Skip to main content

The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories

  • Chapter
  • First Online:
Cyanobacteria in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 183))

Abstract

Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis, a solar-driven process which allows them to obtain electrons from water to reduce and finally assimilate carbon dioxide. Consequently, they are in the spotlight of biotechnology as photoautotrophic cell factories to generate a large variety of chemicals and biofuels in a sustainable way. Recent progress in synthetic biology has enlarged the molecular toolset to genetically engineer the metabolism of cyanobacteria, mainly targeting common model strains, such as Synechocystis sp. PCC 6803, Synechococcus elongatus PCC 7942, Synechococcus sp. PCC 7002, or Anabaena sp. PCC 7120. Nevertheless, the accessibility and flexibility of engineering cyanobacteria is still somewhat limited and less predictable compared to other biotechnologically employed microorganisms.

This chapter gives a broad overview of currently available methods for the genetic modification of cyanobacterial model strains as well as more recently discovered and promising species, such as Synechococcus elongatus PCC 11801. It comprises approaches based on homologous recombination, replicative broad-host-range or strain-specific plasmids, CRISPR/Cas, as well as markerless selection. Furthermore, common and newly introduced molecular tools for gene expression regulation are presented, comprising promoters, regulatory RNAs, genetic insulators like transcription terminators, ribosome binding sites, CRISPR interference, and the utilization of heterologous RNA polymerases. Additionally, potential DNA assembly strategies, like modular cloning, are described. Finally, considerations about post-translational control via protein degradation tags and heterologous proteases, as well as small proteins working as enzyme effectors are briefly discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knight T (2003) Idempotent vector design for standard assembly of Biobricks. MIT Artificial Intelligence Laboratory

    Book  Google Scholar 

  2. Voigt CA (2006) Genetic parts to program bacteria. Curr Opin Biotechnol 17:548–557. https://doi.org/10.1016/j.copbio.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  3. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950. https://doi.org/10.1038/nbt.1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Na D, Lee D (2010) RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26:2633–2634. https://doi.org/10.1093/bioinformatics/btq458

    Article  CAS  PubMed  Google Scholar 

  5. Seo SW, Yang J-S, Cho H-S et al (2014) Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels. Sci Rep 4:4515. https://doi.org/10.1038/srep04515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rippka R, Deruelles J, Waterbury JB et al (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111:1–61. https://doi.org/10.1099/00221287-111-1-1

    Article  Google Scholar 

  7. Bláha L, Babica P, Maršálek B (2009) Toxins produced in cyanobacterial water blooms – toxicity and risks. Interdiscip Toxicol 2:36–41. https://doi.org/10.2478/v10102-009-0006-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29:95–103. https://doi.org/10.1016/j.tibtech.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  9. Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24:405–413. https://doi.org/10.1016/j.copbio.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  10. Al-Haj L, Lui Y, Abed R et al (2016) Cyanobacteria as chassis for industrial biotechnology: progress and prospects. Life 6:42. https://doi.org/10.3390/life6040042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jodlbauer J, Rohr T, Spadiut O et al (2021) Biocatalysis in green and blue: cyanobacteria. Trends Biotechnol 39:875–889. https://doi.org/10.1016/j.tibtech.2020.12.009

    Article  CAS  PubMed  Google Scholar 

  12. Huang H-H, Camsund D, Lindblad P et al (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38:2577–2593. https://doi.org/10.1093/nar/gkq164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Englund E, Liang F, Lindberg P (2016) Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Sci Rep 6:36640. https://doi.org/10.1038/srep36640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferreira EA, Pacheco CC, Pinto F et al (2018) Expanding the toolbox for Synechocystis sp. PCC 6803: validation of replicative vectors and characterization of a novel set of promoters. Synth Biol (Oxf) 3:ysy014. https://doi.org/10.1093/synbio/ysy014

    Article  CAS  PubMed  Google Scholar 

  15. Liu D, Pakrasi HB (2018) Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803. Microb Cell Factories 17:48. https://doi.org/10.1186/s12934-018-0897-8

    Article  CAS  Google Scholar 

  16. Wang B, Eckert C, Maness P-C et al (2018) A genetic toolbox for modulating the expression of heterologous genes in the cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 7:276–286. https://doi.org/10.1021/acssynbio.7b00297

    Article  CAS  PubMed  Google Scholar 

  17. Kim WJ, Lee S-M, Um Y et al (2017) Development of SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942. Front Plant Sci 8:293. https://doi.org/10.3389/fpls.2017.00293

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sengupta A, Sunder AV, Sohoni SV et al (2019) Fine-tuning native promoters of Synechococcus elongatus PCC 7942 to develop a synthetic toolbox for heterologous protein expression. ACS Synth Biol 8:1219–1223. https://doi.org/10.1021/acssynbio.9b00066

    Article  CAS  PubMed  Google Scholar 

  19. Markley AL, Begemann MB, Clarke RE et al (2015) Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. ACS Synth Biol 4:595–603. https://doi.org/10.1021/sb500260k

    Article  CAS  PubMed  Google Scholar 

  20. Li S, Sun T, Xu C et al (2018) Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Metab Eng 48:163–174. https://doi.org/10.1016/j.ymben.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  21. Sun T, Li S, Song X et al (2018) Toolboxes for cyanobacteria: recent advances and future direction. Biotechnol Adv 36:1293–1307. https://doi.org/10.1016/j.biotechadv.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  22. Zhang W, Song X (2018) Synthetic biology of cyanobacteria, vol 1080. Springer, Singapore

    Book  Google Scholar 

  23. Santos-Merino M, Singh AK, Ducat DC (2019) New applications of synthetic biology tools for cyanobacterial metabolic engineering. Front Bioeng Biotechnol 7:33. https://doi.org/10.3389/fbioe.2019.00033

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xia P-F, Ling H, Foo JL et al (2019) Synthetic biology toolkits for metabolic engineering of cyanobacteria. Biotechnol J 14:e1800496. https://doi.org/10.1002/biot.201800496

    Article  CAS  PubMed  Google Scholar 

  25. Gale GAR, Schiavon Osorio AA, Mills LA et al (2019) Emerging species and genome editing tools: future prospects in cyanobacterial synthetic biology. Microorganisms 7:409. https://doi.org/10.3390/microorganisms7100409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vasudevan R, Gale GAR, Schiavon AA et al (2019) CyanoGate: a modular cloning suite for engineering cyanobacteria based on the plant MoClo syntax. Plant Physiol 180:39–55. https://doi.org/10.1104/pp.18.01401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ng I-S, Keskin BB, Tan S-I (2020) A critical review of genome editing and synthetic biology applications in metabolic engineering of microalgae and cyanobacteria. Biotechnol J 15:e1900228. https://doi.org/10.1002/biot.201900228

    Article  CAS  PubMed  Google Scholar 

  28. Pattharaprachayakul N, Lee M, Incharoensakdi A et al (2020) Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzym Microb Technol 140:109619. https://doi.org/10.1016/j.enzmictec.2020.109619

    Article  CAS  Google Scholar 

  29. Till P, Toepel J, Bühler B et al (2020) Regulatory systems for gene expression control in cyanobacteria. Appl Microbiol Biotechnol 104:1977–1991. https://doi.org/10.1007/s00253-019-10344-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cassier-Chauvat C, Blanc-Garin V, Chauvat F (2021) Genetic, genomics, and responses to stresses in cyanobacteria: biotechnological implications. Genes (Basel) 12:500. https://doi.org/10.3390/genes12040500

    Article  CAS  PubMed  Google Scholar 

  31. Srivastava A, Shukla P (2021) Emerging tools and strategies in cyanobacterial omics. Trends Biotechnol 40:4–7. https://doi.org/10.1016/j.tibtech.2021.05.004

