Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 163))

Abstract

During embryonic development, the skin, the largest organ of the human body, and nervous system are both derived from the neuroectoderm. Consequently, several key factors and mechanisms that influence and control central or peripheral nervous system activities are also present and hence involved in various regulatory mechanisms of the skin. Apparently, this is the case for the ion and non-ion selective channels as well. Therefore, in this review, we shall focus on delineating the regulatory roles of the channels in skin physiology and pathophysiology. First, we introduce key cutaneous functions and major characteristics of the channels in question. Then, we systematically detail the involvement of a multitude of channels in such skin processes (e.g. skin barrier formation, maintenance, and repair, immune mechanisms, exocrine secretion) which are mostly defined by cutaneous non-neuronal cell populations. Finally, we close by summarizing data suggesting that selected channels are also involved in skin diseases such as e.g. atopic dermatitis, psoriasis, non-melanoma cancers and malignant melanoma, genetic and autoimmune diseases, etc., as well as in skin ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-Hydroxytryptamine

ACh:

Acethylcholine

ACTH:

Corticotropin

AD:

Atopic dermatitis

AML:

Antimicrobial lipid

AMP:

Antimicrobial peptide

AMPA(R):

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (receptor)

AQP:

Aquaporin

ATP:

Adenosine-5′- triphosphate

BCC:

Basal cell carcinoma

BK:

Large conductance Ca2+-activated K+-channel

Cav :

L-type voltage-gated Ca2+-channels

[Ca2+]e :

Extracellular Ca2+-concentration

[Ca2+]i :

Intracellular Ca2+-concentration

CCL:

Chemokine ligand

CGRP:

Calcitonin gene-related peptide

ChAT:

Choline-acetyltransferase

CNG channels:

Cyclic nucleotide-gated channels

COX:

Cyclooxygenase

CRH:

Corticotropin releasing hormone

CVI:

Chronic venous insufficiency

Cx:

Connexin

CXCL:

CXC chemokine ligand

CXCR:

CXC chemokine ligand receptor

DD:

Darier’s disease (keratosis follicularis)

DMBA:

Dimethylbenz[a]anthracene

EGF:

Epidermal growth factor

ENaC:

Amiloride-sensitive Na+ channels

GABA:

Gamma-aminobutyric acid

HS:

Hidradenitis suppurativa (acne inversa)

ICAM-1:

Intercellular adhesion molecule-1

IK1:

Intermediate conductance KCa

IL:

Interleukin

I-RTX:

5′-Iodoresiniferatoxin

K2P :

Two-pore K+-channels

KCa :

Ca2+-activated K+-channels

Kir :

Inward rectifier K+-channels

LPS:

Bacterial lipopolysaccharide

mAChR:

Muscarinic acethylcholine receptor

mGluR:

Metabotropic glutamate receptor

MMP-1:

Matrix metalloproteinase-1

MUFA:

Monounsaturated fatty acid

nAChR:

Nicotinic acethylcholine receptor

Nav :

Voltage-gated Na+-channels

NGF:

Nerve growth factor

NHEK:

Normal human epidermal keratincyte

NK-1 (receptor):

Neurokinin-1 (receptor)

NMDA(R):

N-methyl-D-aspartate (receptor)

NMF(s):

Natural moisturizing factor(s)

NO:

Nitric oxide

PCNA:

Proliferating cell nuclear antigen

PG:

Prostaglandin

PPP:

Palmoplantar pustulosis

SCC:

Squamous cell carcinoma

SLURP-1:

Secreted mammalian Ly-6/uPAR-related protein 1

SP:

Substance P

str.:

Stratum (layer)

TLR:

Toll-like receptor

TNFα:

Tumor necrosis factor alpha

TRH:

Thyreotropin releasing hormone

TRP:

Transient receptor potential

TRPA:

“Ankyrin” subfamily of the TRP channels

TRPC:

“Canonical” or “classical” subfamily of the TRP channels

TRPM:

“Melastatin” subfamily of the TRP channels

TRPML:

“Mucolipin” subfamily of the TRP channels

TRPP:

“Polycystin” subfamily of the TRP channels

TRPV:

“Vanilloid” subfamily of the TRP channels

TSH:

Thyreotropin

TSW:

Avène thermal spring water

References

  • Amagai M, Stanley JR (2012) Desmoglein as a target in skin disease and beyond. J Invest Dermatol 132:776–784

    Article  PubMed  CAS  Google Scholar 

  • Amantini C, Mosca M, Lucciarini R et al (2004) Distinct thymocyte subsets express the vanilloid receptor VR1 that mediates capsaicin-induced apoptotic cell death. Cell Death Differ 11:1342–1356

    Article  PubMed  CAS  Google Scholar 

  • Ambrus L, Tóth BI, Oláh A et al (2011) Heat sensitive transient receptor potential vanilloid (TRPV) channels in the control of human SZ95 sebocytes – potential role of TRPV3. J Invest Dermatol 131 suppl. S60

    Google Scholar 

  • Andersen HK, Urbach V, Van Kerkhove E et al (1995) Maxi K+ channels in the basolateral membrane of the exocrine frog skin gland regulated by intracellular calcium and pH. Pflugers Arch 431:52–65

    Article  PubMed  CAS  Google Scholar 

  • Ansel JC, Armstrong CA, Song I et al (1997) Interactions of the skin and nervous system. J Investig Dermatol Symp Proc 2:23–26

    PubMed  CAS  Google Scholar 

  • Arck PC, Slominski A, Theoharides TC et al (2006) Neuroimmunology of stress: skin takes center stage. J Invest Dermatol 126:1697–1704

    Article  PubMed  CAS  Google Scholar 

  • Arredondo J, Nguyen VT, Chernyavsky AI et al (2002) Central role of α7 nicotinic receptor in differentiation of the stratified squamous epithelium. J Cell Biol 159:325–336

    Article  PubMed  CAS  Google Scholar 

  • Arredondo J, Hall LL, Ndoye A et al (2003) Central role of fibroblast alpha3 nicotinic acetylcholine receptor in mediating cutaneous effects of nicotine. Lab Invest 83:207–225

    PubMed  CAS  Google Scholar 

  • Arwert EN, Hoste E, Watt FM (2012) Epithelial stem cells, wound healing and cancer. Nat Rev Cancer 12(3):170–180

    Article  PubMed  CAS  Google Scholar 

  • Asakawa M, Yoshioka T, Matsutani T et al (2006) Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol 126:2664–2672

    Article  PubMed  CAS  Google Scholar 

  • Atoyan R, Shander D, Botchkareva NV (2009) Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol 129:2312–2315

    Article  PubMed  CAS  Google Scholar 

  • Bandell M, Story GM, Hwang SW et al (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  PubMed  CAS  Google Scholar 

  • Baranova A, Ivanov D, Petrash N et al (2004) The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83:706–716

    Article  PubMed  CAS  Google Scholar 

  • Bardan A, Nizet V, Gallo RL (2004) Antimicrobial peptides and the skin. Expert Opin Biol Ther 4(4):543–549

    Article  PubMed  CAS  Google Scholar 

  • Barfield RL, Barrett KR, Moon CM et al (2002) Pruritic linear papules on a 75-year-old woman: a case of localized Darier-White disease. Cutis 70:225–228

    PubMed  Google Scholar 

  • Basu S, Srivastava P (2005) Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells. Proc Natl Acad Sci USA 102:5120–5125

    Article  PubMed  CAS  Google Scholar 

  • Bautista DM, Siemens J, Glazer JM et al (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208

    Article  PubMed  CAS  Google Scholar 

  • Beck B, Lehen’kyi V, Roudbaraki M et al (2008) TRPC channels determine human keratinocyte differentiation: new insight into basal cell carcinoma. Cell Calcium 43:492–505

    Article  PubMed  CAS  Google Scholar 

  • Bellone RR, Brooks SA, Sandmeyer L et al (2008) Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus). Genetics 179:1861–1870

    Article  PubMed  CAS  Google Scholar 

  • Benham CD, Gunthorpe MJ, Davis JB (2003) TRPV channels as temperature sensors. Cell Calcium 33:479–487

    Article  PubMed  CAS  Google Scholar 

  • Bezzerides VJ, Ramsey IS, Kotecha S et al (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6:709–720

    Article  PubMed  CAS  Google Scholar 

  • Bianco SD, Peng JB, Takanaga H et al (2007) Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res 22:274–285

    Article  PubMed  CAS  Google Scholar 

  • Biel M, Hofmann F, Kaupp UB (2012) Cyclic nucleotide-regulated channels. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=71. Accessed 20 July 2012

  • Biliris KA, Koumantakis E, Dokianakis DN, Sourvinos G, Spandidos DA et al (2000) Human papillomavirus infection of non-melanoma skin cancers in immunocompetent hosts. Cancer Lett 161:83–88

    Article  PubMed  CAS  Google Scholar 

  • Birder LA, Kanai AJ, de Groat WC et al (2001) Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci USA 98:13396–13401

    Article  PubMed  CAS  Google Scholar 

  • Bíró T, Kovács L (2009) An “ice-cold” TR(i)P to skin biology: the role of TRPA1 in human epidermal keratinocytes. J Invest Dermatol 129:2096–2099

    Article  PubMed  CAS  Google Scholar 

  • Bíró T, Brodie C, Modarres S et al (1998a) Specific vanilloid responses in C6 rat glioma cells. Brain Res Mol Brain Res 56:89–98

