Skip to main content
Log in

Fermentation of yam (Dioscorea spp. L.) by indigenous phytase-producing lactic acid bacteria strains

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The use of lactic bacteria in the development of functional foods has increased in recent years. In addition to their probiotic characteristics, they can ferment a variety of substrates, such as cereals, roots, and tubers. Phytase producer lactic acid bacteria strains and their behavior during the fermentation process of yam-based food were studied. Leuconostoc lactis CCMA 0415, Lactobacillus plantarum CCMA 0744, and Lactobacillus fermentum CCMA 0745 were selected due to phytase production, pH reduction, and growth during 24 h of fermentation. Oxalate activity was not detected in all assays, suggesting its concentration was reduced due to the bleaching process. Among the selected strains, L. lactis CCMA 0415 appeared to be a promising strain in yam-based fermentations because it maintained a cell viability above 8 log CFU/mL and did not reduce diosgenin concentrations (around 8.0 μg/mL) after fermentation for 24 h, thereby, generating a potentially functional yam food. Furthermore, this strain promoted the decrease of pH value from 6.1 to 3.8 and produced 8.1 g/L lactic acid, at 6 h of fermentation. The L. lactis CCMA 0415 was reported as a starter culture in fermented products based on cereals, roots, and tubers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carrillo E, Prado-Gascó V, Fiszman S, Varela P (2013) Why buying functional foods? Understanding spending behaviour through structural equation modelling. Food Res Int 50(1):361–368. https://doi.org/10.1016/j.foodres.2012.10.045

    Article  Google Scholar 

  2. FAOSTAT. FAOSTAT. Crop, food and agriculture organization of the United Nations. http://www.fao.org/faostat/en/#data/QC. Published 2014. Accessed 1 July 2017

  3. Babajide JM, Oyewole OB, Henshaw FO, Babajide SO, Olasantan FO (2006) Effect of local preservatives on quality of traditional dry yam slices “Gbodo” and its products. World J Agric Sci 2(3):267–273

    Google Scholar 

  4. Wanasundera JPD, Ravindran G (1994) Nutritional assessment of yam (Dioscorea alata) tubers. Plant Foods Hum Nutr 46:33–39. https://doi.org/10.1007/BF01088459

    Article  CAS  PubMed  Google Scholar 

  5. Hostettmann K, Marston A (1995) Saponins. In: Occurrence and distribution. Cambridge University Press, Cambridge, pp 18–121. https://doi.org/10.1017/CBO9780511565113.

    Chapter  Google Scholar 

  6. Huang CH, Cheng JY, Deng MC, Chou CH, Jan TR (2012) Prebiotic effect of diosgenin, an immunoactive steroidal sapogenin of the Chinese yam. Food Chem 132(1):428–432. https://doi.org/10.1016/j.foodchem.2011.11.016

    Article  CAS  PubMed  Google Scholar 

  7. Patel K, Gadewar M, Tahilyani V, Patel DK (2012) A review on pharmacological and analytical aspects of diosgenin: a concise report. Nat Prod Bioprospect 2(2):46–52. https://doi.org/10.1007/s13659-012-0014-3

    Article  CAS  PubMed Central  Google Scholar 

  8. Bhandari MR, Kawabata J (2006) Cooking effects on oxalate, phytate, trypsin and α-amylase inhibitors of wild yam tubers of Nepal. J Food Compos Anal 19(6–7):524–530. https://doi.org/10.1016/j.jfca.2004.09.010

    Article  CAS  Google Scholar 

  9. Finch AM, Kasidas GP, Rose GA (1981) Urine composition in normal subjects after oral ingestion of oxalate-rich foods. Clin Sci 60:411–418. https://doi.org/10.1042/cs0600411

    Article  CAS  Google Scholar 

  10. Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44(2):125–140

    CAS  Google Scholar 

  11. Lopez HW, Leenhardt F, Coudray C, Remesy C (2002) Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Technol 37:727–739. https://doi.org/10.1046/j.1365-2621.2002.00618.x