    Article  CAS  PubMed  Google Scholar 

  32. Laurenceau R, Bliem C, Osburne MS et al (2020) Toward a genetic system in the marine cyanobacterium Prochlorococcus. Access Microbiol 2:acmi000107. https://doi.org/10.1099/acmi.0.000107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Porter RD (1986) Transformation in cyanobacteria. Crit Rev Microbiol 13:111–132. https://doi.org/10.3109/10408418609108736

    Article  CAS  PubMed  Google Scholar 

  34. Thiel T (1995) Genetic analysis of cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publ, Dordrecht, pp 581–611

    Google Scholar 

  35. Koksharova OA, Wolk CP (2002) Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58:123–137. https://doi.org/10.1007/s00253-001-0864-9

    Article  CAS  PubMed  Google Scholar 

  36. Heidorn T, Camsund D, Huang H-H et al (2011) Synthetic biology in cyanobacteria engineering and analyzing novel functions. Methods Enzymol 497:539–579. https://doi.org/10.1016/B978-0-12-385075-1.00024-X

    Article  CAS  PubMed  Google Scholar 

  37. Bishé B, Taton A, Golden JW (2019) Modification of RSF1010-based broad-host-range plasmids for improved conjugation and cyanobacterial bioprospecting. iScience 20:216–228. https://doi.org/10.1016/j.isci.2019.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gutiérrez S, Lauersen KJ (2021) Gene delivery technologies with applications in microalgal genetic engineering. Biology (Basel) 10:265. https://doi.org/10.3390/biology10040265

    Article  CAS  PubMed  Google Scholar 

  39. Johnsborg O, Eldholm V, Håvarstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158:767–778. https://doi.org/10.1016/j.resmic.2007.09.004

    Article  CAS  PubMed  Google Scholar 

  40. Wendt KE, Pakrasi HB (2019) Genomics approaches to deciphering natural transformation in cyanobacteria. Front Microbiol 10:1259. https://doi.org/10.3389/fmicb.2019.01259

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schirmacher AM, Hanamghar SS, Zedler JAZ (2020) Function and benefits of natural competence in cyanobacteria: from ecology to targeted manipulation. Life (Basel) 10:249. https://doi.org/10.3390/life10110249

    Article  CAS  PubMed  Google Scholar 

  42. Grigorieva G, Shestakov S (1982) Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol Lett 13:367–370. https://doi.org/10.1111/j.1574-6968.1982.tb08289.x

    Article  CAS  Google Scholar 

  43. Shestakov SV, Khyen NT (1970) Evidence for genetic transformation in blue-green alga Anacystis nidulans. Mol Gen Genet 107:372–375. https://doi.org/10.1007/BF00441199

    Article  CAS  PubMed  Google Scholar 

  44. Stevens SE, Porter RD (1980) Transformation in Agmenellum quadruplicatum. Proc Natl Acad Sci U S A 77:6052–6056. https://doi.org/10.1073/pnas.77.10.6052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iwai M, Katoh H, Katayama M et al (2004) Improved genetic transformation of the thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1. Plant Cell Physiol 45:171–175. https://doi.org/10.1093/pcp/pch015

    Article  CAS  PubMed  Google Scholar 

  46. Onai K, Morishita M, Kaneko T et al (2004) Natural transformation of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1: a simple and efficient method for gene transfer. Mol Gen Genomics 271:50–59. https://doi.org/10.1007/s00438-003-0953-9

    Article  CAS  Google Scholar 

  47. Liang Y, Tang J, Luo Y et al (2019) Thermosynechococcus as a thermophilic photosynthetic microbial cell factory for CO2 utilisation. Bioresour Technol 278:255–265. https://doi.org/10.1016/j.biortech.2019.01.089

    Article  CAS  PubMed  Google Scholar 

  48. Jaiswal D, Sengupta A, Sohoni S et al (2018) Genome features and biochemical characteristics of a robust, fast growing and naturally transformable cyanobacterium Synechococcus elongatus PCC 11801 isolated from India. Sci Rep 8:16632. https://doi.org/10.1038/s41598-018-34872-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Włodarczyk A, Selão TT, Norling B et al (2020) Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production. Commun Biol 3:215. https://doi.org/10.1038/s42003-020-0910-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kunert A, Hagemann M, Erdmann N (2000) Construction of promoter probe vectors for Synechocystis sp. PCC 6803 using the light-emitting reporter systems Gfp and LuxAB. J Microbiol Methods 41:185–194. https://doi.org/10.1016/S0167-7012(00)00162-7

    Article  CAS  PubMed  Google Scholar 

  51. Andersson CR, Tsinoremas NF, Shelton J et al (2000) Application of bioluminescence to the study of circadian rhythms in cyanobacteria. In: Bioluminescence and chemiluminescence part C, vol 305. Elsevier, pp 527–542

    Chapter  Google Scholar 

  52. Peterson ES, McCue LA, Schrimpe-Rutledge AC et al (2012) VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data. BMC Genomics 13:131. https://doi.org/10.1186/1471-2164-13-131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mitschke J, Georg J, Scholz I et al (2011) An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 108:2124–2129. https://doi.org/10.1073/pnas.1015154108

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ng AH, Berla BM, Pakrasi HB (2015) Fine-tuning of photoautotrophic protein production by combining promoters and neutral sites in the cyanobacterium Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 81:6857–6863. https://doi.org/10.1128/AEM.01349-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nagy C, Thiel K, Mulaku E et al (2021) Comparison of alternative integration sites in the chromosome and the native plasmids of the cyanobacterium Synechocystis sp. PCC 6803 in respect to expression efficiency and copy number. Microb Cell Factories 20:539. https://doi.org/10.1186/s12934-021-01622-2

    Article  CAS  Google Scholar 

  56. Mustila H, Allahverdiyeva Y, Isojärvi J et al (2014) The bacterial-type 4Fe-4S ferredoxin 7 has a regulatory function under photooxidative stress conditions in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1837:1293–1304. https://doi.org/10.1016/j.bbabio.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  57. Mustila H, Paananen P, Battchikova N et al (2016) The flavodiiron protein Flv3 functions as a homo-oligomer during stress acclimation and is distinct from the Flv1/Flv3 hetero-oligomer specific to the O2 photoreduction pathway. Plant Cell Physiol 57:pcw047. https://doi.org/10.1093/pcp/pcw047

    Article  CAS  Google Scholar 

  58. Bustos SA, Golden SS (1992) Light-regulated expression of the psbD gene family in Synechococcus sp. strain PCC 7942: evidence for the role of duplicated psbD genes in cyanobacteria. Mol Gen Genet 232:221–230. https://doi.org/10.1007/BF00280000

    Article  CAS  PubMed  Google Scholar 

  59. Kulkarni RD, Golden SS (1997) mRNA stability is regulated by a coding-region element and the unique 5′ untranslated leader sequences of the three Synechococcus psbA transcripts. Mol Microbiol 24:1131–1142. https://doi.org/10.1046/j.1365-2958.1997.4201768.x

    Article  CAS  PubMed  Google Scholar 

  60. Clerico EM, Ditty JL, Golden SS (2007) Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods Mol Biol 362:155–171. https://doi.org/10.1007/978-1-59745-257-1_11

    Article  CAS  PubMed  Google Scholar 

  61. Niederholtmeyer H, Wolfstädter BT, Savage DF et al (2010) Engineering cyanobacteria to synthesize and export hydrophilic products. Appl Environ Microbiol 76:3462–3466. https://doi.org/10.1128/AEM.00202-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ungerer J, Wendt KE, Hendry JI et al (2018) Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973. Proc Natl Acad Sci U S A 115:E11761–E11770. https://doi.org/10.1073/pnas.1814912115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Englund E, Andersen-Ranberg J, Miao R et al (2015) Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoid manoyl oxide. ACS Synth Biol 4:1270–1278. https://doi.org/10.1021/acssynbio.5b00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang X, Betterle N, Hidalgo Martinez D et al (2021) Recombinant protein stability in cyanobacteria. ACS Synth Biol 10:810–825. https://doi.org/10.1021/acssynbio.0c00610

