, Lüttge U (eds) Emergence and modularity in life sciences. Springer, Cham, pp 255–279

    Chapter  Google Scholar 

  • Zuker CS (1994) On the evolution of eyes: would you like it simple or compound? Science 265:742–743

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The constructive and helpful suggestions of two anonymous reviewers are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Matyssek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matyssek, R., Lüttge, U., zu Castell, W. (2022). Evolution of Holobiont-Like Systems: From Individual to Composed Ecological and Global Units. In: Lüttge, U., Cánovas, F.M., Risueño, MC., Leuschner, C., Pretzsch, H. (eds) Progress in Botany Vol. 83. Progress in Botany, vol 83. Springer, Cham. https://doi.org/10.1007/124_2022_57

Download citation

Publish with us

Policies and ethics