    Article  CAS  Google Scholar 

  12. Qian H, Kornegay ET, Denbow DM (1997) Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium: total phosphorus ratio in broiler diets. Poult Sci 76(1):37–46. https://doi.org/10.1093/PS/76.1.37

    Article  CAS  PubMed  Google Scholar 

  13. Lopez HW, Ouvry A, Bervas E, Guy C, Messager A, Demigne C, Remesy C (2000) Strains of lactic acid bacteria isolated from sour doughs degrade phytic acid and improve calcium and magnesium solubility from whole wheat flour. J Agric Food Chem 48(6):2281–2285. https://doi.org/10.1021/jf000061g

    Article  CAS  PubMed  Google Scholar 

  14. Freire AL, Ramos CL, Souza PNC, Cardoso MGB, Schwan RF (2017) Nondairy beverage produced by controlled fermentation with potential probiotic starter cultures of lactic acid bacteria and yeast. Int J Food Microbiol 248:39–46. https://doi.org/10.1016/j.ijfoodmicro.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  15. Luana N, Rossana C, Curiel JA, Kaisa P, Marco G, Rizzello CG (2014) Manufacture and characterization of a yogurt-like beverage made with oat flakes fermented by selected lactic acid bacteria. Int J Food Microbiol 185:17–26. https://doi.org/10.1016/j.ijfoodmicro.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  16. Smid EJ, Kleerebezem M (2014) Production of aroma compounds in lactic fermentations. Annu Rev Food Sci Technol 5(3):313–326. https://doi.org/10.1146/annurev-food-030713-092339

    Article  CAS  PubMed  Google Scholar 

  17. Raghavendra P, Halami PM (2009) Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. Int J Food Microbiol 133(1–2):129–134. https://doi.org/10.1016/j.ijfoodmicro.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  18. Latta M, Eskin M (1980) A simple and rapid colorimetric method for phytate determination. J Agric Food Chem 28(6):1313–1315

    Article  CAS  Google Scholar 

  19. Duarte WF, Dias DR, Oliveira JM, Teixeira JA, de Almeida e Silva JB, Schwan RF (2010) Characterization of different fruit wines made from cacao, cupuassu, gabiroba, jaboticaba and umbu. LWT Food Sci Technol 43(10):1564–1572. https://doi.org/10.1016/j.lwt.2010.03.010.

    Article  CAS  Google Scholar 

  20. Ross AB, Savage GP, Martin RJ, Vanhanen L (1999) Oxalates in oca (New Zealand yam) (Oxalis tuberosa Mol.). J Agric Food Chem 47(12):5019–5022. https://doi.org/10.1021/jf990332r

    Article  CAS  PubMed  Google Scholar 

  21. Ramos CL, Dias DR, Miguel MG d CP, Schwan RF (2014) Impact of different cocoa hybrids (Theobroma cacao L.) and S. cerevisiae UFLA CA11 inoculation on microbial communities and volatile compounds of cocoa fermentation. Food Res Int 64:908–918. https://doi.org/10.1016/j.foodres.2014.08.033

    Article  CAS  PubMed  Google Scholar 

  22. Gaujac A, Dempster N, Navickiene S, Brandt SD, de Andrade JB (2013) Determination of N,N-dimethyltryptamine in beverages consumed in religious practices by headspace solid-phase microextraction followed by gas chromatography ion trap mass spectrometry. Talanta. 106:394–398. https://doi.org/10.1016/j.talanta.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  23. Avula B, Wang YH, Ali Z, Smillie TJ, Khan IA (2014) Chemical fingerprint analysis and quantitative determination of steroidal compounds from Dioscorea villosa, Dioscorea species and dietary supplements using UHPLC-ELSD. Biomed Chromatogr 28(2):281–294. https://doi.org/10.1002/bmc.3019