    Article  CAS  PubMed  Google Scholar 

  65. Mohamed A, Jansson C (1989) Influence of light on accumulation of photosynthesis-specific transcripts in the cyanobacterium Synechocystis 6803. Plant Mol Biol 13:693–700. https://doi.org/10.1007/BF00016024

    Article  CAS  PubMed  Google Scholar 

  66. Liu X, Miao R, Lindberg P et al (2019) Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria. Energy Environ Sci 12:2765–2777. https://doi.org/10.1039/c9ee01214a

    Article  CAS  Google Scholar 

  67. Begemann MB, Zess EK, Walters EM et al (2013) An organic acid based counter selection system for cyanobacteria. PLoS One 8:e76594. https://doi.org/10.1371/journal.pone.0076594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cai YP, Wolk CP (1990) Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol 172:3138–3145. https://doi.org/10.1128/jb.172.6.3138-3145.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jones KM, Buikema WJ, Haselkorn R (2003) Heterocyst-specific expression of patB, a gene required for nitrogen fixation in Anabaena sp. strain PCC 7120. J Bacteriol 185:2306–2314. https://doi.org/10.1128/JB.185.7.2306-2314.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee H-M, Flores E, Herrero A et al (1998) A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacterium. FEBS Lett 427:291–295. https://doi.org/10.1016/S0014-5793(98)00451-7

    Article  CAS  PubMed  Google Scholar 

  71. Lee HM, Flores E, Forchhammer K et al (2000) Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII-mediated regulation of nitrate and nitrite uptake in the Cyanobacterium Synechococcus sp. PCC 7942. Eur J Biochem 267:591–600. https://doi.org/10.1046/j.1432-1327.2000.01043.x

    Article  CAS  PubMed  Google Scholar 

  72. Ditty JL, Canales SR, Anderson BE et al (2005) Stability of the Synechococcus elongatus PCC 7942 circadian clock under directed anti-phase expression of the kai genes. Microbiology (Reading) 151:2605–2613. https://doi.org/10.1099/mic.0.28030-0

    Article  CAS  PubMed  Google Scholar 

  73. Holtman CK, Chen Y, Sandoval P et al (2005) High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome. DNA Res 12:103–115. https://doi.org/10.1093/dnares/12.2.103

    Article  CAS  PubMed  Google Scholar 

  74. Chen Y, Holtman CK, Magnuson RD et al (2008) The complete sequence and functional analysis of pANL, the large plasmid of the unicellular freshwater cyanobacterium Synechococcus elongatus PCC 7942. Plasmid 59:176–192. https://doi.org/10.1016/j.plasmid.2008.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen Y, Taton A, Go M et al (2016) Self-replicating shuttle vectors based on pANS, a small endogenous plasmid of the unicellular cyanobacterium Synechococcus elongatus PCC 7942. Microbiology (Reading) 162:2029–2041. https://doi.org/10.1099/mic.0.000377

    Article  CAS  PubMed  Google Scholar 

  76. Puszynska AM, O'Shea EK (2017) Switching of metabolic programs in response to light availability is an essential function of the cyanobacterial circadian output pathway. elife 6:e23210. https://doi.org/10.7554/eLife.23210

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang B, Pugh S, Nielsen DR et al (2013) Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng 16:68–77. https://doi.org/10.1016/j.ymben.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  78. Wang B, Yu J, Zhang W et al (2015) Premethylation of foreign DNA improves integrative transformation efficiency in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 81:8500–8506. https://doi.org/10.1128/AEM.02575-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pinto F, Pacheco CC, Oliveira P et al (2015) Improving a Synechocystis-based photoautotrophic chassis through systematic genome mapping and validation of neutral sites. DNA Res 22:425–437. https://doi.org/10.1093/dnares/dsv024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Durall C, Lindberg P, Yu J et al (2020) Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803. Biotechnol Biofuels 13:16. https://doi.org/10.1186/s13068-020-1653-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eungrasamee K, Incharoensakdi A, Lindblad P et al (2020) Synechocystis sp. PCC 6803 overexpressing genes involved in CBB cycle and free fatty acid cycling enhances the significant levels of intracellular lipids and secreted free fatty acids. Sci Rep 10:4515. https://doi.org/10.1038/s41598-020-61100-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen L, Liu H, Wang L et al (2021) Synthetic counter-selection markers and their application in genetic modification of Synechococcus elongatus UTEX2973. Appl Microbiol Biotechnol 105:5077–5086. https://doi.org/10.1007/s00253-021-11391-y

    Article  CAS  PubMed  Google Scholar 

  83. Taton A, Erikson C, Yang Y et al (2020) The circadian clock and darkness control natural competence in cyanobacteria. Nat Commun 11:1688. https://doi.org/10.1038/s41467-020-15384-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yoshihara S, Geng X, Okamoto S et al (2001) Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 42:63–73. https://doi.org/10.1093/pcp/pce007

    Article  CAS  PubMed  Google Scholar 

  85. Tsujimoto R, Kotani H, Yokomizo K et al (2018) Functional expression of an oxygen-labile nitrogenase in an oxygenic photosynthetic organism. Sci Rep 8:7380. https://doi.org/10.1038/s41598-018-25396-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stucken K, Koch R, Dagan T (2013) Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering. Biol Res 46:373–382. https://doi.org/10.4067/S0716-97602013000400009

    Article  PubMed  Google Scholar 

  87. Kufryk GI, Sachet M, Schmetterer G et al (2002) Transformation of the cyanobacterium Synechocystis sp. PCC 6803 as a tool for genetic mapping: optimization of efficiency. FEMS Microbiol Lett 206:215–219. https://doi.org/10.1111/j.1574-6968.2002.tb11012.x

    Article  CAS  PubMed  Google Scholar 

  88. Elhai J, Vepritskiy A, Muro-Pastor AM et al (1997) Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J Bacteriol 179:1998–2005. https://doi.org/10.1128/jb.179.6.1998-2005.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Griese M, Lange C, Soppa J (2011) Ploidy in cyanobacteria. FEMS Microbiol Lett 323:124–131. https://doi.org/10.1111/j.1574-6968.2011.02368.x

    Article  CAS  PubMed  Google Scholar 

  90. Watanabe S (2020) Cyanobacterial multi-copy chromosomes and their replication. Biosci Biotechnol Biochem 84:1309–1321. https://doi.org/10.1080/09168451.2020.1736983

    Article  CAS  PubMed  Google Scholar 

  91. Guerry P, van Embden J, Falkow S (1974) Molecular nature of two nonconjugative plasmids carrying drug resistance genes. J Bacteriol 117:619–630. https://doi.org/10.1128/jb.117.2.619-630.1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Taton A, Unglaub F, Wright NE et al (2014) Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Res 42:e136. https://doi.org/10.1093/nar/gku673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Meyer R (2009) Replication and conjugative mobilization of broad host-range IncQ plasmids. Plasmid 62:57–70. https://doi.org/10.1016/j.plasmid.2009.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kreps S, Ferino F, Mosrin C et al (1990) Conjugative transfer and autonomous replication of a promiscuous IncQ plasmid in the cyanobacterium Synechocystis PCC 6803. Mol Gen Genet 221:129–133. https://doi.org/10.1007/BF00280378

    Article  CAS  Google Scholar 

  95. Zinchenko V, Piven IV, Melnik VA, Shestakov SV (1999) Vectors for the complementation analysis of cyanobacterial mutants. Russ J Genet 35:228–232

    CAS  Google Scholar 

  96. Berla BM, Saha R, Immethun CM et al (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4:246. https://doi.org/10.3389/fmicb.2013.00246

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wang B, Wang J, Zhang W et al (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3:344. https://doi.org/10.3389/fmicb.2012.00344

