Skip to main content

Bioelectronic Tongues Employing Electrochemical Biosensors

  • Chapter
  • First Online:
Trends in Bioelectroanalysis

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 6))

Abstract

This chapter presents recent advances concerning work with electronic tongues that employ electrochemical biosensors, that is, bioelectronic tongues. (Bio)electronic tongues represent a new methodological use of (bio)sensors; they start by the use of biosensor arrays and assume the coupling of the obtained complex response with advanced chemometric data treatment; the goal is improving performance of existing sensors. Most of the bioelectronic tongues reported employ enzyme biosensors, essentially based on potentiometric or voltammetric/amperometric transduction. This report is organized considering the different forms to incorporate biosensors, i.e. considering the number of biosensors in the array, the number of different enzymes used, if the determination is aimed to substrates or inhibitors, etc. Significant applications in real problem-solving, mainly in the food and clinical or environmental fields, are commented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidic acid

AChE:

Acetylcholinesterases

ADH:

Alcohol dehydrogenase

AFM:

Atomic force microscopy

ANN:

Artificial neural network

AOx:

Alcohol oxidase

AuNP:

Gold nanoparticles

BChE:

Butyrylcholinesterase

BioET:

Bioelectronic tongue

BOD:

Biological oxygen demand

BSA:

Bovine serum albumin

CDH:

Cellobiose dehydrogenase

CE:

Capillary electrophoresis

COD:

Chemical oxygen demand

CPE:

Carbon paste electrodes

CV:

Cyclic voltammetry

DAO:

Diamino oxidase

ET:

Electronic tongue

FC:

Folin–Ciocalteu (index)

FFT:

Fast Fourier transform

FIA:

Flow-injection automated analysis

GOX:

Glucose oxidase

GPCRs:

G-protein-coupled receptor

HPLC:

High-performance liquid chromatography

HRP:

Horseradish peroxidase

hTAS1R2:

Human taste receptor type 1, receptor 2

hTAS1R3:

Human taste receptor type 1, receptor 3

ISE:

Ion-selective electrode

ITO:

Indium tin oxide

K-NN:

K-nearest neighbours

LB:

Langmuir–Blodgett

LDA:

Linear discriminant analysis

MAO:

Monoamine oxidase

MC:

Microcystins

MCR:

Multiple component regression

MDC:

Multiplicative drift correction

MEA:

Microelectrode arrays

MWCNT:

Multiwalled carbon nanotubes

PCA:

Principal component analysis

PCR:

Principal component regression

PEG:

Poly(ethylene glycol)

PLS:

Partial least squares

PP1, PP2A:

Protein phosphatases

PRM:

Partial robust M regression model

Pt:

Platinum

SBP:

Soybean peroxidase

SEM:

Scanning electron microscopy

SIA:

Sequential injection automated analysis

SPE:

Screen-printed electrodes

SVM:

Support vector machines

TAO:

Tyramine oxidase

TOC:

Total organic carbon

TTF:

Tetrathiafulvalene

TYR:

Tyrosinase

References

  1. Vlasov Y, Legin A, Rudnitskaya A, Di Natale C, D’Amico A (2005) Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl Chem 77(11):1965–1983

    Article  CAS  Google Scholar 

  2. del Valle M (2011) Bioinspired sensor systems. Sensors 11(11):10180–10186

    Article  Google Scholar 

  3. Lavine BK, Workman J (2002) Chemometrics. Anal Chem 74:2763

    Article  CAS  Google Scholar 

  4. Toko K (2000) Biomimetic sensor technology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Savage N (2012) Technology: the taste of things to come. Nature 486(7403):S18–S19

    Article  CAS  Google Scholar 

  6. Vlasov YG, Ermolenko YE, Legin AV, Rudnitskaya AM, Kolodnikov VV (2010) Chemical sensors and their systems. J Anal Chem 65(9):890–898

    Article  Google Scholar 

  7. Ciosek P, Wroblewski W (2007) Sensor arrays for liquid sensing – electronic tongue systems. Analyst 132(10):963–978

    Article  CAS  Google Scholar 

  8. Riul A Jr, Dantas CAR, Miyazaki CM, Oliveira ON Jr (2010) Recent advances in electronic tongues. Analyst 135(10):2481–2495