    Article  PubMed  Google Scholar 

  • Bíró T, Maurer M, Modarres S et al (1998b) Characterization of functional vanilloid receptors expressed by mast cells. Blood 91:1332–1340

    PubMed  Google Scholar 

  • Bíró T, Bodó E, Telek A et al (2006) Hair cycle control by vanilloid receptor-1 (TRPV1): evidence from TRPV1 knockout mice. J Invest Dermatol 126:1909–1912

    Article  PubMed  CAS  Google Scholar 

  • Bíró T, Tóth BI, Marincsák R et al (2007) TRP channels as novel players in the pathogenesis and therapy of itch. Biochim Biophys Acta 1772:1004–1021

    Article  PubMed  CAS  Google Scholar 

  • Bode AM, Cho YY, Zheng D et al (2009) Transient receptor potential type vanilloid 1 suppresses skin carcinogenesis. Cancer Res 69:905–913

    Article  PubMed  CAS  Google Scholar 

  • Bodó E, Kovács I, Telek A et al (2004) Vanilloid receptor-1 (VR1) is widely expressed on various epithelial and mesenchymal cell types of human skin. J Invest Dermatol 123:410–413

    Article  PubMed  CAS  Google Scholar 

  • Bodó E, Bíró T, Telek A et al (2005) A hot new twist to hair biology: involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am J Pathol 166:985–998

    Article  PubMed  Google Scholar 

  • Bodó E, Kany B, Gáspár E et al (2010) Thyroid stimulating hormone (TSH), a novel, locally produced modulator of human epidermal functions, is regulated by thyrotropin releasing hormone and thyroid hormones. Endocrinology 151(4):1633–1642

    Article  PubMed  CAS  Google Scholar 

  • Boguniewicz M, Leung DYM (2011) Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev 242:233–246

    Article  PubMed  CAS  Google Scholar 

  • Borbíró I, Lisztes E, Tóth BI et al (2011) Activation of transient receptor potential vanilloid-3 inhibits human hair growth. J Invest Dermatol 131:1605–1614

    Article  PubMed  CAS  Google Scholar 

  • Bos JD, Kapsenberg ML (1993) The skin immune system: progress in cutaneous biology. Immunol Today 14(2):75–78

    Article  PubMed  CAS  Google Scholar 

  • Bouillon R, Verstuyf A, Mathieu C et al (2006) Vitamin D resistance. Best Pract Res Clin Endocrinol Metab 20:627–645

    Article  PubMed  CAS  Google Scholar 

  • Boury-Jamot M, Sougrat R, Tailhardat M et al (2006) Expression and function of aquaporins in human skin: is aquaporin-3 just a glycerol transporter? Biochim Biophys Acta 1758:1034–1042

    Article  PubMed  CAS  Google Scholar 

  • Bradding P, Okayama Y, Kambe N et al (2003) Ion channel gene expression in human lung, skin, and cord blood-derived mast cells. J Leukoc Biol 73:614–620

    Article  PubMed  CAS  Google Scholar 

  • Braff MH, Gallo RL (2006) Antimicrobial peptides: an essential component of the skin defensive barrier. Curr Top Microbiol Immunol 306:91–110

    Article  PubMed  CAS  Google Scholar 

  • Brandner JM, Houdek P, Hüsing B et al (2004) Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. J Invest Dermatol 122:1310–1320

    Article  PubMed  CAS  Google Scholar 

  • Bukowsky LF (2010) Skin anatomy and physiology research development, 1st edn. NOVA Biomedical Publications, Hauppauge

    Google Scholar 

  • Burnstock G (2006) Purinergic signalling. Br J Pharmacol 147(Suppl 1):S172–S181

    PubMed  CAS  Google Scholar 

  • Burnstock G, Knight GE, Greig AVH (2012) Purinergic signaling in healthy and diseased skin. J Invest Dermatol 132:526–546

    Article  PubMed  CAS  Google Scholar 

  • Cai S, Fatherazi S, Presland RB et al (2005) TRPC channel expression during calcium-induced differentiation of human gingival keratinocytes. J Dermatol Sci 40:21–28

    Article  PubMed  CAS  Google Scholar 

  • Cai S, Fatherazi S, Presland RB et al (2006) Evidence that TRPC1 contributes to calcium-induced differentiation of human keratinocytes. Pflugers Arch 452:43–52

    Article  PubMed  CAS  Google Scholar 

  • Canellakis ZN, Milstone LM, Marsh LL et al (1983) GABA from putrescine is bound in macromolecular form in keratinocytes. Life Sci 33:599–603

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2012a) Voltage-gated sodium channels. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=82. Accessed 20 July 2012

  • Catterall WA, Perez-Reyes E, Snutch TP et al (2012b) Voltage-gated calcium channels. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=80. Accessed 20 July 2012

  • Celetti SJ, Cowan KN, Penuela S et al (2010) Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation. J Cell Sci 123:1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Chang KW, Yuan TC, Fang KP et al (2003) The increase of voltage-gated potassium channel Kv3.4 mRNA expression in oral squamous cell carcinoma. J Oral Pathol Med 32:606–611

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Jin J, Hu L et al (2010) TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141:331–343

    Article  PubMed  CAS  Google Scholar 

  • Chernyavsky AI, Arredondo J, Marubio LM et al (2004) Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes. J Cell Sci 117:5665–5679

    Article  PubMed  CAS  Google Scholar 

  • Chernyavsky AI, Arredondo J, Karlsson E et al (2005) The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. J Biol Chem 280:39220–39228

    Article  PubMed  CAS  Google Scholar 

  • Chernyavsky AI, Arredondo J, Vetter DE et al (2007) Central role of alpha9 acetylcholine receptor in coordinating keratinocyte adhesion and motility at the initiation of epithelialization. Exp Cell Res 313(16):3542–3555

    Article  PubMed  CAS  Google Scholar 

  • Chernyavsky AI, Kalantari-Dehaghi M, Phillips C et al (2012) Novel cholinergic peptides SLURP-1 and -2 regulate epithelialization of cutaneous and oral wounds. Wound Repair Regen 20(1):103–113

    Article  PubMed  Google Scholar 

  • Chimienti F, Hogg RC, Plantard L et al (2003) Identification of SLURP-1 as an epidermal neuromodulator explains the clinical phenotype of Mal de Meleda. Hum Mol Genet 12:3017–3024

    Article  PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Caterina MJ (2003) Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 278:32037–32046

    Article  PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A et al (2004) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem 279:21569–21575

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE, Nilius B, Owsianik G (2012) Transient receptor potential channels. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=78. Accessed 20 July 2012

  • Cogen AL, Nizet V, Gallo RL (2008) Skin microbiota: a source of disease or defence? Br J Dermatol 158(3):442–455

    Article  PubMed  CAS  Google Scholar 

  • Cohen AD, Kagen M, Friger M et al (2001) Calcium channel blockers intake and psoriasis: a case-control study. Acta Derm Venereol 81:347–349

    Article  PubMed  CAS  Google Scholar 

  • Colburn RW, Lubin ML, Stone DJ Jr et al (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386

    Article  PubMed  CAS  Google Scholar 

  • Cuajungco MP, Samie MA (2008) The varitint-waddler mouse phenotypes and the TRPML3 ion channel mutation: cause and consequence. Pflugers Arch 457:463–473

    Article  PubMed  CAS  Google Scholar 

  • Curtis BJ, Radek KA (2012) Cholinergic regulation of keratinocyte innate immunity and permeability barrier integrity: new perspectives in epidermal immunity and disease. J Invest Dermatol 132(1):28–42

    Article  PubMed  CAS  Google Scholar 

  • Damann N, Voets T, Nilius B (2008) TRPs in our senses. Curr Biol 18(18):R880–R889

    Article  PubMed  CAS  Google Scholar 

  • de la Rosa AD, Canessa CM, Fyfe GK et al (2000) Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol 62:573–594

    Article  Google Scholar 

  • Deeds J, Cronin F, Duncan LM (2000) Patterns of melastatin mRNA expression in melanocytic tumors. Hum Pathol 31:1346–1356

    Article  PubMed  CAS  Google Scholar 

  • Delany NS, Hurle M, Facer P et al (2001) Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. Physiol Genomics 4:165–174

    PubMed  CAS  Google Scholar 

  • Deli T, Varga N, Adám A et al (2007) Functional genomics of calcium channels in human melanoma cells. Int J Cancer 121(1):55–65

    Article  PubMed  CAS  Google Scholar 

  • Denda M, Tsutsumi M (2011) Roles of transient receptor potential proteins (TRPs) in epidermal keratinocytes. Adv Exp Med Biol 704:847–860

    Article  PubMed  CAS  Google Scholar 

  • Denda M, Fuziwara S, Inoue K et al (2001) Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem Biophys Res Commun 285:1250–1252

    Article  PubMed  CAS  Google Scholar 

  • Denda M, Inoue K, Fuziwara S et al (2002a) P2X purinergic receptor antagonist accelerates skin barrier repair and prevents epidermal hyperplasia induced by skin barrier disruption. J Invest Dermatol 119:1034–1040

    Article  PubMed  CAS  Google Scholar 

  • Denda M, Inoue K, Inomata S et al (2002b) gamma-Aminobutyric acid (A) receptor agonists accelerate cutaneous barrier recovery and prevent epidermal hyperplasia induced by barrier disruption. J Invest Dermatol 119:1041–1047