    Article  PubMed  PubMed Central  Google Scholar 

  98. Guerrero F, Carbonell V, Cossu M et al (2012) Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. PLoS One 7:e50470. https://doi.org/10.1371/journal.pone.0050470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Behle A, Saake P, Germann AT et al (2020) Comparative dose-response analysis of inducible promoters in cyanobacteria. ACS Synth Biol 9:843–855. https://doi.org/10.1021/acssynbio.9b00505

    Article  CAS  PubMed  Google Scholar 

  100. Behle A, Axmann IM (2022) pSHDY: a new tool for genetic engineering of cyanobacteria. Methods Mol Biol 2379:67–79. https://doi.org/10.1007/978-1-0716-1791-5_4

    Article  PubMed  Google Scholar 

  101. Martínez-García E, Goñi-Moreno A, Bartley B et al (2020) SEVA 3.0: an update of the standard European vector architecture for enabling portability of genetic constructs among diverse bacterial hosts. Nucleic Acids Res 48:D1164–D1170. https://doi.org/10.1093/nar/gkz1024

    Article  CAS  PubMed  Google Scholar 

  102. Ingram LC, Richmond MH, Sykes RB (1973) Molecular characterization of the R factors implicated in the carbenicillin resistance of a sequence of Pseudomonas aeruginosa strains isolated from burns. Antimicrob Agents Chemother 3:279–288. https://doi.org/10.1128/aac.3.2.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wolk CP, Vonshak A, Kehoe P et al (1984) Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc Natl Acad Sci U S A 81:1561–1565. https://doi.org/10.1073/pnas.81.5.1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wolk CP, Fan Q, Zhou R et al (2007) Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120. Arch Microbiol 188:551–563. https://doi.org/10.1007/s00203-007-0276-z

    Article  CAS  PubMed  Google Scholar 

  105. Wolk CP, Cai Y, Cardemil L et al (1988) Isolation and complementation of mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen. J Bacteriol 170:1239–1244. https://doi.org/10.1128/jb.170.3.1239-1244.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stucken K, Ilhan J, Roettger M et al (2012) Transformation and conjugal transfer of foreign genes into the filamentous multicellular cyanobacteria (subsection V) Fischerella and Chlorogloeopsis. Curr Microbiol 65:552–560. https://doi.org/10.1007/s00284-012-0193-5

    Article  CAS  PubMed  Google Scholar 

  107. Antonaru LA, Nürnberg DJ (2017) Role of PatS and cell type on the heterocyst spacing pattern in a filamentous branching cyanobacterium. FEMS Microbiol Lett 364:fnx154. https://doi.org/10.1093/femsle/fnx154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Buikema WJ, Haselkorn R (1991) Isolation and complementation of nitrogen fixation mutants of the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 173:1879–1885. https://doi.org/10.1128/jb.173.6.1879-1885.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Billi D, Friedmann EI, Helm RF et al (2001) Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. J Bacteriol 183:2298–2305. https://doi.org/10.1128/JB.183.7.2298-2305.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Elhai J (1993) Strong and regulated promoters in the cyanobacterium Anabaena PCC 7120. FEMS Microbiol Lett 114:179–184. https://doi.org/10.1111/j.1574-6968.1993.tb06570.x

    Article  CAS  PubMed  Google Scholar 

  111. Ravindran CRM, Suguna S, Shanmugasundaram S (2006) Electroporation as a tool to transfer the plasmid pRL489 in Oscillatoria MKU 277. J Microbiol Methods 66:174–176. https://doi.org/10.1016/j.mimet.2005.11.011

    Article  CAS  PubMed  Google Scholar 

  112. Wolk CP, Elhai J, Kuritz T et al (1993) Amplified expression of a transcriptional pattern formed during development of Anabaena. Mol Microbiol 7:441–445. https://doi.org/10.1111/j.1365-2958.1993.tb01135.x

    Article  CAS  PubMed  Google Scholar 

  113. Summers ML, Wallis JG, Campbell EL et al (1995) Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. J Bacteriol 177:6184–6194. https://doi.org/10.1128/jb.177.21.6184-6194.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Argueta C, Yuksek K, Summers M (2004) Construction and use of GFP reporter vectors for analysis of cell-type-specific gene expression in Nostoc punctiforme. J Microbiol Methods 59:181–188. https://doi.org/10.1016/j.mimet.2004.06.009

    Article  CAS  PubMed  Google Scholar 

  115. Walton DK, Gendel SM, Atherly AG (1993) DNA sequence and shuttle vector construction of plasmid pGL3 from Plectonema boryanum PCC 6306. Nucleic Acids Res 21:746. https://doi.org/10.1093/nar/21.3.746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Buzby JS, Porter RD, Stevens SE (1985) Expression of the Escherichia coli lacZ gene on a plasmid vector in a cyanobacterium. Science 230:805–807. https://doi.org/10.1126/science.2997920

    Article  CAS  PubMed  Google Scholar 

  117. Cobley JG, Zerweck E, Reyes R et al (1993) Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coli into the chromatically adapting cyanobacterium, Fremyella diplosiphon. Plasmid 30:90–105. https://doi.org/10.1006/plas.1993.1037

    Article  CAS  PubMed  Google Scholar 

  118. Sherman LA, van de Putte P (1982) Construction of a hybrid plasmid capable of replication in the bacterium Escherichia coli and the cyanobacterium Anacystis nidulans. J Bacteriol 150:410–413. https://doi.org/10.1128/jb.150.1.410-413.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Golden SS, Sherman LA (1983) A hybrid plasmid is a stable cloning vector for the cyanobacterium Anacystis nidulans R2. J Bacteriol 155:966–972. https://doi.org/10.1128/jb.155.3.966-972.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Opel F, Siebert NA, Klatt S et al (2022) Generation of synthetic shuttle vectors enabling modular genetic engineering of cyanobacteria. ACS Synth Biol 11:1758–1771. https://doi.org/10.1021/acssynbio.1c00605

  121. Jin H, Wang Y, Idoine A et al (2018) Construction of a shuttle vector using an endogenous plasmid from the cyanobacterium Synechocystis sp. PCC6803. Front Microbiol 9:1662. https://doi.org/10.3389/fmicb.2018.01662

    Article  PubMed  PubMed Central  Google Scholar 

  122. Xiao Y, Wang S, Rommelfanger S et al (2018) Developing a Cas9-based tool to engineer native plasmids in Synechocystis sp. PCC 6803. Biotechnol Bioeng 115:2305–2314. https://doi.org/10.1002/bit.26747

    Article  CAS  PubMed  Google Scholar 

  123. Thiel T, Poo H (1989) Transformation of a filamentous cyanobacterium by electroporation. J Bacteriol 171:5743–5746. https://doi.org/10.1128/jb.171.10.5743-5746.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Elhai J, Wolk C (1988) Conjugal transfer of DNA to cyanobacteria. In: Cyanobacteria, vol 167. Elsevier, pp 747–754

    Chapter  Google Scholar 

  125. Marraccini P, Bulteau S, Cassier-Chauvat C et al (1993) A conjugative plasmid vector for promoter analysis in several cyanobacteria of the genera Synechococcus and Synechocystis. Plant Mol Biol 23:905–909. https://doi.org/10.1007/BF00021546

    Article  CAS  PubMed  Google Scholar 

  126. Waters VL, Guiney DG (1993) Processes at the nick region link conjugation, T-DNA transfer and rolling circle replication. Mol Microbiol 9:1123–1130. https://doi.org/10.1111/j.1365-2958.1993.tb01242.x

    Article  CAS  PubMed  Google Scholar 

  127. Gale GAR, Schiavon Osorio AA, Puzorjov A et al (2019) Genetic modification of cyanobacteria by conjugation using the CyanoGate modular cloning toolkit. J Vis Exp. https://doi.org/10.3791/60451

  128. Yu J, Liberton M, Cliften PF et al (2015) Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Sci Rep 5:8132. https://doi.org/10.1038/srep08132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cai F, Axen SD, Kerfeld CA (2013) Evidence for the widespread distribution of CRISPR-Cas system in the phylum cyanobacteria. RNA Biol 10:687–693. https://doi.org/10.4161/rna.24571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736. https://doi.org/10.1038/nrmicro3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Koonin EV, Makarova KS (2019) Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond Ser B Biol Sci 374:20180087. https://doi.org/10.1098/rstb.2018.0087