    Article  CAS  PubMed  Google Scholar 

  24. Fu YC, Ferng LHA, Huang PY (2006) Quantitative analysis of allantoin and allantoic acid in yam tuber, mucilage, skin and bulbil of the Dioscorea species. Food Chem 94(4):541–549. https://doi.org/10.1016/j.foodchem.2004.12.006

    Article  CAS  Google Scholar 

  25. Ferreira DF (2008) SISVAR: a program for statistical analysis and teaching. Rev Científica Symp 6(2):36–41

    Google Scholar 

  26. Lopez Y, Gordon DT, Fields ML (1983) Release of phosphorus from phytate by natural lactic acid fermentation. J Food Sci 48:953–954. https://doi.org/10.1111/j.1365-2621.1983.tb14938.x

    Article  CAS  Google Scholar 

  27. Reddy NR, Pierson MD (1994) Reduction in antinutritional and toxic components in plant foods by fermentation. Food Res Int 27:281–290. https://doi.org/10.1016/0963-9969(94)90096-5

    Article  CAS  Google Scholar 

  28. Freire AL, Ramos CL, de Almeida EG, Duarte WF, Schwan RF (2014) Study of the physicochemical parameters and spontaneous fermentation during the traditional production of yakupa, an indigenous beverage produced by Brazilian Amerindians. World J Microbiol Biotechnol 30(2):567–577. https://doi.org/10.1007/s11274-013-1476-0

    Article  CAS  PubMed  Google Scholar 

  29. Ishimori Y, Koizumi T (2017) Acid lactic beverage and method for producing same: Pat. US 2017/0006889 A1, 8p

  30. Massey LK (2007) Food oxalate: factors affecting measurement, biological variation, and bioavailability. J Am Diet Assoc 107(7):1191–1194. https://doi.org/10.1016/j.jada.2007.04.007

    Article  PubMed  Google Scholar 

  31. Chai W, Liebman M (2005) Effect of different cooking methods on vegetable oxalate content. J Agric Food Chem 53(8):3027–3030. https://doi.org/10.1021/jf048128d

    Article  CAS  PubMed  Google Scholar 

  32. Shimazu Y, Uehara M, Watanabe M (1985) Transformation of citric acid to acetic acid, acetoin and diacetyl by wine making lactic acid bacteria. Agric Biol Chem 49(7):2147–2157. https://doi.org/10.1271/bbb1961.49.2147

    Article  CAS  Google Scholar 

  33. Musharraf SG, Iqbal A, Ansari SH, Parveen S, Khan IA, Siddiqui AJ (2017) β-Thalassemia patients revealed a significant change of untargeted metabolites in comparison to healthy individuals. Sci Rep 7:42249. https://doi.org/10.1038/srep42249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schieberle P (1996) Intense aroma compounds: useful tools to monitor the influence of processing and storage on bread aroma. Adv Food Sci 18(5–6):237–244

    CAS  Google Scholar 

  35. Gaur R, Khare SK (2009) Cellular response mechanisms in Pseudomonas aeruginosa PseA during growth in organic solvents. Lett Appl Microbiol 49(3):372–377. https://doi.org/10.1111/j.1472-765X.2009.02671.x

    Article  CAS  PubMed  Google Scholar 

  36. Karlsson MF, Birgersson G, Witzgall P, Lekfeldt JDS, Nimal Punyasiri PA, Bengtsson M (2013) Guatemalan potato moth Tecia solanivora distinguish odour profiles from qualitatively different potatoes Solanum tuberosum L. Phytochemistry. 85:72–81. https://doi.org/10.1016/j.phytochem.2012.09.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico do Brasil (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors gratefully acknowledge the anonymous referees for their comments and constructive suggestions for improving the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane Freitas Schwan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Eleni Gomes.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, N.N., Ramos, C.L., de Figueiredo Vilela, L. et al. Fermentation of yam (Dioscorea spp. L.) by indigenous phytase-producing lactic acid bacteria strains. Braz J Microbiol 50, 507–514 (2019). https://doi.org/10.1007/s42770-019-00059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00059-5

Keywords

Navigation