    Article  PubMed  CAS  Google Scholar 

  • Denda M, Fuziwara S, Inoue K (2003a) Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis. J Invest Dermatol 121:362–367

    Article  PubMed  CAS  Google Scholar 

  • Denda M, Fuziwara S, Inoue K (2003b) Beta-2-adrenergic receptor antagonist accelerates skin barrier recovery and reduces epidermal hyperplasia induced by barrier disruption. J Invest Dermatol 121:142–148

    Article  PubMed  CAS  Google Scholar 

  • Denda M, Fujiwara S, Hibino T (2006) Expression of voltage-gated calcium channel subunit α1C in epidermal keratinocytes and effects of agonist and antagonists of the channel on skin barrier homeostasis. Exp Dermatol 15:455–460

    Article  PubMed  CAS  Google Scholar 

  • Denda M, Nakatani M, Ikeyama K et al (2007a) Epidermal keratinocytes as the forefront of the sensory system. Exp Dermatol 16(3):157–161

    Article  PubMed  CAS  Google Scholar 

  • Denda M, Sokabe T, Fukumi-Tominaga T et al (2007b) Effects of skin surface temperature on epidermal permeability barrier homeostasis. J Invest Dermatol 127:654–659

    Article  PubMed  CAS  Google Scholar 

  • Denda M, Tsutsumi M, Denda S (2010a) Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of cold-sensitive TRP receptors in epidermal permeability barrier homoeostasis. Exp Dermatol 19:791–795

    Article  PubMed  CAS  Google Scholar 

  • Denda M, Tsutsumi M, Goto M et al (2010b) Topical application of TRPA1 agonists and brief cold exposure accelerate skin permeability barrier recovery. J Invest Dermatol 130:1942–1945

    Article  PubMed  CAS  Google Scholar 

  • Devi S, Kedlaya R, Maddodi N et al (2009) Calcium homeostasis in human melanocytes: role of transient receptor potential melastatin 1 (TRPM1) and its regulation by ultraviolet light. Am J Physiol Cell Physiol 297(3):C679–C687

    Article  PubMed  CAS  Google Scholar 

  • Dhaka A, Viswanath V, Patapoutian A (2006) Trp ion channels and temperature sensation. Annu Rev Neurosci 29:135–161

    Article  PubMed  CAS  Google Scholar 

  • Di Palma F, Belyantseva IA, Kim HJ et al (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci USA 99:14994–14999

    Article  PubMed  CAS  Google Scholar 

  • Djalilian AR, McGaughey D, Patel S et al (2006) Connexin 26 regulates epidermal barrier and wound remodeling and promotes psoriasiform response. J Clin Invest 116:1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Draelos Z, Pugliese PT (2011) Physiology of the skin, 3rd edn. Allured Business Media, Carol Stream

    Google Scholar 

  • Duncan LM, Deeds J, Cronin FE et al (2001) Melastatin expression and prognosis in cutaneous malignant melanoma. J Clin Oncol 19:568–576

    PubMed  CAS  Google Scholar 

  • Eid SR, Cortright DN (2009) Transient receptor potential channels on sensory nerves. Handb Exp Pharmacol 194:261–281

    Article  PubMed  CAS  Google Scholar 

  • Elias PM, Feingold KR (2006) Skin barrier. Taylor & Francis, New York

    Google Scholar 

  • Enoch S, Leaper JD (2005) Basic science of wound healing. Surgery 23:37–42

    Article  Google Scholar 

  • Epstein HF (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  Google Scholar 

  • Estacion M (1991) Characterization of ion channels seen in subconfluent human dermal fibroblasts. J Physiol 436:579–601

    PubMed  CAS  Google Scholar 

  • Evans RJ, Jarvis MF, Kennedy C et al (2012) P2X receptors, introductory chapter. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=77. Accessed 20 July 2012

  • Fatherazi S, Presland RB, Belton CM et al (2007) Evidence that TRPC4 supports the calcium selective I(CRAC)-like current in human gingival keratinocytes. Pflugers Arch 453:879–889

    Article  PubMed  CAS  Google Scholar 

  • Faye T, Langsrud T, Nes IF et al (2000) Biochemical and genetic characterization of propionicin T1, a new bacteriocin from Propionibacterium thoenii. Appl Environ Microbiol 66:4230–4236

    Article  PubMed  CAS  Google Scholar 

  • Fernandes ES, Fernandes MA, Keeble JE (2012) The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 166(2):510–521

    Article  PubMed  CAS  Google Scholar 

  • Fischer J, Bouadjar B, Heilig R et al (2001) Mutations in the gene encoding SLURP-1 in Mal de Meleda. Hum Mol Genet 10:875–880

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Glanz D, William T et al (2004a) N-methyl-D-aspartate receptors influence the intracellular calcium concentration of keratinocytes. Exp Dermatol 13:512–519

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, William T, Helmbold P et al (2004b) Expression of epidermal N-methyl-D-aspartate receptors (NMDAR1) depends on formation of the granular layer – analysis in diseases with parakeratotic cornification. Arch Dermatol Res 296:157–162

    PubMed  CAS  Google Scholar 

  • Fischer M, Glanz D, Urbatzka M et al (2009) Keratinocytes: a source of the transmitter L-glutamate in the epidermis. Exp Dermatol 18:1064–1066

    Article  PubMed  Google Scholar 

  • Fluhr JW, Mao-Qiang M, Brown BE et al (2003) Glycerol regulates stratum corneum hydration in sebaceous gland deficient (asebia) mice. J Invest Dermatol 120:728–737

    Article  PubMed  CAS  Google Scholar 

  • Frigeri A, Gropper MA, Umenishi F et al (1995) Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci 108:2993–3002

    PubMed  CAS  Google Scholar 

  • Fuchs E, Horsley V (2008) More than one way to skin. Genes Dev 22:976–985

    Article  PubMed  CAS  Google Scholar 

  • Fuziwara S, Inoue K, Denda M (2003) NMDA-type glutamate receptor is associated with cutaneous barrier homeostasis. J Invest Dermatol 120:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Gallo RL, Huttner KM (1998) Antimicrobial peptides: an emerging concept in cutaneous biology. J Invest Dermatol 111(5):739–743

    Article  PubMed  CAS  Google Scholar 

  • Gallo RL, Nakatsuji T (2011) Microbial symbiosis with the innate immune defense system of the skin. J Invest Dermatol 131(10):1974–1980

    Article  PubMed  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2007) Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol 39:1358–1366

    Article  PubMed  CAS  Google Scholar 

  • Georgiou JG, Skarratt KK, Fuller SJ et al (2005) Human epidermal and monocyte-derived langerhans cells express functional P2X receptors. J Invest Dermatol 125(3):482–490

    Article  PubMed  CAS  Google Scholar 

  • Girardi M (2007) Cutaneous perspectives on adaptive immunity. Clin Rev Allergy Immunol 33:4–14

    Article  PubMed  CAS  Google Scholar 

  • Gorodeski GI (2009) P2X7-mediated chemoprevention of epithelial cancers. Expert Opin Ther Targets 13(11):1313–1332

    Article  PubMed  CAS  Google Scholar 

  • Grando SA, Kist DA, Qi M et al (1993) Human keratinocytes synthesize, secrete, and degrade acetylcholine. J Invest Dermatol 101:32–36

    Article  PubMed  CAS  Google Scholar 

  • Grando SA, Horton RM, Mauro TM et al (1996) Activation of keratinocyte nicotinic cholinergic receptors stimulates calcium influx and enhances cell differentiation. J Invest Dermatol 107:412–418

    Article  PubMed  CAS  Google Scholar 

  • Grando SA, Pittelkow MR, Schallreuter KU (2006) Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J Invest Dermatol 126:1948–1965

    Article  PubMed  CAS  Google Scholar 

  • Granstein RD, Ding W, Huang J et al (2005) Augmentation of cutaneous immune responses by ATP gamma S: purinergic agonists define a novel class of immunologic adjuvants. J Immunol 174(12):7725–7731

    PubMed  CAS  Google Scholar 

  • Greig AV, James SE, McGrouther DA et al (2003) Purinergic receptor expression in the regeneration epidermis in a rat model of normal and delayed wound healing. Exp Dermatol 12(6):860–871

    Article  PubMed  CAS  Google Scholar 

  • Greig AV, Cuthill S, Linge C et al (2006) P2X(5) and P2X(7) receptors in human warts and CIN-612 organotypic raft cultures of human papillomavirus infected keratinocytes. Purinergic Signal 2(3):509–515

    Article  PubMed  CAS  Google Scholar 

  • Guler AD, Lee H, Iida T et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    PubMed  CAS  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y et al (2008) Wound repair and regeneration. Nature 453:314–321

    Article  PubMed  CAS  Google Scholar 

  • Gutman GA, Chandy KG, Grissmer S et al (2012a) Voltage-gated potassium channels. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=81. Accessed 20 July 2012

  • Gutman GA, Aldrich R, Chandy KG et al (2012b) Calcium-activated potassium channels. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=69. Accessed 20 July 2012

  • Haass NK, Ripperger D, Wladykowski E et al (2010) Melanoma progression exhibits a significant impact on connexin expression patterns in the epidermal tumor microenvironment. Histochem Cell Biol 133:113–124