    Article  CAS  Google Scholar 

  132. Hashemi A (2018) CRISPR-cas system as a genome engineering platform: applications in biomedicine and biotechnology. CGT 18:115–124. https://doi.org/10.2174/1566523218666180221110627

    Article  CAS  Google Scholar 

  133. Behler J, Vijay D, Hess WR et al (2018) CRISPR-based technologies for metabolic engineering in cyanobacteria. Trends Biotechnol 36:996–1010. https://doi.org/10.1016/j.tibtech.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  134. Wang F, Gao Y, Yang G (2020) Recent advances in synthetic biology of cyanobacteria for improved chemicals production. Bioengineered 11:1208–1220. https://doi.org/10.1080/21655979.2020.1837458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gay P, Le Coq D, Steinmetz M et al (1985) Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 164:918–921. https://doi.org/10.1128/jb.164.2.918-921.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lea-Smith DJ, Vasudevan R, Howe CJ (2016) Generation of marked and markerless mutants in model cyanobacterial species. J Vis Exp. https://doi.org/10.3791/54001

  137. Saar KL, Bombelli P, Lea-Smith DJ et al (2018) Enhancing power density of biophotovoltaics by decoupling storage and power delivery. Nat Energy 3:75–81. https://doi.org/10.1038/s41560-017-0073-0

    Article  CAS  Google Scholar 

  138. Dietsch M, Behle A, Westhoff P et al (2021) Metabolic engineering of Synechocystis sp. PCC 6803 for the photoproduction of the sesquiterpene valencene. Metab Eng Commun 13:e00178. https://doi.org/10.1016/j.mec.2021.e00178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Viola S, Rühle T, Leister D (2014) A single vector-based strategy for marker-less gene replacement in Synechocystis sp. PCC 6803. Microb Cell Factories 13:4. https://doi.org/10.1186/1475-2859-13-4

    Article  CAS  Google Scholar 

  140. Cheah YE, Albers SC, Peebles CAM (2013) A novel counter-selection method for markerless genetic modification in Synechocystis sp. PCC 6803. Biotechnol Prog 29:23–30. https://doi.org/10.1002/btpr.1661

    Article  CAS  PubMed  Google Scholar 

  141. Sebesta J, Werner A, Peebles CAM (2019) Genetic engineering of cyanobacteria: design, implementation, and characterization of recombinant Synechocystis sp. PCC 6803. Methods Mol Biol 1927:139–154. https://doi.org/10.1007/978-1-4939-9142-6_10

    Article  CAS  PubMed  Google Scholar 

  142. Caicedo-Burbano P, Smit T, Pineda Hernández H et al (2020) Construction of fully segregated genomic libraries in polyploid organisms such as Synechocystis sp. PCC 6803. ACS Synth Biol 9:2632–2638. https://doi.org/10.1021/acssynbio.0c00353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kojima K, Keta S, Uesaka K et al (2016) A simple method for isolation and construction of markerless cyanobacterial mutants defective in acyl-acyl carrier protein synthetase. Appl Microbiol Biotechnol 100:10107–10113. https://doi.org/10.1007/s00253-016-7850-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tan X, Liang F, Cai K et al (2013) Application of the FLP/FRT recombination system in cyanobacteria for construction of markerless mutants. Appl Microbiol Biotechnol 97:6373–6382. https://doi.org/10.1007/s00253-013-4837-6

    Article  CAS  PubMed  Google Scholar 

  145. Zhang Y, Pu H, Wang Q et al (2007) PII is important in regulation of nitrogen metabolism but not required for heterocyst formation in the cyanobacterium Anabaena sp. PCC 7120. J Biol Chem 282:33641–33648. https://doi.org/10.1074/jbc.M706500200

    Article  CAS  PubMed  Google Scholar 

  146. Ungerer J, Pakrasi HB (2016) Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep 6:39681. https://doi.org/10.1038/srep39681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wendt KE, Ungerer J, Cobb RE et al (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Factories 15:115. https://doi.org/10.1186/s12934-016-0514-7

    Article  CAS  Google Scholar 

  148. Li H, Shen CR, Huang C-H et al (2016) CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng 38:293–302. https://doi.org/10.1016/j.ymben.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  149. Niu T-C, Lin G-M, Xie L-R et al (2019) Expanding the potential of CRISPR-Cpf1-based genome editing technology in the cyanobacterium Anabaena PCC 7120. ACS Synth Biol 8:170–180. https://doi.org/10.1021/acssynbio.8b00437

    Article  CAS  PubMed  Google Scholar 

  150. Sengupta A, Pritam P, Jaiswal D et al (2020) Photosynthetic co-production of succinate and ethylene in a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801. Meta 10:250. https://doi.org/10.3390/metabo10060250

    Article  CAS  Google Scholar 

  151. Gordon GC, Pfleger BF (2018) Regulatory tools for controlling gene expression in cyanobacteria. In: Zhang W, Song X (eds) Synthetic biology of cyanobacteria, vol 1080. Springer, Singapore, pp 281–315

    Chapter  Google Scholar 

  152. Immethun CM, Moon TS (2018) Synthetic gene regulation in cyanobacteria. In: Zhang W, Song X (eds) Synthetic biology of cyanobacteria, vol 1080. Springer, Singapore, pp 317–355

    Chapter  Google Scholar 

  153. Srivastava A, Summers ML, Sobotka R (2020) Cyanobacterial sigma factors: current and future applications for biotechnological advances. Biotechnol Adv 40:107517. https://doi.org/10.1016/j.biotechadv.2020.107517

    Article  CAS  PubMed  Google Scholar 

  154. Srivastava A, Varshney RK, Shukla P (2021) Sigma factor modulation for cyanobacterial metabolic engineering. Trends Microbiol 29:266–277. https://doi.org/10.1016/j.tim.2020.10.012

    Article  CAS  PubMed  Google Scholar 

  155. Stensjö K, Vavitsas K, Tyystjärvi T (2018) Harnessing transcription for bioproduction in cyanobacteria. Physiol Plant 162:148–155. https://doi.org/10.1111/ppl.12606

    Article  CAS  PubMed  Google Scholar 

  156. Riaz-Bradley A (2019) Transcription in cyanobacteria: a distinctive machinery and putative mechanisms. Biochem Soc Trans 47:679–689. https://doi.org/10.1042/BST20180508

    Article  CAS  PubMed  Google Scholar 

  157. Huang H-H, Lindblad P (2013) Wide-dynamic-range promoters engineered for cyanobacteria. J Biol Eng 7:10. https://doi.org/10.1186/1754-1611-7-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Camsund D, Heidorn T, Lindblad P (2014) Design and analysis of LacI-repressed promoters and DNA-looping in a cyanobacterium. J Biol Eng 8:4. https://doi.org/10.1186/1754-1611-8-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Klähn S, Bolay P, Wright PR et al (2018) A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria. Nucleic Acids Res 46:10082–10094. https://doi.org/10.1093/nar/gky709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Huang C-H, Shen CR, Li H et al (2016) CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb Cell Factories 15:196. https://doi.org/10.1186/s12934-016-0595-3

    Article  CAS  Google Scholar 

  161. Higo A, Isu A, Fukaya Y et al (2018) Application of CRISPR interference for metabolic engineering of the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Plant Cell Physiol 59:119–127. https://doi.org/10.1093/pcp/pcx166

    Article  CAS  PubMed  Google Scholar 

  162. Ma AT, Schmidt CM, Golden JW (2014) Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl Environ Microbiol 80:6704–6713. https://doi.org/10.1128/AEM.01697-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kunert A, Vinnemeier J, Erdmann N et al (2003) Repression by Fur is not the main mechanism controlling the iron-inducible isiAB operon in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 227:255–262. https://doi.org/10.1016/S0378-1097(03)00689-X