    Article  CAS  Google Scholar 

  9. Tahara Y, Toko K (2013) Electronic tongues-a review. IEEE Sens J 13(8):3001–3011

    Article  Google Scholar 

  10. del Valle M (2010) Electronic tongues employing electrochemical sensors. Electroanalysis 22(14):1539–1555

    Google Scholar 

  11. Zeravik J, Hlavacek A, Lacina K, Skladal P (2009) State of the art in the field of electronic and bioelectronic tongues – towards the analysis of wines. Electroanalysis 21(23):2509–2520

    Article  CAS  Google Scholar 

  12. Tønning E, Sapelnikova S, Christensen J, Carlsson C, Winther-Nielsen M, Dock E, Solna R, Skladal P, Nørgaard L, Ruzgas T, Emnéus J (2005) Chemometric exploration of an amperometric biosensor array for fast determination of wastewater quality. Biosens Bioelectron 21(4):608–617

    Article  Google Scholar 

  13. Gutes A, Cespedes F, Alegret S, del Valle M (2005) Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Biosens Bioelectron 20(8):1668–1673

    Article  CAS  Google Scholar 

  14. Gutierrez M, Alegret S, del Valle M (2007) Potentiometric bioelectronic tongue for the analysis of urea and alkaline ions in clinical samples. Biosens Bioelectron 22(9-10):2171–2178

    Article  CAS  Google Scholar 

  15. Cortina M, del Valle M, Marty J-L (2008) Electronic tongue using an enzyme inhibition biosensor array for the resolution of pesticide mixtures. Electroanalysis 20(1):54–60

    Article  CAS  Google Scholar 

  16. Valdes-Ramirez G, Gutierrez M, del Valle M, Ramirez-Silva MT, Fournier D, Marty JL (2009) Automated resolution of dichlorvos and methylparaoxon pesticide mixtures employing a Flow Injection system with an inhibition electronic tongue. Biosens Bioelectron 24(5):1103–1108

    Article  CAS  Google Scholar 

  17. Winquist F (2008) Voltammetric electronic tongues – basic principles and applications. Microchim Acta 163(1–2):3–10

    Article  CAS  Google Scholar 

  18. Magalhães JMCS, Machado AASC (2002) Array of potentiometric sensors for the analysis of creatinine in urine samples. Analyst 127(8):1069–1075

    Article  Google Scholar 

  19. Correia DPA, Magalhães JMCS, Machado AASC (2005) Array of potentiometric sensors for simultaneous analysis of urea and potassium. Talanta 67(4):773–782

    Article  CAS  Google Scholar 

  20. Gutierrez M, Alegret S, del Valle M (2008) Bioelectronic tongue for the simultaneous determination of urea, creatinine and alkaline ions in clinical samples. Biosens Bioelectron 23(6):795–802

    Article  CAS  Google Scholar 

  21. Gutes A, Ibanez A, Cespedes F, Alegret S, del Valle M (2005) Simultaneous determination of phenolic compounds by means of an automated voltammetric “electronic tongue”. Anal Bioanal Chem 382(2):471–476

    Article  CAS  Google Scholar 

  22. Pravdová V, Pravda M, Guilbault GG (2002) Role of chemometrics for electrochemical sensors. Anal Lett 35:2389–2399

    Article  Google Scholar 

  23. Scott SM, James D, Ali Z (2006) Data analysis for electronic nose systems. Microchim Acta 156:183

    Article  CAS  Google Scholar 

  24. Richards E, Bessant C, Saini S (2002) Multivariate data analysis in electroanalytical chemistry. Electroanalysis 14:1533

    Article  CAS  Google Scholar 

  25. Oliveri P, Casolino MC, Forina M (2010) Chemometric brains for artificial tongues. Adv Food Nutr Res 61(61):57–117

    Article  CAS  Google Scholar 

  26. Cartas R, Mimendia A, Legin A, del Valle M (2011) Multiway processing of data generated with a potentiometric electronic tongue in a SIA system. Electroanalysis 23(4):953–961