    Article  PubMed  CAS  Google Scholar 

  • Hagforsen E (2007) The cutaneous non-neuronal cholinergic system and smoking related dermatoses: studies of the psoriasis variant palmoplantar pustulosis. Life Sci 80(24–25):2227–2234

    Article  PubMed  CAS  Google Scholar 

  • Han D, Kim H-Y, Lee H-J et al (2007) Wound healing activity of gamma-aminobutyric acid (GABA) in rats. J Microbiol Biotechnol 17:1661–1669

    PubMed  CAS  Google Scholar 

  • Hana A, Booken D, Henrich C et al (2007) Functional significance of non-neuronal acetylcholine in skin epithelia. Life Sci 80:2214–2220

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Verkman AS (2003) Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc Natl Acad Sci USA 100:7360–7365

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Ma T, Verkman AS (2002) Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J Biol Chem 277:46616–46621

    Article  PubMed  CAS  Google Scholar 

  • Hara-Chikuma M, Verkman AS (2008a) Roles of Aquaporin-3 in the epidermis. J Invest Dermatol 128:2145–2151

    Article  PubMed  CAS  Google Scholar 

  • Hara-Chikuma M, Verkman A (2008b) Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med (Berl) 86:221–231

    Article  CAS  Google Scholar 

  • Hara-Chikuma M, Verkman AS (2008c) Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol Cell Biol 28:326–332

    Article  PubMed  CAS  Google Scholar 

  • Hara-Chikuma M, Sohara E, Rai T et al (2005) Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J Biol Chem 280:15493–15496

    Article  PubMed  CAS  Google Scholar 

  • Hara-Chikuma M, Takahashi K, Chikuma S et al (2009) The expression of differentiation markers in aquaporin-3 deficient epidermis. Arch Dermatol Res 301:245–252

    Article  PubMed  CAS  Google Scholar 

  • Hara-Chikuma M, Sugiyama Y, Kabashima K et al (2012) Involvement of aquaporin-7 in the cutaneous primary immune response through modulation of antigen uptake and migration in dendritic cells. FASEB J 26:211–218

    Article  PubMed  CAS  Google Scholar 

  • Henderson RM, Cuthbert AW (1991a) A high-conductance Ca(2+)-activated K+ channel in cultured human eccrine sweat gland cells. Pflugers Arch 418:271–275

    Article  PubMed  CAS  Google Scholar 

  • Henderson RM, Cuthbert AW (1991b) An outward-rectifying potassium channel in primary cultures of sweat glands from cystic fibrosis subjects. Biochim Biophys Acta 1097:219–223

    Article  PubMed  CAS  Google Scholar 

  • Hennings H, Michael D, Cheng C et al (1980) Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254

    Article  PubMed  CAS  Google Scholar 

  • Hibuse T, Maeda N, Funahashi T et al (2005) Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci USA 102:10993–10998

    Article  PubMed  CAS  Google Scholar 

  • Hodges GJ, Johnson JM (2009) Adrenergic control of the human cutaneous circulation. Appl Physiol Nutr Metab 34(5):829–839

    Article  PubMed  Google Scholar 

  • Hokazono H, Omori T, Ono K (2010) Effects of single and combined administration of fermented barley extract and gamma-aminobutyric acid on the development of atopic dermatitis in NC/Nga mice. Biosci Biotechnol Biochem 74:135–139

    Article  PubMed  CAS  Google Scholar 

  • Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43:143–201

    PubMed  CAS  Google Scholar 

  • Honda A, Tint GS, Salen G et al (1997) Sterol concentrations in cultured Smith–Lemli–Opitz syndrome skin fibroblasts: diagnosis of a biochemically atypical case of the syndrome. Am J Med Genet 68:282–287

    Article  PubMed  CAS  Google Scholar 

  • Hoogduijn MJ, Hitchcock IS, Smit NPM et al (2006) Glutamate receptors on human melanocytes regulate the expression of MiTF. Pigment Cell Res 19:58–67

    Article  PubMed  CAS  Google Scholar 

  • Horie I, Maeda M, Yokoyama S et al (2009) Tumor necrosis factor-alpha decreases aquaporin-3 expression in DJM-1 keratinocytes. Biochem Biophys Res Commun 387:564–568

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Ko WH, Chung YW et al (1999) Identification of calcium-activated potassium channels in cultured equine sweat gland epithelial cells. Exp Physiol 84:881–895

    Article  PubMed  CAS  Google Scholar 

  • Huang SM, Lee H, Chung MK et al (2008) Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 28:13727–13737

    Article  PubMed  CAS  Google Scholar 

  • Iizuka T, Suzuki T, Nakano K et al (2012) Immunolocalization of aquaporin-5 in normal human skin and hypohidrotic skin diseases. J Dermatol 39(4):344–349

    Article  PubMed  Google Scholar 

  • Imura K, Yoshioka T, Hikita I et al (2007) Influence of TRPV3 mutation on hair growth cycle in mice. Biochem Biophys Res Commun 363:479–483

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Koizumi S, Fuziwara S et al (2002) Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem Biophys Res Commun 291:124–129

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Denda M, Tozaki H et al (2005) Characterization of multiple P2X receptors in cultured normal human epidermal keratinocytes. J Invest Dermatol 124(4):756–763

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Tanaka K, Nishibe Y et al (2007) GABA-synthesizing enzyme, GAD67, from dermal fibroblasts: evidence for a new skin function. Biochim Biophys Acta 1770:291–296

    Article  PubMed  CAS  Google Scholar 

  • Jansen T, Altmeyer P, Plewig G (2001) Acne inversa (alias hidradenitis suppurativa). J Eur Acad Dermatol Venereol 15(6):532–540

    Article  PubMed  CAS  Google Scholar 

  • Jensen JM, Proksch E (2009) The skin’s barrier. G Ital Dermatol Venereol 144(6):689–700

    PubMed  CAS  Google Scholar 

  • Johnson JM (2010) Exercise in a hot environment: the skin circulation. Scand J Med Sci Sports 20(Suppl 3):29–39

    Article  PubMed  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH et al (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Kim S-H, Hwang E-M et al (2007) Expression of thermosensitive two-pore domain K+ channels in human keratinocytes cell line HaCaT cells. Exp Dermatol 16:1016–1022

    Article  PubMed  CAS  Google Scholar 

  • Kang M, Cho JH, Koo JK et al (2009) The expression of NMDA receptor 1 correlates with clinicopathological parameters in cutaneous squamous cell carcinoma. Ann Dermatol 21:382–388

    Article  PubMed  CAS  Google Scholar 

  • Karashima Y, Talavera K, Everaerts W et al (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci USA 106(4):1273–1278

    Article  PubMed  CAS  Google Scholar 

  • Katsuta Y, Iida T, Hasegawa K et al (2009) Function of oleic acid on epidermal barrier and calcium influx into keratinocytes is associated with N-methyl D-aspartate-type glutamate receptors. Br J Dermatol 160:69–74

    Article  PubMed  CAS  Google Scholar 

  • Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767

    PubMed  CAS  Google Scholar 

  • Khakh BS, Burnstock G, Kennedy C et al (2001) International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118

    PubMed  CAS  Google Scholar 

  • Kida N, Sokabe T, Kashio M et al (2011) Importance of transient receptor potential vanilloid 4 (TRPV4) in epidermal barrier function in human skin keratinocytes. Pflugers Arch 463:715–725

    Article  CAS  Google Scholar 

  • Kim SJ, Lee SA, Yun SJ et al (2006) Expression of vanilloid receptor 1 in cultured fibroblast. Exp Dermatol 15:362–367

    Article  PubMed  CAS  Google Scholar 

  • Knuever J, Poeggeler B, Gáspár E et al (2012) Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis. J Clin Endocr Metab 97(3):978–986

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Fukuoka T, Obata K et al (2005) Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 493:596–606

    Article  PubMed  CAS  Google Scholar 

  • Koegel H, Alzheimer C (2001) Expression and biological significance of Ca2+-activated ion channels in human keratinocytes. FASEB J 15:145–154

    Article  PubMed  CAS  Google Scholar 

  • Koh TJ, DiPietro LA (2011) Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 13:e23

    Article  PubMed  Google Scholar 

  • Kosztka L, Rusznák Z, Nagy D et al (2011) Inhibition of TASK-3 (KCNK9) channel biosynthesis changes cell morphology and decreases both DNA content and mitochondrial function of melanoma cells maintained in cell culture. Melanoma Res 21:308–322

    Article  PubMed  CAS  Google Scholar 

  • Kranich J, Maslowski KM, Mackay CR (2011) Commensal flora and the regulation of inflammatory and autoimmune responses. Semin Immunol 23(2):139–145

    Article  PubMed  CAS  Google Scholar 

  • Kupper TS, Fuhlbrigge RC (2004) Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 4:211–222

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa I, Danby FW, Ju Q et al (2009) New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol 18(10):821–832

    Article  PubMed  CAS  Google Scholar 

  • Kurzen H (2004) The extraneuronal cholinergic system of the skin. Basic facts and clinical relevance. Hautarzt 55:453–459

    Article  PubMed  CAS  Google Scholar 

  • Kurzen H, Schallreuter KU (2004) Novel aspects in cutaneous biology of acetylcholine synthesis and acetylcholine receptors. Exp Dermatol 13(Suppl 4):27–30

    Article  PubMed  CAS  Google Scholar 

  • Kurzen H, Berger H, Jäger C et al (2004) Phenotypical and molecular profiling of the extraneuronal cholinergic system of the skin. J Invest Dermatol 123:937–949