    Article  CAS  PubMed  Google Scholar 

  164. Zhou J, Zhang H, Meng H et al (2014) Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Sci Rep 4:4500. https://doi.org/10.1038/srep04500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shono C, Ariyanti D, Abe K et al (2021) A green light-regulated T7 RNA polymerase gene expression system for cyanobacteria. Mar Biotechnol (NY) 23:31–38. https://doi.org/10.1007/s10126-020-09997-w

    Article  CAS  PubMed  Google Scholar 

  166. Zhang L, Chen L, Diao J et al (2020) Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2. Biotechnol Biofuels 13:82. https://doi.org/10.1186/s13068-020-01720-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dzelzkalns VA, Owens GC, Bogorad L (1984) Chloroplast promoter driven expression of the chloramphenicol acetyl transferase gene in a cyanobacterium. Nucleic Acids Res 12:8917–8925. https://doi.org/10.1093/nar/12.23.8917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jacobsen JH, Frigaard N-U (2014) Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab Eng 21:60–70. https://doi.org/10.1016/j.ymben.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  169. Sakai M, Ogawa T, Matsuoka M et al (1997) Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp. PCC 7942, which harbors a gene for the ethylene-forming enzyme of Pseudomonas syringae. J Ferment Bioeng 84:434–443. https://doi.org/10.1016/S0922-338X(97)82004-1

    Article  CAS  Google Scholar 

  170. Nair U, Thomas C, Golden SS (2001) Functional elements of the strong psbAI promoter of Synechococcus elongatus PCC 7942. J Bacteriol 183:1740–1747. https://doi.org/10.1128/JB.183.5.1740-1747.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Takahama K, Matsuoka M, Nagahama K et al (2003) Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. J Biosci Bioeng 95:302–305. https://doi.org/10.1016/S1389-1723(03)80034-8

    Article  CAS  PubMed  Google Scholar 

  172. Ducat DC, Sachdeva G, Silver PA (2011) Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci U S A 108:3941–3946. https://doi.org/10.1073/pnas.1016026108

    Article  PubMed  PubMed Central  Google Scholar 

  173. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79. https://doi.org/10.1016/j.ymben.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  174. Liu X, Sheng J, Curtiss R (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108:6899–6904. https://doi.org/10.1073/pnas.1103014108

    Article  PubMed  PubMed Central  Google Scholar 

  175. Albers SC, Peebles CAM (2017) Evaluating light-induced promoters for the control of heterologous gene expression in Synechocystis sp. PCC 6803. Biotechnol Prog 33:45–53. https://doi.org/10.1002/btpr.2396

    Article  CAS  PubMed  Google Scholar 

  176. Tan X, Yao L, Gao Q et al (2011) Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab Eng 13:169–176. https://doi.org/10.1016/j.ymben.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  177. Peca L, Kós PB, Vass I (2007) Characterization of the activity of heavy metal-responsive promoters in the cyanobacterium Synechocystis PCC 6803. Acta Biol Hung 58(Suppl):11–22. https://doi.org/10.1556/ABiol.58.2007.Suppl.2

    Article  PubMed  Google Scholar 

  178. Peca L, Kós PB, Máté Z et al (2008) Construction of bioluminescent cyanobacterial reporter strains for detection of nickel, cobalt and zinc. FEMS Microbiol Lett 289:258–264. https://doi.org/10.1111/j.1574-6968.2008.01393.x

    Article  CAS  PubMed  Google Scholar 

  179. Blasi B, Peca L, Vass I et al (2012) Characterization of stress responses of heavy metal and metalloid inducible promoters in Synechocystis PCC6803. J Microbiol Biotechnol 22:166–169. https://doi.org/10.4014/jmb.1106.06050

    Article  CAS  PubMed  Google Scholar 

  180. Tüllinghoff A, Uhl MB, Nintzel FEH et al (2022) Maximizing photosynthesis-driven Baeyer-Villiger oxidation efficiency in recombinant Synechocystis sp. PCC6803. Front Catal. https://doi.org/10.3389/fctls.2021.780474

  181. Oliveira P, Lindblad P (2008) An AbrB-like protein regulates the expression of the bidirectional hydrogenase in Synechocystis sp. strain PCC 6803. J Bacteriol 190:1011–1019. https://doi.org/10.1128/jb.01605-07

    Article  CAS  PubMed  Google Scholar 

  182. Klähn S, Schaal C, Georg J et al (2015) The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7. Proc Natl Acad Sci U S A 112:E6243–E6252. https://doi.org/10.1073/pnas.1508412112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bolay P, Rozbeh R, Muro-Pastor MI et al (2021) The novel PII-interacting protein PirA controls flux into the cyanobacterial ornithine-ammonia cycle. MBio 12:e00229-21. https://doi.org/10.1128/mBio.00229-21

    Article  PubMed  PubMed Central  Google Scholar 

  184. Brandenburg F, Theodosiou E, Bertelmann C et al (2021) Trans-4-hydroxy-L-proline production by the cyanobacterium Synechocystis sp. PCC 6803. Metab Eng Commun 12:e00155. https://doi.org/10.1016/j.mec.2020.e00155

    Article  CAS  PubMed  Google Scholar 

  185. Buikema WJ, Haselkorn R (2001) Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc Natl Acad Sci U S A 98:2729–2734. https://doi.org/10.1073/pnas.051624898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Callahan SM, Buikema WJ (2001) The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120. Mol Microbiol 40:941–950. https://doi.org/10.1046/j.1365-2958.2001.02437.x

    Article  CAS  PubMed  Google Scholar 

  187. Higa KC, Callahan SM (2010) Ectopic expression of hetP can partially bypass the need for hetR in heterocyst differentiation by Anabaena sp. strain PCC 7120. Mol Microbiol 77:562–574. https://doi.org/10.1111/j.1365-2958.2010.07257.x

    Article  CAS  PubMed  Google Scholar 

  188. Saha SK, Golden JW (2011) Overexpression of pknE blocks heterocyst development in Anabaena sp. strain PCC 7120. J Bacteriol 193:2619–2629. https://doi.org/10.1128/jb.00120-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Higo A, Isu A, Fukaya Y et al (2016) Efficient gene induction and endogenous gene repression systems for the filamentous cyanobacterium Anabaena sp. PCC 7120. Plant Cell Physiol 57:387–396. https://doi.org/10.1093/pcp/pcv202

    Article  CAS  PubMed  Google Scholar 

  190. Kelly CL, Taylor GM, Hitchcock A et al (2018) A rhamnose-inducible system for precise and temporal control of gene expression in cyanobacteria. ACS Synth Biol 7:1056–1066. https://doi.org/10.1021/acssynbio.7b00435

    Article  CAS  PubMed  Google Scholar 

  191. Kelly CL, Taylor GM, Šatkutė A et al (2019) Transcriptional terminators allow leak-free chromosomal integration of genetic constructs in cyanobacteria. Microorganisms 7:263. https://doi.org/10.3390/microorganisms7080263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Liu D, Johnson VM, Pakrasi HB (2020) A reversibly induced CRISPRi system targeting photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 9:1441–1449. https://doi.org/10.1021/acssynbio.0c00106

    Article  CAS  PubMed  Google Scholar 

  193. Higo A, Isu A, Fukaya Y et al (2017) Designing synthetic flexible gene regulation networks using RNA devices in cyanobacteria. ACS Synth Biol 6:55–61. https://doi.org/10.1021/acssynbio.6b00201

    Article  CAS  PubMed  Google Scholar 

  194. Higo A, Isu A, Fukaya Y et al (2018) Spatio-temporal gene induction systems in the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Plant Cell Physiol 59:82–89. https://doi.org/10.1093/pcp/pcx163