    Article  CAS  Google Scholar 

  27. Rudnitskaya A, Kirsanov D, Blinova Y, Legin E, Seleznev B, Clapham D, Ives RS, Saunders KA, Legin A (2013) Assessment of bitter taste of pharmaceuticals with multisensor system employing 3 way PLS regression. Anal Chim Acta 770:45–52

    Article  CAS  Google Scholar 

  28. Ceto X, Cespedes F, del Valle M (2013) Comparison of methods for the processing of voltammetric electronic tongues data. Microchim Acta 180(5-6):319–330

    Article  CAS  Google Scholar 

  29. Despagne F, Massart DL (1998) Neural networks in multivariate calibration. Analyst 123(11):157R–178R

    Article  CAS  Google Scholar 

  30. Trojanowicz M, Jagielska A, Rotkiewicz P, Kierzek A (1999) Flow injection determination of phenols with tyrosinase amperometric biosensor and data processing by a neural network. Chem Anal Warsaw 44:865–878

    CAS  Google Scholar 

  31. Serra B, Jiménez S, Mena ML, Reviejo AJ, Pingarrón JM (2002) Composite electrochemical biosensors: a comparison of three different electrodes matrices for the construction of amperometric tyrosinase biosensors. Biosens Bioelectron 17:217–226

    Article  CAS  Google Scholar 

  32. Torrecilla JS, Mena ML, Yanez-Sedeno P, Garcia J (2007) Application of artificial neural network to the determination of phenolic compounds in olive oil mill wastewater. J Food Eng 81(3):544–552

    Article  CAS  Google Scholar 

  33. Torrecilla JS, Mena ML, Yañez-Sedeno P, Garcia J (2007) Quantification of phenolic compounds in olive oil mill wastewater by artificial neural network/laccase biosensor. J Agric Food Chem 55(18):7418–7426

    Article  CAS  Google Scholar 

  34. Tang L, Zeng G, Liu J, Xu X, Zhang Y, Shen G, Li Y, Liu C (2008) Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Anal Bioanal Chem 391(2):679–685

    Article  CAS  Google Scholar 

  35. Zhou Y, Tang L, Zeng G, Zhang Y, Li Z, Liu Y, Chen J, Yang G, Zhou L, Zhang S (2014) Simultaneous determination of hydroquinone and catechol in compost bioremediation using a tyrosinase biosensor and artificial neural networks. Anal Methods 6(7):2371–2378

    Article  CAS  Google Scholar 

  36. Torrecilla JS, Mena ML, Yanez-Sedeno P, Garcia J (2008) A neural network approach based on gold-nanoparticle enzyme biosensor. J Chemometr 22(1-2):46–53

    Article  CAS  Google Scholar 

  37. Correia DPA, Magalhaes JMCS, Machado AASC (2008) Array of potentiometric sensors for multicomponent analysis of blood serum. Microchim Acta 163(1-2):131–137

    Article  CAS  Google Scholar 

  38. Gutes A, Ibanez AB, del Valle M, Cespedes F (2006) Automated SIA e-tongue employing a voltammetric biosensor array for the simultaneous determination of glucose and ascorbic acid. Electroanalysis 18(1):82–88

    Article  CAS  Google Scholar 

  39. Massart DL, Vandeginste LMC, Buydens LMC, de Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics, vol A. Elsevier, Amsterdam

    Google Scholar 

  40. Al-Issa Y, Njagi J, Schuckers SC, Suni II (2015) Amperometric bioelectronic tongue for glucose determination. Sens Bio-Sens Res 3:31–37

    Article  Google Scholar 

  41. Ghasemi-Varnamkhasti M, Luz Rodriguez-Mendez M, Mohtasebi SS, Apetrei C, Lozano J, Ahmadi H, Razavi SH, Antonio de Saja J (2012) Monitoring the aging of beers using a bioelectronic tongue. Food Control 25(1):216–224

    Article  CAS  Google Scholar 

  42. Mugweru A, Clark BL, Pishko MV (2007) Electrochemical redundant microsensor arrays for glucose monitoring with patterned polymer films. Electroanalysis 19(4):453–458