    Article  PubMed  CAS  Google Scholar 

  • Kurzen H, Berger H, Jäger C et al (2005) Alpha 9 acetylcholine receptors are essential for epidermal differentiation. Exp Dermatol 14:155

    Article  Google Scholar 

  • Kurzen H, Wessler I, Kirkpatrick CJ et al (2007) The non-neuronal cholinergic system of human skin. Horm Metab Res 39:125–135

    Article  PubMed  CAS  Google Scholar 

  • Lademann J, Richter H, Schanzer S et al (2011) Penetration and storage of particles in human skin: perspectives and safety aspects. Eur J Pharm Biopharm 77(3):465–468

    Article  PubMed  CAS  Google Scholar 

  • Lansdown AB (2002) Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen 10:271–285

    Article  PubMed  Google Scholar 

  • Lau K, Paus R, Tiede S et al (2009) Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol 18:921–933

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Caterina MJ (2005) TRPV channels as thermosensory receptors in epithelial cells. Pflugers Arch 451:160–167

    Article  PubMed  CAS  Google Scholar 

  • Lee JR, White TW (2009) Connexin-26 mutations in deafness and skin disease. Expert Rev Mol Med 11:e35

    Article  PubMed  Google Scholar 

  • Lee SH, Elias PM, Proksch E et al (1991) Calcium and potassium are important regulators of barrier homeostasis in murine epidermis. J Clin Invest 89:530–538

    Article  Google Scholar 

  • Lee H, Iida T, Mizuno A et al (2005) Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J Neurosci 25:1304–1310

    Article  PubMed  CAS  Google Scholar 

  • Lee YM, Li WH, Kim YK et al (2008) Heat-induced MMP-1 expression is mediated by TRPV1 through PKCalpha signaling in HaCaT cells. Exp Dermatol 17:864–870

    Article  PubMed  CAS  Google Scholar 

  • Lee YM, Kim YK, Chung JH (2009a) Increased expression of TRPV1 channel in intrinsically aged and photoaged human skin in vivo. Exp Dermatol 18:431–436

    Article  PubMed  CAS  Google Scholar 

  • Lee YM, Kim YK, Kim KH et al (2009b) A novel role for the TRPV1 channel in UV-induced matrix metalloproteinase (MMP)-1 expression in HaCaT cells. J Cell Physiol 219:766–775

    Article  PubMed  CAS  Google Scholar 

  • Lee YM, Kang SM, Lee SR et al (2011) Inhibitory effects of TRPV1 blocker on UV-induced responses in the hairless mice. Arch Dermatol Res 303:727–736

    Article  PubMed  CAS  Google Scholar 

  • Lee YM, Kang SM, Chung JH (2012) The role of TRPV1 channel in aged human skin. J Dermatol Sci 65:81–85

    Article  PubMed  CAS  Google Scholar 

  • Lehen’kyi V, Beck B, Polakowska R et al (2007) TRPV6 is a Ca2+ entry channel essential for Ca2+−induced differentiation of human keratinocytes. J Biol Chem 282:22582–22591

    Article  PubMed  CAS  Google Scholar 

  • Lehen’kyi V, Vandenberghe M, Belaubre F et al (2011) Acceleration of keratinocyte differentiation by transient receptor potential vanilloid (TRPV6) channel activation. J Eur Acad Dermatol Venereol 25(Suppl 1):12–18

    Article  PubMed  Google Scholar 

  • Lei X, Wu J, Lu Y et al (2008) Effects of acetylcholine chloride on intracellular calcium concentration of cultured sweat gland epithelial cells. Arch Dermatol Res 300(7):335–341

    Article  PubMed  CAS  Google Scholar 

  • Lepple-Wienhues A, Berweck S, Böhmig M et al (1996) K+ channels and the intracellular calcium signal in human melanoma cell proliferation. J Membr Biol 151:149–157

    Article  PubMed  CAS  Google Scholar 

  • Leuner K, Kraus M, Woelfle U et al (2011) Reduced TRPC channel expression in psoriatic keratinocytes is associated with impaired differentiation and enhanced proliferation. PLoS One 6:e14716

    Article  PubMed  CAS  Google Scholar 

  • Li WH, Lee YM, Kim JY et al (2007) Transient receptor potential vanilloid-1 mediates heat-shock-induced matrix metalloproteinase-1 expression in human epidermal keratinocytes. J Invest Dermatol 127:2328–2335

    Article  PubMed  CAS  Google Scholar 

  • Li J, Tang H, Hu X et al (2010) Aquaporin-3 gene and protein expression in sun-protected human skin decreases with skin ageing. Australas J Dermatol 51:106–112

    Article  PubMed  Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom MA et al (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    Article  PubMed  CAS  Google Scholar 

  • Lim I, Yun J, Kim S et al (2005) Nitric oxide stimulates a large-conductance Ca-activated K+ channel in human skin fibroblasts through protein kinase G pathway. Skin Pharmacol Physiol 18:279–287

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Chen Q, Lee M et al (2012) Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet 90:558–564

    Article  PubMed  CAS  Google Scholar 

  • Littman DR, Pamer EG (2011) Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10(4):311–323

    Article  PubMed  CAS  Google Scholar 

  • Longmore J, Bradshaw CM, Szabadi E (1985) Effects of locally and systemically administered cholinoceptor antagonists on the secretory response of human eccrine sweat glands to carbachol. Br J Clin Pharmacol 20(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Slominski A, Yang SE et al (2010) The correlation of TRPM1 (Melastatin) mRNA expression with microphthalmia-associated transcription factor (MITF) and other melanogenesis-related proteins in normal and pathological skin, hair follicles and melanocytic nevi. J Cutan Pathol 37(Suppl 1):26–40

    Article  PubMed  Google Scholar 

  • Lucke T, Choudhry R, Thom R et al (1999) Upregulation of connexin 26 is a feature of keratinocyte differentiation in hyperproliferative epidermis, vaginal epithelium, and buccal epithelium. J Invest Dermatol 112:354–361

    Article  PubMed  CAS  Google Scholar 

  • Luger TA (2002) Neuromediators – a crucial component of the skin immune system. J Dermatol Sci 30:87–93

    Article  PubMed  CAS  Google Scholar 

  • Lummis SCR, Barnes NM, Hales TG et al (2012) 5-HT3 receptors, introductory chapter. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=68. Accessed 20 July 2012

  • Lundeberg L, El-Nour H, Mohabbati S et al (2002) Expression of serotonin receptors in allergic contact eczematous human skin. Arch Dermatol Res 294:393–398

    PubMed  CAS  Google Scholar 

  • Lynch JW (2012) Glycine receptors, introductory chapter. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=73. Accessed 20 July 2012

  • Ma T, Hara M, Sougrat R et al (2002) Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J Biol Chem 277:17147–17153

    Article  PubMed  CAS  Google Scholar 

  • Maass K, Ghanem A, Kim J-S et al (2004) Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin43. Mol Biol Cell 15:4597–4608

    Article  PubMed  CAS  Google Scholar 

  • Madison KC (2003) Barrier function of the skin: “la raison d’être” of the epidermis. J Invest Dermatol 121(2):231–241

    Article  PubMed  CAS  Google Scholar 

  • Mahapatra NR, O’Connor DT, Vaingankar SM et al (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115(7):1942–1952

    Article  PubMed  CAS  Google Scholar 

  • Manaves V, Qin W, Bauer AL et al (2004) Calcium and Vitamin D increase mRNA levels for the growth control hIK1 channel in human epidermal keratinocytes but functional channels are not observed. BMC Dermatol 4:7

    Article  PubMed  CAS  Google Scholar 

  • Mandadi S, Sokabe T, Shibasaki K et al (2009) TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch 458:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Marchini G, Ståbi B, Kankes K et al (2003) AQP1 and AQP3, psoriasin, and nitric oxide synthases 1–3 are inflammatory mediators in erythema toxicum neonatorum. Pediatr Dermatol 20:377–384

    Article  PubMed  Google Scholar 

  • Matsuzaki T, Suzuki T, Koyama H et al (1999) Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. J Histochem Cytochem 47:1275–1286

    Article  PubMed  CAS  Google Scholar 

  • Mauro T, Dixon DB, Komuves L et al (1997) Keratinocyte K+ channels mediate Ca2+−induced differentiation. J Invest Dermatol 108:864–870

    Article  PubMed  CAS  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  • McKenzie RC, Oda Y, Szepietowski JC et al (2003) Defective cyclic guanosine monophosphate-gated calcium channels and the pathogenesis of psoriasis. Acta Derm Venereol 83:414–418

    Article  PubMed  CAS  Google Scholar 

  • McNamara CR, Mandel-Brehm J, Bautista DM et al (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA 104:13525–13530

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe MJ, Baker DM, Burnstock G (2006) Purinoceptor expression on keratinocytes reflects their function on the epidermis during chronic venous insufficiency. Arch Dermatol Res 298(6):301–307

    Article  PubMed  CAS  Google Scholar 

  • Miescher S, Stierli MP, Teuber M et al (2000) Propionicin SM1, a bacteriocin from Propionibacterium jensenii DF1: isolation and characterization of the protein and its gene. Syst Appl Microbiol 23:174–184

    Article  PubMed  CAS  Google Scholar 

  • Millar NS, Gotti C, Marks MJ et al (2012) Nicotinic acetylcholine receptors, introductory chapter. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=76. Accessed 20 July 2012