    Article  CAS  PubMed  Google Scholar 

  195. Yao L, Cengic I, Anfelt J et al (2016) Multiple gene repression in cyanobacteria using CRISPRi. ACS Synth Biol 5:207–212. https://doi.org/10.1021/acssynbio.5b00264

    Article  CAS  PubMed  Google Scholar 

  196. Johnson TR, Haynes JI, Wealand JL et al (1988) Structure and regulation of genes encoding phycocyanin and allophycocyanin from Anabaena variabilis ATCC 29413. J Bacteriol 170:1858–1865. https://doi.org/10.1128/jb.170.4.1858-1865.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sengupta A, Madhu S, Wangikar PP (2020) A library of tunable, portable, and inducer-free promoters derived from cyanobacteria. ACS Synth Biol 9:1790–1801. https://doi.org/10.1021/acssynbio.0c00152

    Article  CAS  PubMed  Google Scholar 

  198. López-Maury L, García-Domínguez M, Florencio FJ et al (2002) A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol 43:247–256. https://doi.org/10.1046/j.1365-2958.2002.02741.x

    Article  PubMed  Google Scholar 

  199. Registry of Standard Biological Parts. http://parts.igem.org

  200. Wang W, Li Y, Wang Y et al (2018) Bacteriophage T7 transcription system: an enabling tool in synthetic biology. Biotechnol Adv 36:2129–2137. https://doi.org/10.1016/j.biotechadv.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  201. Jin H, Lindblad P, Bhaya D (2019) Building an inducible T7 RNA polymerase/T7 promoter circuit in Synechocystis sp. PCC6803. ACS Synth Biol 8:655–660. https://doi.org/10.1021/acssynbio.8b00515

    Article  CAS  PubMed  Google Scholar 

  202. Xie X, Tian Y, Tian J et al (2020) Construction of T7 RNA polymerase gene expression system in Anabaena sp. PCC 7120 for the expression of hG-CSF. Sheng Wu Gong Cheng Xue Bao 36:2467–2477. https://doi.org/10.13345/j.cjb.200173

    Article  CAS  PubMed  Google Scholar 

  203. Jones CM, Korosh TC, Nielsen DR et al (2021) Optimization of a T7-RNA polymerase system in Synechococcus sp. PCC 7002 mirrors the protein overproduction phenotype from E. coli BL21(DE3). Appl Microbiol Biotechnol 105:1147–1158. https://doi.org/10.1007/s00253-020-11085-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Azevedo R, Lopes JL, de Souza MM et al (2019) Synechococcus elongatus as a model of photosynthetic bioreactor for expression of recombinant β-glucosidases. Biotechnol Biofuels 12:174. https://doi.org/10.1186/s13068-019-1505-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Vijayan V, Jain IH, O'Shea EK (2011) A high resolution map of a cyanobacterial transcriptome. Genome Biol 12:R47. https://doi.org/10.1186/gb-2011-12-5-r47

    Article  PubMed  PubMed Central  Google Scholar 

  206. Stueber D, Bujard H (1982) Transcription from efficient promoters can interfere with plasmid replication and diminish expression of plasmid specified genes. EMBO J 1(11):1399–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Gale GAR, Wang B, McCormick AJ (2020) Evaluation and comparison of the efficiency of transcription terminators in different cyanobacterial species. Front Microbiol 11:624011. https://doi.org/10.3389/fmicb.2020.624011

    Article  PubMed  Google Scholar 

  208. Ma J, Campbell A, Karlin S (2002) Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 184:5733–5745. https://doi.org/10.1128/JB.184.20.5733-5745.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Thiel K, Mulaku E, Dandapani H et al (2018) Translation efficiency of heterologous proteins is significantly affected by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis sp. PCC 6803. Microb Cell Factories 17:34. https://doi.org/10.1186/s12934-018-0882-2

    Article  CAS  Google Scholar 

  210. Sebesta J, Peebles CA (2020) Improving heterologous protein expression in Synechocystis sp. PCC 6803 for alpha-bisabolene production. Metab Eng Commun 10:e00117. https://doi.org/10.1016/j.mec.2019.e00117

    Article  PubMed  Google Scholar 

  211. Oliver JWK, Machado IMP, Yoneda H et al (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci U S A 110:1249–1254. https://doi.org/10.1073/pnas.1213024110

    Article  PubMed  PubMed Central  Google Scholar 

  212. Oliver JWK, Machado IMP, Yoneda H et al (2014) Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng 22:76–82. https://doi.org/10.1016/j.ymben.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  213. Seo SW, Yang J-S, Kim I et al (2013) Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng 15:67–74. https://doi.org/10.1016/j.ymben.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  214. Gaida SM, Al-Hinai MA, Indurthi DC et al (2013) Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Res 41:8726–8737. https://doi.org/10.1093/nar/gkt651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628. https://doi.org/10.1016/j.cell.2009.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Brantl S (2007) Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 10:102–109. https://doi.org/10.1016/j.mib.2007.03.012

    Article  CAS  PubMed  Google Scholar 

  217. Li S, Sun T, Chen L et al (2021) Designing and constructing artificial small RNAs for gene regulation and carbon flux redirection in photosynthetic cyanobacteria. Methods Mol Biol 2290:229–252. https://doi.org/10.1007/978-1-0716-1323-8_16

    Article  CAS  PubMed  Google Scholar 

  218. Srivastava A, Brilisauer K, Rai AK et al (2017) Down-regulation of the alternative sigma factor SigJ confers a photoprotective phenotype to Anabaena PCC 7120. Plant Cell Physiol 58:287–297. https://doi.org/10.1093/pcp/pcw188

    Article  CAS  PubMed  Google Scholar 

  219. Ueno K, Tsukakoshi K, Ikebukuro K (2018) Riboregulator elements as tools to engineer gene expression in cyanobacteria. Appl Microbiol Biotechnol 102:7717–7723. https://doi.org/10.1007/s00253-018-9221-0

    Article  CAS  PubMed  Google Scholar 

  220. Isaacs FJ, Dwyer DJ, Ding C et al (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841–847. https://doi.org/10.1038/nbt986

    Article  CAS  PubMed  Google Scholar 

  221. Abe K, Miyake K, Nakamura M et al (2014) Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC 6803. Microb Biotechnol 7:177–183. https://doi.org/10.1111/1751-7915.12098

    Article  CAS  PubMed  Google Scholar 

  222. Sakai Y, Abe K, Nakashima S et al (2015) Scaffold-fused riboregulators for enhanced gene activation in Synechocystis sp. PCC 6803. Microbiology 4:533–540. https://doi.org/10.1002/mbo3.257

    Article  CAS  Google Scholar 

  223. Sakamoto I, Abe K, Kawai S et al (2018) Improving the induction fold of riboregulators for cyanobacteria. RNA Biol 15:353–358. https://doi.org/10.1080/15476286.2017.1422470

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ueno K, Sakai Y, Shono C et al (2017) Applying a riboregulator as a new chromosomal gene regulation tool for higher glycogen production in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 101:8465–8474. https://doi.org/10.1007/s00253-017-8570-4

    Article  CAS  PubMed  Google Scholar 

  225. Kittle JD, Simons RW, Lee J et al (1989) Insertion sequence IS10 anti-sense pairing initiates by an interaction between the 5′ end of the target RNA and a loop in the anti-sense RNA. J Mol Biol 210:561–572. https://doi.org/10.1016/0022-2836(89)90132-0

    Article  CAS  PubMed  Google Scholar 

  226. Zess EK, Begemann MB, Pfleger BF (2016) Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnol Bioeng 113:424–432. https://doi.org/10.1002/bit.25713

    Article  CAS  PubMed  Google Scholar 

  227. Sun T, Li S, Song X et al (2018) Re-direction of carbon flux to key precursor malonyl-CoA via artificial small RNAs in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 11:26. https://doi.org/10.1186/s13068-018-1032-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Nakashima N, Tamura T, Good L (2006) Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli. Nucleic Acids Res 34:e138. https://doi.org/10.1093/nar/gkl697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Na D, Yoo SM, Chung H et al (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174. https://doi.org/10.1038/nbt.2461