    Article  CAS  Google Scholar 

  43. Lange J, Wittmann C (2002) Enzyme sensor array for the determination of biogenic amines in food samples. Fresenius J Anal Chem 372(2):276–283

    CAS  Google Scholar 

  44. Bóka B, Adányi N, Virág D, Sebela M, Kiss A (2012) Spoilage detection with biogenic amine biosensors, comparison of different enzyme electrodes. Electroanalysis 24(1):181–186

    Article  Google Scholar 

  45. Henao-Escobar W, del Torno-de Román L, Domínguez-Renedo O, Alonso-Lomillo MA, Arcos-Martínez MJ (2016) Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine. Food Chem 190:818–823

    Article  CAS  Google Scholar 

  46. Rodriguez-Mendez ML, Gay M, Apetrei C, De Saja JA (2009) Biogenic amines and fish freshness assessment using a multisensor system based on voltammetric electrodes. Comparison between CPE and screen-printed electrodes. Electrochim Acta 54(27):7033–7041

    Article  CAS  Google Scholar 

  47. Pitman K, Raud M, Kikas T (2015) Biochemical oxygen demand sensor arrays. Agronomy Res 13(2):382–395

    Google Scholar 

  48. Raud M, Kikas T (2013) Bioelectronic tongue and multivariate analysis: a next step in BOD measurements. Water Res 47(7):2555–2562

    Article  CAS  Google Scholar 

  49. Kirsanov D, Legin E, Zagrebin A, Ignatieva N, Rybakin V, Legin A (2014) Mimicking Daphnia magna bioassay performance by an electronic tongue for urban water quality control. Anal Chim Acta 824:64–70

    Article  CAS  Google Scholar 

  50. Yaropolov AI, Kharybin AN, Emnéus J, Marko-Varga G, Gorton L (1995) Flow-injection analysis of phenols at graphite electrode modified with co-immobilised laccase and tyrosinase. Anal Chim Acta 308:137–144

    Article  CAS  Google Scholar 

  51. ElKaoutit M, Naranjo-Rodriguez I, Temsamani KR, De La Vega MD, De Cisneros JLHH (2007) Dual laccase – tyrosinase based sonogel-carbon biosensor for monitoring polyphenols in beers. J Agric Food Chem 55(20):8011–8018

    Article  CAS  Google Scholar 

  52. Montereali MR, Seta LD, Vastarella W, Pilloton R (2010) A disposable Laccase-Tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine. J Mol Catal B Enzym 64(3-4):189–194

    Article  CAS  Google Scholar 

  53. Kochana J, Nowak P, Jarosz-Wilkołazka A, Bieroń M (2008) Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds. Microchem J 89(2):171–174

    Article  CAS  Google Scholar 

  54. Diaconu M, Litescu SC, Radu GL (2011) Bienzymatic sensor based on the use of redox enzymes and chitosan-MWCNT nanocomposite. Evaluation of total phenolic content in plant extracts. Microchim Acta 172(1):177–184

    Article  CAS  Google Scholar 

  55. Soldatkin OO, Peshkova VM, Saiapina OY, Kucherenko IS, Dudchenko OY, Melnyk VG, Vasylenko OD, Semenycheva LM, Soldatkin AP, Dzyadevych SV (2013) Development of conductometric biosensor array for simultaneous determination of maltose, lactose, sucrose and glucose. Talanta 115:200–207

    Article  CAS  Google Scholar 

  56. Jawaheer S, White SF, Rughooputh SDDV, Cullen DC (2003) Development of a common biosensor format for an enzyme based biosensor array to monitor fruit quality. Biosens Bioelectron 18:1429–1437

    Article  CAS  Google Scholar 

  57. Solná R, Skládal P (2005) Amperometric flow-injection determination of phenolic compounds using a biosensor with immobilized laccase, peroxidase and tyrosinase. Electroanalysis 17(23):2137–2146

    Article  Google Scholar 

  58. Solná R, Dock E, Christenson A, Winther-Nielsen M, Carlsson C, Emnéus J, Ruzgas T, Skládal P (2005) Amperometric screen-printed biosensor arrays with co-immobilised oxidoreductases and cholinesterases. Anal Chim Acta 528:9–19