  • Miller LS (2008) Toll-like receptors in skin. Adv Dermatol 24:71–87

    Article  PubMed  Google Scholar 

  • Miller AJ, Du J, Rowan S et al (2004) Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma. Cancer Res 64:509–516

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto T, Petrus MJ, Dubin AE et al (2011) TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat Commun 2:369

    Article  PubMed  CAS  Google Scholar 

  • Moqrich A, Hwang SW, Earley TJ et al (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472

    Article  PubMed  CAS  Google Scholar 

  • Moran MM, McAlexander MA, Bíró T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nature Rev Drug Discov 10(8):601–620

    Article  CAS  Google Scholar 

  • Morhenn VB, Waleh NS, Mansbridge JN et al (1994) Evidence for an NMDA receptor subunit in human keratinocytes and rat cardiocytes. Eur J Pharmacol 268:409–414

    Article  PubMed  CAS  Google Scholar 

  • Muchekehu RW, Harvey BJ (2009) Estradiol rapidly induces the translocation and activation of the intermediate conductance calcium activated potassium channel in human eccrine sweat gland cells. Steroids 74:212–217

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Essin K, Hill K et al (2008) Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation. J Biol Chem 283:33942–33954

    Article  PubMed  CAS  Google Scholar 

  • Nahm WK, Philpot BD, Adams MM et al (2004) Significance of N-methyl-D-aspartate (NMDA) receptor-mediated signaling in human keratinocytes. J Cell Physiol 200:309–317

    Article  PubMed  CAS  Google Scholar 

  • Nakahigashi K, Kabashima K, Ikoma A et al (2011) Upregulation of aquaporin-3 is involved in keratinocyte proliferation and epidermal hyperplasia. J Invest Dermatol 131:865–873

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K (2011) Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 301(5):R1207–R1228

    Article  PubMed  CAS  Google Scholar 

  • Nameda Y, Miyoshi H, Tsuchiya K et al (1996) Endotoxin-induced L-arginine pathway produces nitric oxide and modulates the Ca2+−activated K+ channel in cultured human dermal papilla cells. J Invest Dermatol 106:342–345

    Article  PubMed  CAS  Google Scholar 

  • Nejsum LN, Kwon T-H, Jensen UB et al (2002) Functional requirement of aquaporin-5 in plasma membranes of sweat glands. Proc Natl Acad Sci USA 99:511–516

    Article  PubMed  CAS  Google Scholar 

  • Nestle FO, Di MP, Qin JZ et al (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9:679–691

    PubMed  CAS  Google Scholar 

  • Nguyen VH, Markwardt F (2002) A large conductance [Ca(2+)](i)-independent K(+) channel expressed in HaCaT keratinocytes. Exp Dermatol 11:319–326

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VT, Ndoye A, Grando SA (2000) Novel human alpha9 acetylcholine receptor regulating keratinocyte adhesion is targeted by Pemphigus vulgaris autoimmunity. Am J Pathol 157:1377–1391

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VT, Ndoye A, Hall LL et al (2001) Programmed cell death of keratinocytes culminates in apoptotic secretion of a humectant upon secretagogue action of acetylcholine. J Cell Sci 114:1189–1204

    PubMed  CAS  Google Scholar 

  • Nguyen VT, Chernyavsky AI, Arredondo J et al (2004) Synergistic control of keratinocyte adhesion through muscarinic and nicotinic acetylcholine receptor subtypes. Exp Cell Res 294:534–549

    Article  PubMed  CAS  Google Scholar 

  • Nigam R, El-Nour H, Amatya B et al (2010) GABA and GABA(A) receptor expression on immune cells in psoriasis: a pathophysiological role. Arch Dermatol Res 302:507–515

    Article  PubMed  CAS  Google Scholar 

  • Nijnik A, Pistolic J, Filewod NC et al (2012) Signaling pathways mediating chemokine induction in keratinocytes by cathelicidin LL-37 and flagellin. J Innate Immun 4(4):377–386

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Mahieu F (2006) A road map for TR(I)Ps. Mol Cell 22:297–307

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G (2010) Transient receptor potential channelopathies. Pflugers Arch 460(2):437–450

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G, Voets T et al (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  PubMed  CAS  Google Scholar 

  • Niyonsaba F, Nagaoka I, Ogawa H et al (2009) Multifunctional antimicrobial proteins and peptides: natural activators of immune systems. Curr Pharm Des 15(21):2393–2413

    Article  PubMed  CAS  Google Scholar 

  • Nordlind K, Thorslund K, Lonne-Rahm S et al (2006) Expression of serotonergic receptors in psoriatic skin. Arch Dermatol Res 298:99–106

    Article  PubMed  CAS  Google Scholar 

  • Oancea E, Vriens J, Brauchi S et al (2009) TRPM1 forms ion channels associated with melanin content in melanocytes. Sci Signal 2(70):ra21

    Article  PubMed  CAS  Google Scholar 

  • Oláh A, Tóth BI, Czifra G et al (2009) Cannabidiol inhibits lipid synthesis in human sebaceous gland-derived sebocytes – is cannabidiol a novel anti-acne agent? J Invest Dermatol 129 suppl. S58

    Google Scholar 

  • Oláh A, Tóth BI, Szöllősi AG et al (2010) Endo- and phytocannabinoids differentially regulate biology of human epithelial skin cells. J Invest Dermatol 130 suppl. S107

    Google Scholar 

  • Olsen RW, Sieghart W (2008) International union of pharmacology. LXX. Subtypes of γ-aminobutyric acidA receptors: Classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Reviews 60(3):243–260

    Article  CAS  Google Scholar 

  • Olsen R, Peters JA, Hales TG et al (2012) GABAA receptors, introductory chapter. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=72. Accessed 20 July 2012

  • Olsson M, Broberg A, Jernås M et al (2006) Increased expression of aquaporin 3 in atopic eczema. Allergy 61:1132–1137

    Article  PubMed  CAS  Google Scholar 

  • Orfanelli U, Wenke AK, Doglioni C et al (2008) Identification of novel sense and antisense transcription at the TRPM2 locus in cancer. Cell Res 18:1128–1140

    Article  PubMed  CAS  Google Scholar 

  • Ozbun MA (2002) Infectious human papillomavirus type 31b: purification and infection of an immortalized human keratinocyte cell line. J Gen Virol 83:2753–2763

    PubMed  CAS  Google Scholar 

  • Panchin Y, Kelmanson I, Matz M et al (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10:R473–R474

    Article  PubMed  CAS  Google Scholar 

  • Pani B, Cornatzer E, Cornatzer W et al (2006) Up-regulation of transient receptor potential canonical 1 (TRPC1) following sarco(endo)plasmic reticulum Ca2+ ATPase 2 gene silencing promotes cell survival: a potential role for TRPC1 in Darier’s disease. Mol Biol Cell 17:4446–4458

    Article  PubMed  CAS  Google Scholar 

  • Pastore S, Mascia F, Gulinelli S et al (2007) Stimulation of purinergic receptors modulates chemokine expression in human keratinocytes. J Invest Dermatol 127(3):660–667

    Article  PubMed  CAS  Google Scholar 

  • Paus R, Schmelz M, Bíró T et al (2006a) Frontiers in pruritus research: scratching the brain for more effective itch therapy. J Clin Invest 116:1174–1186

    Article  PubMed  CAS  Google Scholar 

  • Paus R, Theoharides TC, Arck PC (2006b) Neuroimmunoendocrine circuitry of the ‘brain-skin connection’. Trends Immunol 27:32–39

    Article  PubMed  CAS  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC et al (2002a) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  PubMed  CAS  Google Scholar 

  • Peier AM, Reeve AJ, Andersson DA et al (2002b) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049

    Article  PubMed  CAS  Google Scholar 

  • Penuela S, Bhalla R, Gong X-Q et al (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120:3772–3783

    Article  PubMed  CAS  Google Scholar 

  • Penuela S, Gehi R, Laird DW (2012a) The biochemistry and function of pannexin channels. Biochim Biophys Acta [Epub ahead of print] DOI:http://dx.doi.org/10.1016/j.bbamem.2012.01.017

  • Penuela S, Gyenis L, Ablack A et al (2012b) Loss of pannexin 1 attenuates melanoma progression by reversion to a melanocytic phenotype. J Biol Chem 287:29184–29193

    Article  PubMed  CAS  Google Scholar 

  • Peters EM, Liotiri S, Bodó E et al (2007) Probing the effects of stress mediators on the human hair follicle: substance P holds central position. Am J Pathol 171:1872–1886

    Article  PubMed  CAS  Google Scholar 

  • Peters JA, Peineau S, Collingridge GL et al (2012) Ionotropic glutamate receptors, introductory chapter. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=75. Accessed 20 July 2012

  • Pinkus H (1951) Examination of the epidermis by the strip method of removing horny layers. I. Observations on thickness of the horny layer, and on mitotic activity after stripping. J Invest Dermatol 16:383–386

    PubMed  CAS  Google Scholar 

  • Pitoni S, Sinclair HL, Andrews PJ (2011) Aspects of thermoregulation physiology. Curr Opin Crit Care 17(2):115–121

    Article  PubMed  Google Scholar 

  • Pivarcsi A, Bodai L, Réthi B et al (2003) Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 15(6):721–730