    Article  CAS  PubMed  Google Scholar 

  230. Sun X, Li S, Zhang F et al (2021) Development of a N-acetylneuraminic acid-based sensing and responding switch for orthogonal gene regulation in cyanobacterial Synechococcus strains. ACS Synth Biol 10:1920–1930. https://doi.org/10.1021/acssynbio.1c00139

    Article  CAS  PubMed  Google Scholar 

  231. Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451–463. https://doi.org/10.1038/nrm1403

    Article  CAS  PubMed  Google Scholar 

  232. Garst AD, Edwards AL, Batey RT (2011) Riboswitches: structures and mechanisms. Cold Spring Harb Perspect Biol 3:a003533. https://doi.org/10.1101/cshperspect.a003533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Topp S, Reynoso CMK, Seeliger JC et al (2010) Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol 76:7881–7884. https://doi.org/10.1128/AEM.01537-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Ohbayashi R, Akai H, Yoshikawa H et al (2016) A tightly inducible riboswitch system in Synechocystis sp. PCC 6803. J Gen Appl Microbiol 62:154–159. https://doi.org/10.2323/jgam.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  235. Nakahira Y, Ogawa A, Asano H et al (2013) Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell Physiol 54:1724–1735. https://doi.org/10.1093/pcp/pct115

    Article  CAS  PubMed  Google Scholar 

  236. Pérez AA, Liu Z, Rodionov DA et al (2016) Complementation of cobalamin auxotrophy in Synechococcus sp. strain PCC 7002 and validation of a putative cobalamin riboswitch in vivo. J Bacteriol 198:2743–2752. https://doi.org/10.1128/JB.00475-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kirtania P, Hódi B, Mallick I et al (2019) A single plasmid based CRISPR interference in Synechocystis 6803 – a proof of concept. PLoS One 14:e0225375. https://doi.org/10.1371/journal.pone.0225375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Yao L, Shabestary K, Björk SM et al (2020) Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nat Commun 11:1666. https://doi.org/10.1038/s41467-020-15491-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Choi SY, Woo HM (2020) CRISPRi-dCas12a: a dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria. ACS Synth Biol 9:2351–2361. https://doi.org/10.1021/acssynbio.0c00091

    Article  CAS  PubMed  Google Scholar 

  241. Lee M, Woo HM (2020) A logic NAND gate for controlling gene expression in a circadian rhythm in cyanobacteria. ACS Synth Biol 9:3210–3216. https://doi.org/10.1021/acssynbio.0c00455

    Article  CAS  PubMed  Google Scholar 

  242. Gordon GC, Korosh TC, Cameron JC et al (2016) CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metab Eng 38:170–179. https://doi.org/10.1016/j.ymben.2016.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Knoot CJ, Biswas S, Pakrasi HB (2020) Tunable repression of key photosynthetic processes using Cas12a CRISPR interference in the fast-growing cyanobacterium Synechococcus sp. UTEX 2973. ACS Synth Biol 9:132–143. https://doi.org/10.1021/acssynbio.9b00417

    Article  CAS  PubMed  Google Scholar 

  244. Chaves JE, Rueda-Romero P, Kirst H et al (2017) Engineering isoprene synthase expression and activity in cyanobacteria. ACS Synth Biol 6:2281–2292. https://doi.org/10.1021/acssynbio.7b00214

    Article  CAS  PubMed  Google Scholar 

  245. Chaves JE, Melis A (2018) Biotechnology of cyanobacterial isoprene production. Appl Microbiol Biotechnol 102:6451–6458. https://doi.org/10.1007/s00253-018-9093-3

    Article  CAS  PubMed  Google Scholar 

  246. Storz G, Wolf YI, Ramamurthi KS (2014) Small proteins can no longer be ignored. Annu Rev Biochem 83:753–777. https://doi.org/10.1146/annurev-biochem-070611-102400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Brandenburg F, Klähn S (2020) Small but smart: on the diverse role of small proteins in the regulation of cyanobacterial metabolism. Life 10:322. https://doi.org/10.3390/life10120322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Kanno M, Carroll AL, Atsumi S (2017) Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat Commun 8:14724. https://doi.org/10.1038/ncomms14724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Koch M, Bruckmoser J, Scholl J et al (2020) Maximizing PHB content in Synechocystis sp. PCC 6803: a new metabolic engineering strategy based on the regulator PirC. Microb Cell Factories 19:231. https://doi.org/10.1186/s12934-020-01491-1

    Article  CAS  Google Scholar 

  250. Fritze J, Zhang M, Luo Q et al (2020) An overview of the bacterial SsrA system modulating intracellular protein levels and activities. Appl Microbiol Biotechnol 104:5229–5241. https://doi.org/10.1007/s00253-020-10623-x

    Article  CAS  PubMed  Google Scholar 

  251. Landry BP, Stöckel J, Pakrasi HB (2013) Use of degradation tags to control protein levels in the cyanobacterium Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 79:2833–2835. https://doi.org/10.1128/aem.03741-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Andersen JB, Sternberg C, Poulsen LK et al (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246. https://doi.org/10.1128/AEM.64.6.2240-2246.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Gur E, Sauer RT (2008) Evolution of the ssrA degradation tag in mycoplasma: specificity switch to a different protease. Proc Natl Acad Sci U S A 105:16113–16118. https://doi.org/10.1073/pnas.0808802105

    Article  PubMed  PubMed Central  Google Scholar 

  254. Sakkos JK, Hernandez-Ortiz S, Osteryoung KW et al (2021) Orthogonal degron system for controlled protein degradation in cyanobacteria. ACS Synth Biol 10:1667–1681. https://doi.org/10.1021/acssynbio.1c00035

    Article  CAS  PubMed  Google Scholar 

  255. Røkke G, Korvald E, Pahr J et al (2014) BioBrick assembly standards and techniques and associated software tools. Methods Mol Biol 1116:1–24. https://doi.org/10.1007/978-1-62703-764-8_1

    Article  CAS  PubMed  Google Scholar 

  256. Matsumura I (2020) Methylase-assisted subcloning for high throughput BioBrick assembly. PeerJ 8:e9841. https://doi.org/10.7717/peerj.9841

    Article  PubMed  PubMed Central  Google Scholar 

  257. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/NMETH.1318

    Article  CAS  PubMed  Google Scholar 

  258. Beyer HM, Gonschorek P, Samodelov SL et al (2015) AQUA cloning: a versatile and simple enzyme-free cloning approach. PLoS One 10:e0137652. https://doi.org/10.1371/journal.pone.0137652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647. https://doi.org/10.1371/journal.pone.0003647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Engler C, Gruetzner R, Kandzia R et al (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553. https://doi.org/10.1371/journal.pone.0005553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Weber E, Engler C, Gruetzner R et al (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6:e16765. https://doi.org/10.1371/journal.pone.0016765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Immethun CM, Ng KM, DeLorenzo DM et al (2016) Oxygen-responsive genetic circuits constructed in Synechocystis sp. PCC 6803. Biotechnol Bioeng 113:433–442. https://doi.org/10.1002/bit.25722

    Article  CAS  PubMed  Google Scholar 

  263. Mavrommati M, Daskalaki A, Papanikolaou S et al (2022) Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 54:107795. https://doi.org/10.1016/j.biotechadv.2021.107795

    Article  CAS  PubMed  Google Scholar 

  264. Portnoy VA, Bezdan D, Zengler K (2011) Adaptive laboratory evolution--harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol 22:590–594. https://doi.org/10.1016/j.copbio.2011.03.007

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Klähn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Opel, F., Axmann, I.M., Klähn, S. (2022). The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories. In: Bühler, K., Lindberg, P. (eds) Cyanobacteria in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 183. Springer, Cham. https://doi.org/10.1007/10_2022_210

Download citation

Publish with us

Policies and ethics