    Article  Google Scholar 

  59. Czolkos I, Dock E, Tønning E, Christensen J, Winther-Nielsen M, Carlsson C, Mojzíková R, Skládal P, Wollenberger U, Nørgaard L, Ruzgas T, Emnéus J (2016) Prediction of wastewater quality using amperometric bioelectronic tongues. Biosens Bioelectron 75:375–382

    Article  CAS  Google Scholar 

  60. Bucur B, Radu GL, Toader CN (2008) Analysis of methanol-ethanol mixtures from falsified beverages using a dual biosensors amperometric system based on alcohol dehydrogenase and alcohol oxidase. Eur Food Res Technol 226(6):1335–1342

    Article  CAS  Google Scholar 

  61. Freire RS, Ferreira MMC, Durán N, Kubota LT (2003) Dual amperometric biosensor device for analysis of binary mixtures of phenols by multivariate calibration using partial least squares. Anal Chim Acta 485(2):263–269

    Article  CAS  Google Scholar 

  62. Cetó X, Cespedes F, del Valle M (2012) BioElectronic Tongue for the quantification of total polyphenol content in wine. Talanta 99:544–551

    Article  Google Scholar 

  63. Cetó X, Céspedes F, Isabel Pividori M, Manuel Gutiérrez J, del Valle M (2012) Resolution of phenolic antioxidant mixtures employing a voltammetric bio-electronic tongue. Analyst 137(2):349–356

    Article  Google Scholar 

  64. Cetó X, Capdevila J, Minguez S, del Valle M (2014) Voltammetric BioElectronic Tongue for the analysis of phenolic compounds in rose cava wines. Food Res Int 55:455–461

    Article  Google Scholar 

  65. Cetó X, Cespedes F, del Valle M (2013) Assessment of individual polyphenol content in beer by means of a voltammetric bioelectronic tongue. Electroanalysis 25(1):68–76

    Article  Google Scholar 

  66. Medina-Plaza C, de Saja JA, Rodriguez-Mendez ML (2014) Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes. Biosens Bioelectron 57:276–283

    Article  CAS  Google Scholar 

  67. Cetó X, González-Calabuig A, del Valle M (2015) Use of a bioelectronic tongue for the monitoring of the photodegradation of phenolic compounds. Electroanalysis 27(1):225–233

    Article  Google Scholar 

  68. Medina-Plaza C, Garcia-Hernandez C, de Saja JA, Fernandez-Escudero JA, Barajas E, Medrano G, Garcia-Cabezon C, Martin-Pedrosa F, Rodriguez-Mendez ML (2015) The advantages of disposable screen-printed biosensors in a bioelectronic tongue for the analysis of grapes. Lwt-Food Sci Technol 62(2):940–947

    Article  CAS  Google Scholar 

  69. Crew A, Lonsdale D, Byrd N, Pittson R, Hart JP (2011) A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides. Biosens Bioelectron 26:2847–2851

    Article  CAS  Google Scholar 

  70. Crew A, Hart JP, Wedge R, Marty JL, Fournier D (2004) A Screen-printed, amperometric, biosensor array for the detection of organophosphate pesticides based on inhibition of wild type, and mutant acetylcholinesterases, from Drosophila melanogaster. Anal Lett 37(8):1601–1610

    Article  CAS  Google Scholar 

  71. Istamboulie G, Cortina-Puig M, Marty J-L, Noguer T (2009) The use of artificial neural networks for the selective detection of two organophosphate insecticides: Chlorpyrifos and Chlorfenvinfos. Talanta 79(2):507–511

    Article  CAS  Google Scholar 

  72. Alonso GA, Istamboulie G, Noguer T, Marty J-L, Muñoz R (2012) Rapid determination of pesticide mixtures using disposable biosensors based on genetically modified enzymes and artificial neural networks. Sens Actuators B Chem 164(1):22–28

    Article  CAS  Google Scholar 

  73. Alonso GA, Muñoz R, Marty J-L (2013) Automatic electronic tongue for on-line detection and quantification of organophosphorus and carbamate pesticides using enzymatic screen printed biosensors. Anal Lett 46(11):1743–1757