    Article  PubMed  CAS  Google Scholar 

  • Pivarcsi A, Kemény L, Dobozy A (2004) Innate immune functions of the keratinocytes. A review. Acta Microbiol Immunol Hung 51(3):303–310

    Article  PubMed  CAS  Google Scholar 

  • Plant LD, Bayliss DA, Kim D et al (2012) Two-P potassium channels. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=79. Accessed 20 July 2012

  • Poeggeler B, Knuever J, Gáspár E et al (2010) Thyrotropin powers human mitochondria. FASEB J 24(5):1525–1531

    Article  PubMed  CAS  Google Scholar 

  • Prevarskaya N, Zhang L, Barritt G (2007) TRP channels in cancer. Biochim Biophys Acta 1772:937–946

    Article  PubMed  CAS  Google Scholar 

  • Proksch E, Brandner JM, Jensen J-M (2008) The skin: an indispensable barrier. Exp Dermatol 17:1063–1072

    Article  PubMed  Google Scholar 

  • Qin H, Zheng X, Zhong X et al (2011) Aquaporin-3 in keratinocytes and skin: its role and interaction with phospholipase D2. Arch Biochem Biophys 508:138–143

    Article  PubMed  CAS  Google Scholar 

  • Quinton PM (2007) Cystic fibrosis: lessons from the sweat gland. Physiology (Bethesda) 22:212–225

    Article  CAS  Google Scholar 

  • Radek KA, Elias PM, Taupenot L et al (2010) Neuroendocrine nicotinic receptor activation increases susceptibility to bacterial infections by suppressing antimicrobial peptide production. Cell Host Microbe 7:277–289

    Article  PubMed  CAS  Google Scholar 

  • Radtke C, Sinis N, Sauter M et al (2011) TRPV channel expression in human skin and possible role in thermally induced cell death. J Burn Care Res 32:150–159

    Article  PubMed  Google Scholar 

  • Ramot Y, Zhang G, Bíró T et al (2011) TSH is a novel neuroendocrine regulator of selected keratins in the human hair follicle. J Dermatol Sci 64(1):67–70

    Article  PubMed  CAS  Google Scholar 

  • Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  PubMed  CAS  Google Scholar 

  • Rawlings AV (2010) Recent advances in skin ‘barrier’ research. J Pharm Pharmacol 62(6):671–677

    PubMed  CAS  Google Scholar 

  • Reinke JM, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49:35–43

    Article  PubMed  CAS  Google Scholar 

  • Ren G, Jacob RF, Kaulin Y et al (2011) Alterations in membrane caveolae and BKCa channel activity in skin fibroblasts in Smith-Lemli-Opitz syndrome. Mol Genet Metab 104:346–355

    Article  PubMed  CAS  Google Scholar 

  • Rioux KP, Fedorak RN (2006) Probiotics in the treatment of inflammatory bowel disease. J Clin Gastroenterol 40(3):260–263

    Article  PubMed  Google Scholar 

  • Roh S, Choi S, Lim I (2007) Involvement of protein kinase A in nitric oxide stimulating effect on a BK(Ca) channel of human dermal fibroblasts. J Invest Dermatol 127:2533–2538

    Article  PubMed  CAS  Google Scholar 

  • Rojek AM, Skowronski MT, Füchtbauer EM et al (2007) Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci USA 104:3609–3614

    Article  PubMed  CAS  Google Scholar 

  • Roosterman D, Goerge T, Schneider SW et al (2006) Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 86:1309–1379

    Article  PubMed  CAS  Google Scholar 

  • Rothberg K, Heuser J, Donzell W et al (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  • Rusznák Z, Bakondi G, Kosztka L et al (2008) Mitochondrial expression of the two-pore domain TASK-3 channels in malignantly transformed and non-malignant human cells. Virchows Arch 452:415–426

    Article  PubMed  CAS  Google Scholar 

  • Samarasinghe V, Madan V (2012) Nonmelanoma skin cancer. J Cutan Aesthet Surg 5(1):3–10

    Article  PubMed  Google Scholar 

  • Sanchez AM, Sanchez MG, Malagarie-Cazenave S et al (2006) Induction of apoptosis in prostate tumor PC-3 cells and inhibition of xenograft prostate tumor growth by the vanilloid capsaicin. Apoptosis 11:89–99

    Article  PubMed  CAS  Google Scholar 

  • Schäfer T, Nienhaus A, Vieluf D et al (2001) Epidemiology of acne in the general population: the risk of smoking. Br J Dermatol 145:100–104

    Article  PubMed  Google Scholar 

  • Schmidt J, Friebel K, Schönherr R et al (2010) Migration-associated secretion of melanoma inhibitory activity at the cell rear is supported by KCa3.1 potassium channels. Cell Res 20:1224–1238

    Article  PubMed  CAS  Google Scholar 

  • Schmuth M, Watson RE, Deplewski D et al (2007) Nuclear hormone receptors in human skin. Horm Metab Res 39:96–105

    Article  PubMed  CAS  Google Scholar 

  • Seiffert K, Ding W, Wagner JA, Granstein RD (2006) ATPgammaS enhances the production of inflammatory mediators by a human dermal endothelial cell line via purinergic receptor signaling. J Invest Dermatol 126(5):1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Shaker O, Abdel-Halim M (2012) Connexin 26 in psoriatic skin before and after two conventional therapeutic modalities: methotrexate and PUVA. Eur J Dermatol 22(2):218–224

    PubMed  CAS  Google Scholar 

  • Shanmugam MK, Nguyen AH, Kumar AP et al (2012) Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: potential role in prevention and therapy of cancer. Cancer Lett 320:158–170

    Article  PubMed  CAS  Google Scholar 

  • Shi HP, Most D, Efron DT et al (2003) Supplemental L-arginine enhances wound healing in diabetic rats. Wound Repair Regen 11:198–203

    Article  PubMed  Google Scholar 

  • Silva CR, Oliveira SM, Rossato MF et al (2011) The involvement of TRPA1 channel activation in the inflammatory response evoked by topical application of cinnamaldehyde to mice. Life Sci 88(25–26):1077–1087

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  • Slater M, Scolyer RA, Gidley-Baird A et al (2003) Increased expression of apoptotic markers in melanoma. Melanoma Res 13(2):137–145

    Article  PubMed  CAS  Google Scholar 

  • Slominski A (2008) Cooling skin cancer: menthol inhibits melanoma growth. Focus on “TRPM8 activation suppresses cellular viability in human melanoma”. Am J Physiol Cell Physiol 295:C293–C295

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Wortsman J, Paus R et al (2008) Skin as an endocrine organ: implications for its function. Drug Discov Today Dis Mech 5:137–144

    Article  PubMed  Google Scholar 

  • Smith EW, Smith KA, Maibach HI et al (1992) The local side effects of transdermally absorbed nicotine. Skin Pharmacol 5(2):69–76

    Article  PubMed  CAS  Google Scholar 

  • Smith GD, Gunthorpe MJ, Kelsell RE et al (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–190

    Article  PubMed  CAS  Google Scholar 

  • Sokabe T, Tominaga M (2010) The TRPV4 cation channel: a molecule linking skin temperature and barrier function. Commun Integr Biol 3:619–621

    Article  PubMed  Google Scholar 

  • Sokabe T, Fukumi-Tominaga T, Yonemura S et al (2010) The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem 285:18749–18758

    Article  PubMed  CAS  Google Scholar 

  • Solini A, Chiozzi P, Morelli A et al (1999) Human primary fibroblasts in vitro express a purinergic P2X7 receptor coupled to ion fluxes, microvesicle formation and IL-6 release. J Cell Sci 112(Pt 3):297–305

    PubMed  CAS  Google Scholar 

  • Solini A, Chiozzi P, Morelli A et al (2004) Enhanced P2X7 activity in human fibroblasts from diabetic patients: a possiblepathogenetic mechanism for vascular damage in diabetes. Arterioscler Thromb Vasc Biol 24(7):1240–1245

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Sonawane N, Verkman AS (2002) Localization of aquaporin-5 in sweat glands and functional analysis using knockout mice. J Physiol (Lond) 541:561–568

    Article  CAS  Google Scholar 

  • Sørensen JB, Nielsen MS, Gudme CN et al (2001) Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion. Pflugers Arch 442:1–11

    Article  PubMed  CAS  Google Scholar 

  • Sosinsky GE, Boassa D, Dermietzel R et al (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5:193–197

    Article  CAS  Google Scholar 

  • Sougrat R, Morand M, Gondran C et al (2002) Functional expression of AQP3 in human skin epidermis and reconstructed epidermis. J Invest Dermatol 118:678–685

    Article  PubMed  CAS  Google Scholar 

  • Southall MD, Li T, Gharibova LS et al (2003) Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 304:217–222

    Article  PubMed  CAS  Google Scholar 

  • Stander S, Luger T, Metze D (2001) Treatment of prurigo nodularis with topical capsaicin. J Am Acad Dermatol 44:471–478

    Article  PubMed  CAS  Google Scholar 

  • Stander S, Moormann C, Schumacher M et al (2004) Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol 13:129–139

    Article  PubMed  Google Scholar 

  • Story GM, Peier AM, Reeve AJ et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  PubMed  CAS  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K et al (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  PubMed  CAS  Google Scholar 

  • Suárez-Fariñas M, Fuentes-Duculan J, Lowes MA et al (2011) Resolved psoriasis lesions retain expression of a subset of disease-related genes. J Invest Dermatol 131:391–400