    Article  CAS  Google Scholar 

  74. Mishra RK, Alonso GA, Istamboulie G, Bhand S, Marty J-L (2015) Automated flow based biosensor for quantification of binary organophosphates mixture in milk using artificial neural network. Sens Actuators B Chem 208:228–237

    Article  CAS  Google Scholar 

  75. Zeravik J, Lacina K, Jilek M, Vlcek J, Skládal P (2010) Biosensor for determination of carboxylic acids in wines based on the inhibition of sarcosine oxidase. Microchim Acta 170(3–4):251–256

    Article  CAS  Google Scholar 

  76. Zeravik J, Fohlerova Z, Milovanovic M, Kubesa O, Zeisbergerova M, Lacina K, Petrovic A, Glatz Z, Skládal P (2016) Various instrumental approaches for determination of organic acids in wines. Food Chem 194:432–440

    Article  CAS  Google Scholar 

  77. Alonso GA, Dominguez RB, Marty J-L, Muñoz R (2011) An approach to an inhibition electronic tongue to detect on-line organophosphorus insecticides using a computer controlled multi-commuted flow system. Sensors 11(4):3791–3802

    Article  CAS  Google Scholar 

  78. Covaci OI, Sassolas A, Alonso GA, Muñoz R, Radu GL, Bucur B, Marty JL (2012) Highly sensitive detection and discrimination of LR and YR microcystins based on protein phosphatases and an artificial neural network. Anal Bioanal Chem 404(3):711–720

    Article  CAS  Google Scholar 

  79. Radulescu MC, Bucur MP, Bucur B, Radu GL (2015) Biosensor based on inhibition of monoamine oxidases A and B for detection of β-carbolines. Talanta 137:94–99

    Article  CAS  Google Scholar 

  80. Medyantseva EP, Brusnitsyn DV, Varlamova RM, Beshevets MA, Budnikov HC, Fattakhova AN (2015) Capabilities of amperometric monoamine oxidase biosensors based on screen-printed graphite electrodes modified with multiwall carbon nanotubes in the determination of some antidepressants. J Anal Chem 70(5):535–539

    Article  CAS  Google Scholar 

  81. Alpha Mos, Toulouse, France. http://wwww.alpha-mos.com

  82. Insent Co., Japan. http://www.insent.co.jp/english/top.htm

  83. Ha D, Sun Q, Su K, Wan H, Li H, Xu N, Sun F, Zhuang L, Hu N, Wang P (2015) Recent achievements in electronic tongue and bioelectronic tongue as taste sensors. Sens Actuators B Chem 207:1136–1146

    Article  CAS  Google Scholar 

  84. Liu Q, Zhang F, Zhang D, Hu N, Wang H, Hsia KJ, Wang P (2013) Bioelectronic tongue of taste buds on microelectrode array for salt sensing. Biosens Bioelectron 40(1):115–120

    Article  CAS  Google Scholar 

  85. Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413(6852):226–230

    Article  CAS  Google Scholar 

  86. Song HS, Jin HJ, Ahn SR, Kim D, Lee SH, Kim U-K, Simons CT, Hong S, Park TH (2014) Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance. ACS Nano 8(10):9781–9789

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the European Commission (Grant Agreement number 264772 – ITN CHEBANA) and from the Spanish Ministry of Economy and Innovation, MINECO (Madrid), through project CTQ2013-41577-P is gratefully acknowledged. Manel del Valle thanks the support from programme ICREA Academia. Many thanks are also debt to PhD students that completed their formation in our laboratories in the research line of BioETs: Albert Gutés, Montserrat Cortina, Manuel Gutiérrez Capitán, Xavier Cetó, Andrea Cipri and Andreu González-Calabuig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel del Valle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

del Valle, M. (2016). Bioelectronic Tongues Employing Electrochemical Biosensors. In: Matysik, FM. (eds) Trends in Bioelectroanalysis. Bioanalytical Reviews, vol 6. Springer, Cham. https://doi.org/10.1007/11663_2016_2

Download citation

Publish with us

Policies and ethics