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama Y, Ota Y, Hara M et al (2001) Osmotic stress upregulates aquaporin-3 gene expression in cultured human keratinocytes. Biochim Biophys Acta 1522:82–88

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Watanabe Y, Oyama Y et al (2003) Localization of mechanosensitive channel TRPV4 in mouse skin. Neurosci Lett 353:189–192

    Article  PubMed  CAS  Google Scholar 

  • Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    PubMed  CAS  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  PubMed  CAS  Google Scholar 

  • Talavera K, Gees M, Karashima Y et al (2009) Nicotine activates the chemosensory cation channel TRPA1. Nat Neurosci 12:1293–1299

    Article  PubMed  CAS  Google Scholar 

  • Terhorst D, Kalali BN, Ollert M et al (2010) The role of toll-like receptors in host defenses and their relevance to dermatologic diseases. Am J Clin Dermatol 11(1):1–10

    Article  PubMed  Google Scholar 

  • Tiede S, Kloepper JE, Bodó E et al (2007) Hair follicle stem cells: walking the maze. Eur J Cell Biol 86:355–376

    Article  PubMed  CAS  Google Scholar 

  • Tint GS, Irons M, Elias ER et al (1994) Defective cholesterol biosynthesis associated with the Smith–Lemli–Opitz syndrome. N Engl J Med 330:107–113

    Article  PubMed  CAS  Google Scholar 

  • Todaka H, Taniguchi J, Satoh J et al (2004) Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem 279:35133–35138

    Article  PubMed  CAS  Google Scholar 

  • Tóth BI, Benkő S, Szöllősi AG et al (2009a) Transient receptor potential vanilloid-1 signaling inhibits differentiation and activation of human dendritic cells. FEBS Lett 583:1619–1624

    Article  PubMed  CAS  Google Scholar 

  • Tóth BI, Géczy T, Griger Z et al (2009b) Transient receptor potential vanilloid-1 signaling as a regulator of human sebocyte biology. J Invest Dermatol 129:329–339

    Article  PubMed  CAS  Google Scholar 

  • Tóth BI, Dobrosi N, Dajnoki A et al (2011a) Endocannabinoids modulate human epidermal keratinocyte proliferation and survival via the sequential engagement of cannabinoid receptor-1 and transient receptor potential vanilloid-1. J Invest Dermatol 131:1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Tóth BI, Oláh A, Szöllősi AG et al (2011b) “Sebocytes’ makeup”: novel mechanisms and concepts in the physiology of the human sebaceous glands. Pflüg Arch Eur J Phy 461(6):593–606

    Article  CAS  Google Scholar 

  • Tran JN, Pupovac A, Taylor RM et al (2010) Murine epidermal Langerhans cells and keratinocytes express functional P2X7 receptors. Exp Dermatol 19(8):e151–e157

    Article  PubMed  Google Scholar 

  • Tremante E, Ginebri A, Lo Monaco E et al (2012) Melanoma molecular classes and prognosis in the postgenomic era. Lancet Oncol 13(5):e205–e211

    Article  PubMed  CAS  Google Scholar 

  • Tsavaler L, Shapero MH, Morkowski S et al (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61:3760–3769

    PubMed  CAS  Google Scholar 

  • Tsutsumi M, Denda S, Ikeyama K et al (2010) Exposure to low temperature induces elevation of intracellular calcium in cultured human keratinocytes. J Invest Dermatol 130:1945–1948

    Article  PubMed  CAS  Google Scholar 

  • Vriens J, Nilius B, Vennekens R (2008) Herbal compounds and toxins modulating TRP channels. Curr Neuropharmacol 6(1):79–96

    Article  PubMed  CAS  Google Scholar 

  • Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75:1262–1279

    Article  PubMed  CAS  Google Scholar 

  • Wang CM, Lincoln J, Cook JE et al (2007) Abnormal connexin expression underlies delayed wound healing in diabetic skin. Diabetes 56:2809–2817

    Article  PubMed  CAS  Google Scholar 

  • Wassif CA, Vied D, Tsokos M (2002) Cholesterol storage defect in RSH/Smith–Lemli–Opitz syndrome fibroblasts. Mol Genet Metab 75:325–334

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Vriens J, Suh SH et al (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–47051

    Article  PubMed  CAS  Google Scholar 

  • Weber FC, Esser PR, Müller T et al (2010) Lack of the purinergic receptor P2X(7) results in resistance to contact hypersensitivity. J Exp Med 207(12):2609–2619

    Article  PubMed  CAS  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    PubMed  CAS  Google Scholar 

  • Wessler I, Reinheimer T, Kilbinger H et al (2003) Increased acetylcholine levels in skin biopsies of patients with atopic dermatitis. Life Sci 72:2169–2172

    Article  PubMed  CAS  Google Scholar 

  • Wissenbach U, Bodding M, Freichel M et al (2000) Trp12, a novel Trp related protein from kidney. FEBS Lett 485:127–134

    Article  PubMed  CAS  Google Scholar 

  • Woelfle U, Laszczyk MN, Kraus M et al (2010) Triterpenes promote keratinocyte differentiation in vitro, ex vivo and in vivo: a role for the transient receptor potential canonical (subtype) 6. J Invest Dermatol 130:113–123

    Article  PubMed  CAS  Google Scholar 

  • Wood LC, Elias PM, Calhoun C et al (1996) Barrier disruption stimulates interleukin-1 alpha expression and release from a pre-formed pool in murine epidermis. J Invest Dermatol 106:397–403

    Article  PubMed  CAS  Google Scholar 

  • Xiao R, Tian J, Tang J et al (2008) The TRPV3 mutation associated with the hairless phenotype in rodents is constitutively active. Cell Calcium 43:334–343

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Nicholson BJ (2012) The role of connexins in ear and skin physiology – functional insights from disease-associated mutations. Biochim Biophys Acta [Epub ahead of print] DOI:http://dx.doi.org/10.1016/j.bbamem.2012.06.024

  • Xu H, Ramsey IS, Kotecha SA et al (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Delling M, Jun JC et al (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9:628–635

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Korenaga R, Kamiya A et al (2000) P2X(4) receptors mediate ATP-induced calcium influx in human vascular endothelial cell. Am J Physiol Heart Circ Physiol 279(1):H285–H292

    PubMed  CAS  Google Scholar 

  • Yamamura H, Ugawa S, Ueda T et al (2008a) TRPM8 activation suppresses cellular viability in human melanoma. Am J Physiol Cell Physiol 295:C296–C301

    Article  PubMed  CAS  Google Scholar 

  • Yamamura H, Ugawa S, Ueda T et al (2008b) Epithelial Na+ channel delta subunit mediates acid-induced ATP release in the human skin. Biochem Biophys Res Commun 373:155–158

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka T, Imura K, Asakawa M et al (2009) Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J Invest Dermatol 129:714–722

    Article  PubMed  CAS  Google Scholar 

  • Yun J, Park H, Ko J-H et al (2010) Expression of Ca2+−activated K+ channels in human dermal fibroblasts and their roles in apoptosis. Skin Pharmacol Physiol 23:91–104

    Article  PubMed  CAS  Google Scholar 

  • Yun JW, Seo JA, Jang WH et al (2011) Antipruritic effects of TRPV1 antagonist in murine atopic dermatitis and itching models. J Invest Dermatol 131:1576–1579

    Article  PubMed  CAS  Google Scholar 

  • Zhao P, Barr TP, Hou Q et al (2008) Voltage-gated sodium channel expression in rat and human epidermal keratinocytes: evidence for a role in pain. Pain 139:90–105

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Bollag WB (2003) Aquaporin 3 colocates with phospholipase D2 in caveolin-rich membrane microdomains and is downregulated upon keratinocyte differentiation. J Invest Dermatol 121:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Zhiqi S, Soltani MH, Bhat KM et al (2004) Human melastatin 1 (TRPM1) is regulated by MITF and produces multiple polypeptide isoforms in melanocytes and melanoma. Melanoma Res 14:509–516

    Article  PubMed  CAS  Google Scholar 

  • Zironi I, Gaibani P, Remondini D et al (2010) Molecular remodeling of potassium channels in fibroblasts from centenarians: a marker of longevity? Mech Ageing Dev 131:674–681

    Article  PubMed  CAS  Google Scholar 

  • Zouboulis CC, Seltmann H, Neitzel H et al (1999) Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95). J Invest Dermatol 113:1011–1020

    Article  PubMed  CAS  Google Scholar 

  • Zouboulis CC, Chen WC, Thornton MJ et al (2007) Sexual hormones in human skin. Horm Metab Res 39:85–95

    Article  PubMed  CAS  Google Scholar 

  • Zouboulis CC, Baron JM, Bohm M et al (2008) Frontiers in sebaceous gland biology and pathology. Exp Dermatol 17:542–551

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Hungarian (LP2011-003/2011, TÁMOP 4.2.1./B-09/1/KONV-2010-0007, TÁMOP 4.2.2.A-11/1/KONV-2012-0025, OTKA 78398 and 101761) and EU (FP7-REGPOT-2008-1/229920) research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Bíró .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oláh, A., Szöllősi, A.G., Bíró, T. (2012). The Channel Physiology of the Skin. In: Nilius, B., et al. Reviews of Physiology, Biochemistry and Pharmacology, Vol. 163. Reviews of Physiology, Biochemistry and Pharmacology, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/112_2012_7

Download citation

Publish with us

Policies and ethics